HFC - 17.10.2023

IFE

The operator's role in cybersecurity

Prevention, detection and response

Espen Nystad Senior research scientist

2

infrastructure

T

X

Security property	Consequence if breeched
Confidentiality	Unauthorized access to plant information / plant data
Integrity	Inaccurate plant data
Availability	Loss of access to plant systems or data

Cyberattacks towards nuclear organizations

Organization	Year	Attack vector	Consequence
Kudankulam NPP	2019	Personal computer	Espionage
Gudremmingen NPP	2016	USB	Data leak
University of Toyama	2015	Phishing	Data leak
Nuclear Regulatory Commission	2015	Insider threat	No consequence
Monju NPP	2014	Third-party software	Data leak
КНИР	2014	Phishing	Data leak
Iranian Nuclear program	2012	USB	Espionage
Oak Ridge National Laboratory	2011	Phishing	Data leak

Organization	Year	Attack vector	Consequence
Areva	2011	Unknown	Espionage
Iranian Nuclear program	2011	Phishing	Espionage
Natanz uranium plant	2010	USB	Sabotage
Energy Future Holdings	2009	Insider threat	Data leak
Syrian Nuclear Program	2006 Access to digital media		Espionage
Japanese NPP	2005	Personal computer	Data leak
Davis-Besse NPP	2003	Personal computer	Loss of availability
Bradwell NPP	1999	Insider threat	Sabotage
Ignalina NPP	1992	Insider threat	No consequence

Attack vectors			
Phishing	4		
Insider threat	4		
USB	3		
Personal computer	3		
Access to digital			
media	1		
Third-party software	1		
Unknown	1		
^			

7
5
2
2
1

Detection Response Prevention

IFE

Cybersecurity training in Norwegian critical infrastructure companies

Maturity indicator levels	develop CS workforce	increase CS awareness	
	i) Continuing training opportunities	e) Effectiveness regularly evaluated & improvements	
Mostly fulfilled Partly fulfilled Not defined	h) Effectiveness regularly evaluated &	made	
	improvements made	d) Aligned with states of operation	
	 g) Training program aligned with Workforce Management objectives 		
	f) Recruitment / retention aligned with WM objectives		
MIL3	e) CS WM objectives established		
MIL2	 d) Training as prerequisite to access c) Gaps addressed in training b) CS gaps identified 	c) CS awareness content based on threat profileb) CS awareness activities established and maintained	
MIL1	a) CS training made available	a) CS awareness activities occur	

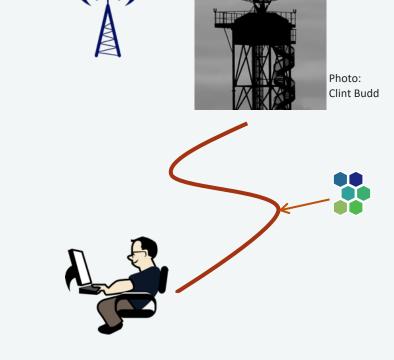
Nabin Cowdhury, Espen Nystad, Kine Reegård (2022). Cybersecurity Training in Norwegian Critical Infrastructure Companies.

Cybersecurity training in Norwegian critical infrastructure companies

- Training focused on basic cybersecurity competence and awareness
- All respondents saw a need for further improvement of cybersecurity competence
- Staff in urgent need of further cybersecurity competence improvement:
 - 1. General staff and Management
 - 2. IT personnel
 - 3. Operative personnel
- Lacking: Keep updated view of threat landscape -> Update content accordingly

Cybersecurity training – insights from NPP operators

 Interviews with 20 operators and operational managers 4 crews US and Sweden Analogue control rooms with some digital systems 		 Password protection Recognizing malicious emails, phishing campaigns Use of USB sticks and portable devices 	All 4 crews
	Role-specific • training •	 Recognize cyber issues in plant equipment Separation of plant equipment network and business network Keylogging Cyber incidents experienced at other plants 	2 crews
	•	Recognize malware: Unexpected mouse movements or changes on screen	1 crew



