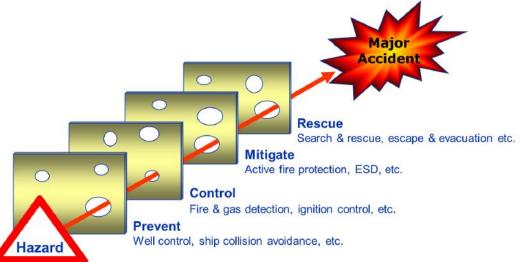


What makes a task safety critical?

Human Factors in Control @ ABB

Sondre Øie 26 April 2016


This presentation

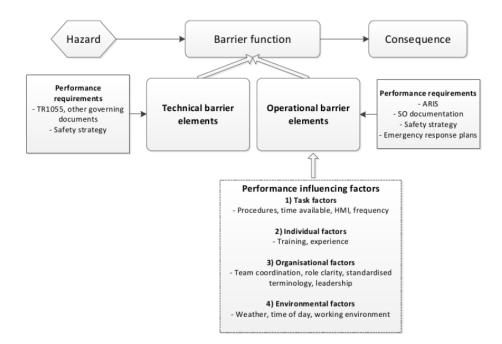
- Definitions
- "The bigger picture"
- @Johan Sverdrup
- Identification & screening
- Task criticality roadmap
- Examples and experiences
- Infiltrate and collaborate
- Ironies of automation
- Sharp end versus AND blunt end
- Summary

Definitions, definitions, definitions...

- Tasks where human performance contribute positively or negatively to <u>major</u> <u>accident risk</u>, through either:
 - Initiation of events;
 - Detection and prevention;
 - Control and mitigation; or,
 - Emergency response.

Reference: www.rederi.no

OK, we know it has something to do with major accidents. Then what?


Safety critical tasks and the "bigger picture"

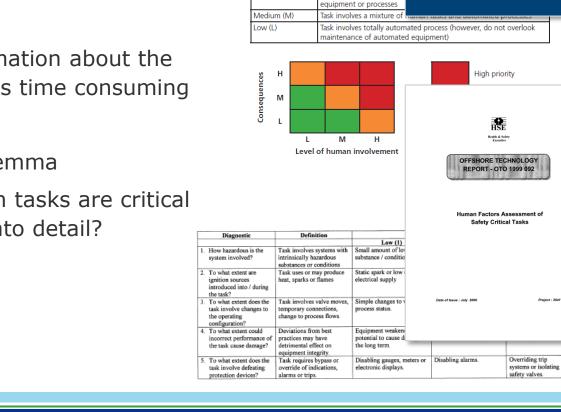
- A task-based approach allows systematic identification, analysis and management of human contribution to major accident risk
- Recently, the concept of safety critical tasks has become an integrated part of key approaches to safety management:
 - Barrier management, e.g. PSA and NSA report
 - Quantitative risk analysis (QRA), e.g. Petro-HRA
- Supports risk-informed decision making, e.g. by reducing uncertainties inherent in assumptions previously made about human performance (e.g. in QRAs)
- Still some way to go, but the ball has started rolling

Mapping and assessment of OBEs @ Johan Sverdrup

Reference: Definitions and guidelines for non-technical barriers (Statoil, 2015)

Main activities:

- Mapping and assessment of OBEs
- HRA in LOPA of human IE's and IPLs


Approach

- Phase 1 Task identification: Review or relevant documents (e.g. safety studies) and input from various technical disciplines and operations
- Phase 2 Task screening: Screening of tasks associated with major accident hazards & barriers against a set of pre-defined criteria (high, medium, low)
- Phase 3 Task requirement analysis: Establishing Performance Requirements for inclusion in Safety Strategies & Performance Standards
- Phase 4 Task failure analysis: Human error identification and analysis of the most critical tasks to assess task feasibility and risk reducing measures

Operational recommendations

Identify assurance and verification activities

Consequences of Example guidance

A human failure could res

A human failure could esc

A human failure should no

Task involves extensive h

Example guidance

human failure

Level of human

involvement

High (H)

High (H)

Low (L)

Medium (M)

Tools for task identification and screening

- Some are too simple;
 - E.g. does not manage to distinguish between medium and highly critical tasks
- Some are too complex;
 - E.g. require a lot of information about the task to make ranking, thus time consuming
- Top down vs. bottom up dilemma
 - How can we identify which tasks are critical without going too much into detail?

Ungraded

energ

Guidance on human factors

safety critical task analysis

www.energyinst.of

www.hse.gov.uk

Roadmap to task criticality

Fully

- Removes hazard?
- Prevents initiation?