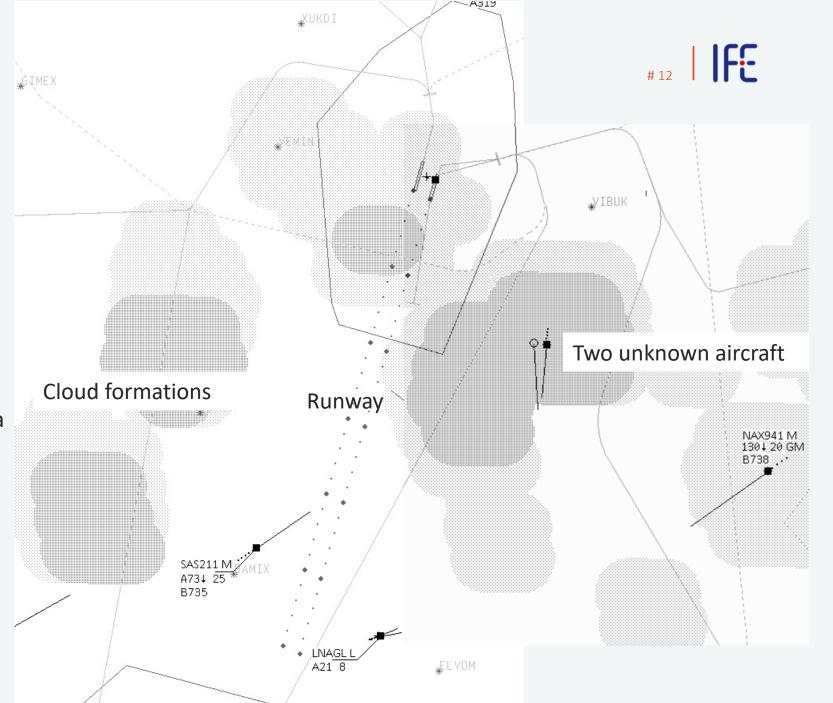
IFE

ă 8 88

Cybersecurity awareness in air traffic control

- Air traffic control systems have known vulnerabilities, e.g. may lack means for authentication or encryption.
- Vulnerabilities have been identified in:
 - Communication systems (VHF, Controller Pilot Data Link Communications systems)
 - Radar / surveillance systems (Secondary Surveillance Radar, Automatic Dependent Surveillance systems)
- Possible to produce false or altered data, a false picture of the airspace
- Probability of hackers gaining access to the operational systems is seen as low
 - ightarrow Operators are usually not trained on such scenarios
- Study of 'Operative cybersecurity awareness' in ATCOs
 - 5 licensed ATCOs from Avinor
 - Online Table-top exercise of ATM cyber scenarios
- Research questions:
 - Are ATCOs able to detect a cyber intrusion in the operative systems?
 - Are ATCOs' response to a technical incident different from the response to a cyber incident?

Scenario 1 – training/warm up

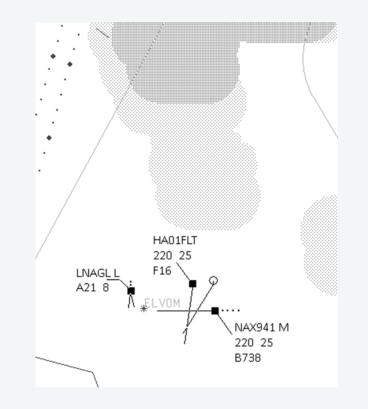

Normal traffic, all systems working correctly

Scenario 2 – seemingly technical issues

- Faulty radar in unrelated sector
- One aircraft indicates inaccurate data

Traffic issue:

• Unknown aircrafts safe distances diminishing



Scenario 3 – Ambiguous technical / cyber issues

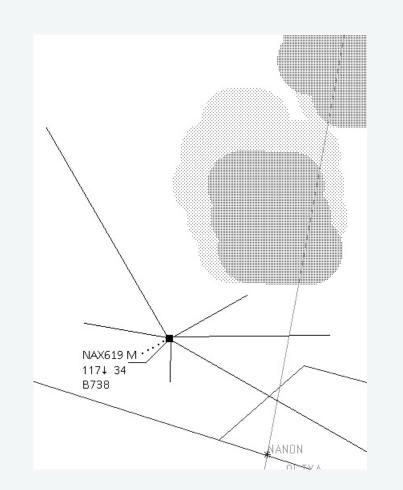
Label information (altitude) is clearly wrong for three aircraft

Previously unknown aircraft now identified.

Two targets seem to be on collision course.

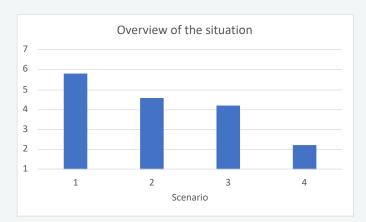
Scenario 4 – Clearly abnormal / cyber

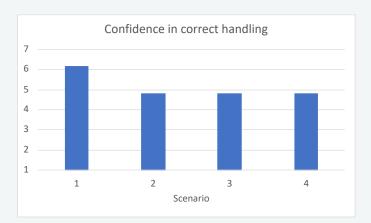
Scenario 4a:

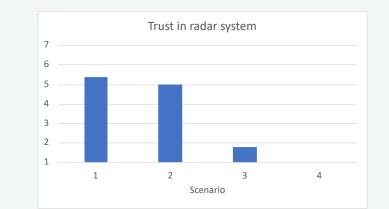

- Two aircraft jumped to previous location
- One duplicate aircraft

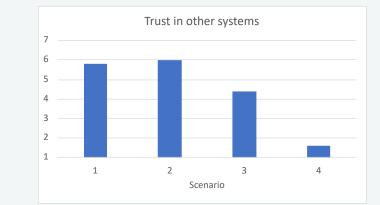
Scenario 4b:

• Extra Predicted Track Lines (PTL) added to five aircraft


Scenario 4c:


• Message and image from intruders shown in the surveillance picture





Results

- The cyber event negatively affected the ATCOs' workload, situation overview and trust in the technical systems.
- ATCOs did not suspect a cyber event until the very last scenario.
 - Did not have any experience of cyber events that could be used to help in understanding the situation
- When ATCOs suspected a cyber-attack:
 - Perception of the situation changed. ATCOs understood they were dealing with an actor with a malicious intent. Acted to enable planes to land on their own.

Simulator study on NPP operator's cybersecurity awareness

- Individual participation, 8 operators
- HPWR simulator
- 4 scenarios with ambiguous cyber / technical failures
- Warning of potential cyber incident before last 2 scenario runs
- Run 1No warningRun 2No warningRun 3WarningRun 4WarningBalanced scenario

sequence

- Rated own workload, situation understanding and confidence in scenario handling
- Interview

Results

Workload

Situation understanding Situation understanding Current effect. F(1, 7)=1,2238, p=.30518 Effective hypothesis decomposition Vertical bars denote 0,95 confidence intervals

No Yes Cyber warning

No significant differences between 'cyber warning' group and 'no cyber warning' group

Cyber security concerns from operators

Operator	Scenario	Run	Fault
A	1	3	Si-340 not closing
A	2	4	cond. booster pump not starting
В	3	4	SG level deviation
С	2	4	starts pump with discharge valve closed
		รเ	bok at this, make ure it's not a cyber ecurity threat

- Would question and investigate any abnormal indications
- Would first assume technical failure
- Signs of something other than mechanical failure
 - Multiple failures in unrelated systems
 - Mouse was moving on its own or things changing in the HMI on its own

All crews 3 crews |---

18

2 crews

1 crew

3 Response to cyber-attacks

IFE

I . .

ă 8 88

Response to a cyber incident – insights from NPP operators

- Report and monitor All crews Try to verify status of indications Report to supervisor - Supervisor reports to IT / cybersecurity responsible / security / cyber issue response team All crews Follow procedures Use existing operating procedures No cyber procedures exist (on operator level) Take plant to safe condition Diagnosis would come later (difficult to distinguish cyber from technical faliure) 2 crews - Follow advise from cyber security responsible
 - If suspected cyber incident: Would be on lookout for more failures, increase monitoring

1 crews

Collaboration between control room and Security Operation Center

IFE's Halden Man-Machine Laboratory (HAMMLAB)

Challenges:

- Safety focus (CR) vs security focus (SOC)
- Physical process domain (CR) vs abstract digital domain (SOC)
- Communication of risk

Espen Nystad, , Vikash Katta, John Eidar Simensen (2020). What happens in a control room during a cybersecurity attack? Preliminary observations from a pilot study

IFE's Cybersecurity Center

4 Conclusion

Implications for Prevention of Cyber-attacks

- Consider need for role-specific cyber awareness training
- Evaluate and improve training
- Update training based on current threat picture

Implications for Detection of Cyber-attacks

- Operators may be first line of detection
 - Limited training for detecting cyber-attacks in the control room

ÅPENT

24

- Improvement of Operative cybersecurity awareness:
 - Cyber-attacks can impact plant systems
 - Signs of cyber-attack
 - Experience of cyber incidents from similar facilitites
 - Cyber scenarios in simulator training

Implications for Response to Cyber-attacks

- Procedures / guidelines for handling cyber-attacks
 - Consider cyber as possible cause
 - Escalation procedures
- Ensure business continuity
- Bridge gap between control room operators and cybersecurity operators

Questions?