Partly

- Mitigates escalation?
- Reduces consequences?

Task frequency

- No. of opportunities to error?
- Task familiarity?

Human reliability

- Human error probability?
- PSF influence/ task feasibility?

- Number of fatalities?
- Severity of injures?

Environment

- Size and duration of spill?
- Type of spill?

- Latent failure? (Type A)
- Initiates event? (Type B)
- Mitigates event? (Type C)

Dependency

- Level of automation?
- Number of safeguards?

- Level of analysis
- Degree of attention

Examples

Safety critical task	How "major" is the hazard?	How effective is the barrier?	How does the task influence the barrier?	Probability of task failure?	Criticality level
Prevent dropped/ swinging objects during crane operations	Dropped objects onto critical equipment or lifting of personnel (e.g. MOB) is highly critical	100% effective	Crane operations are highly depending on manual operations, however several technical safeguards are in place (e.g. DOP, AOPS).	Routine task, highly familiar. Less routine lifts are carefully planned and regulated by procedures and additional safeguards. Well-established training regime.	Medium
Cancellation of emergency depressurization in case of a gas leak in the flare system	Major gas leaks due to depressurization through a rupture or other leak point is highly critical	60%-90% (higher degree of uncertainty)	Cancellation sequence is automated, but required a push- button activation. Diagnosis is purely cognitive actions, with little assistance from HMI/ control system.	Unfamiliar function and task. Negative influence from several PSF, e.g. available time, stress and task complexity. No current training program targeting task.	High

Experiences

- Numerical rating systems and scales fails on "face validity";
 - Too complex construct; qualitative descriptions of criticality levels are preferred
- Works OK; a lot of tasks are screened out based on only one or two criteria, e.g.;
 - The hazard is limited to cause occupational accidents (slips, trips and falls)
- The most difficult part is distinguishing between medium and high criticality
 - If there is uncertainty, more information is collected to help decide

Infiltrate and collaborate!!

HAZOP/HAZID

- Either as safeguards/ barriers, or
- as "valve left inadvertently open" (pure omissions)
- These are typical process "deviations", potentially causing hazardous events

LOPA

Ungraded

- Follow-up of the HAZOP
- SIS/SIF (alarm response) or Initiating Events

QRA/ EPA, reliability assessments

- Not many tasks are modelled, the QRA and EPA is high-level or coarse
- Some times tasks are part of the event or fault tree model, "Human Failure Events"

FMEA/FMECA/FMEDA

- "Detection and recovery" column
- Alarm response, inspection, maintenance etc.

If possible, participate in meetings or ally with meeting chairman/ lead analyst

Maybe not all, but many SCTs can be identified and screened through other activities

Ironies of automation

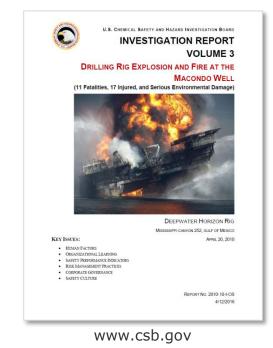
- Petroleum plants are being increasingly automated, especially SIF/SIS (barriers)
- While these are highly reliable systems, in major accidents many systems are in play
- For major accidents to occur, these systems have to fail
- At some point the operators will be faced with the task of potentially having to recover technical failures

When automation fails, the operator is left to do the dirty work

Sharp end versus AND blunt end

- Barrier management and risk analysis can be used to identify, analyse and manage the "bigger holes"
- The smaller, but plentiful and sneaky holes, can be targeted through other initiatives;
 - Safety culture and leadership
 - Scenario-based training/ CRM
 - Management systems, e.g.
 - Maintenance on critical equipment
 - Management of change
 - Operational risk assessments

Ungraded


DNVGL

Summary

- Task criticality is a complex measure of safety
 - Requires a certain skill-set and good tools
 - Some sort of "task library" could be of use
 - Guidance on what to look for and where
- Draws on input from several different disciplines
 - Operations
 - Risk & reliability analysis
 - Technical safety
 - Human Factors engineering
- Current applications are barrier and risk management

Smarter together

- Extend into maintenance and planning?
- Does not solve all aspects of "human contribution"

Questions?

Kilde: <u>www.youtube.com</u>

Ungraded

Kilde: www.youtube.com

15 DNV GL © 2016 26 April 2016

Kilde: <u>www.youtube.com</u>

Thank you!

Sondre Øie, Senior Engineer sondre.oie@dnvgl.com +47 948 61 628

www.dnvgl.com

SAFER, SMARTER, GREENER