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Abstract
We present an implementation approach for Marching
Cubes on graphics hardware for OpenGL 2.0 or com-
parable APIs. It currently outperforms all other known
GPU-based iso-surface extraction algorithms in direct
rendering for sparse or large volumes, even those using
the recently introduced geometry shader capabilites. To
achieve this, we outfit the HistoPyramid algorithm, pre-
viously only used in GPU data compaction, with the
capability for arbitrary data expansion. After reformu-
lation of Marching Cubes as a data compaction and ex-
pansion process, the HistoPyramid algorithm becomes
the core of a highly efficient and interactive March-
ing Cube implementation. For graphics hardware lack-
ing geometry shaders, such as mobile GPUs, the con-
cept of HistoPyramid data expansion is easily general-
ized, opening new application domains in mobile visual
computing. Further, to serve recent developments, we
present how the HistoPyramid can be implemented in
the parallel programming language CUDA, by using a
novel 1D chunk/layer construction.

1 Introduction
Iso-surfaces of scalar fields defined over cubical grids
are essential in a wide range of applications, e.g. medi-
cal imaging, geophysical surveying, physics, and com-
putational geometry. A major challenge is that the num-
ber of elements grows to the power of three with respect
to sample density, and the massive amounts of data puts
tough requirements on processing power and memory
bandwidth. This is particularly true for applications
that require interactive visualization of scalar fields. In
medical visualization, for example, iso-surface extrac-
tion, as depicted in Figure 1, is used on a daily ba-
sis. There, the user benefits greatly from immediate
feedback in the delicate process of determining transfer

Figure 1: Determining transfer functions and iso-levels
for medical data is a delicate process where the user
benefits greatly from immediate feedback.

functions and iso-levels. In other areas such as geophys-
ical surveys, iso-surfaces are an invaluable tool for in-
terpreting the enormous amounts of measurement data.

Therefore, and not unexpectedly, there has been a
lot of research on volume data processing on Graphics
Processing Units (GPUs), since GPUs are particularly
designed for huge computational tasks with challeng-
ing memory bandwidth requirements, building on sim-
ple and massive parallelism instead of the CPU’s more
sophisticated serial processing. Volume ray-casting is
one visualization technique for scalar fields that has
been successfully implemented on GPUs. While the
intense computation for every change in viewport can
nowadays be handled, ray-casting can never produce an
explicit representation of the iso-surface. Such an ex-
plicit iso-surface is essential for successive processing
of the geometry, like volume or surface area calcula-
tions, freeform modeling, surface fairing, or surface-
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Figure 2: An iso-surface represented explicitly as a compact list of triangles (left) can be visualized from any
viewpoint (middle) and even be directly post-processed. One example for such post-processing is the spawning of
particles evenly over the surface (right). In all three images, the GPU has autonomously extracted the mesh from
the scalar field, where it is kept in graphics memory.

related effects for movies and games, such as the one
shown in Figure 2. In particular, two efficient algo-
rithms for extracting explicit iso-surfaces, Marching
Cubes (MC) and Marching Tetrahedra (MT), have been
introduced. By now, substantial research effort has been
spent on accelerating these algorithms on GPUs.

In this paper, we present a novel, though well-
founded, formulation of the Marching Cubes algorithm,
suitable for any graphics hardware with at least Shader
Model 3 (SM3) capabilites. This allows the implemen-
tation to run on a wide range of graphics hardware. Our
approach extract iso-surfaces directly from raw data
without any pre-processing, and thus dynamic datasets,
changes in the transfer function, or variations in the iso-
level is handled directly. It is able to produce a com-
pact sequence of iso-surface triangles in GPU mem-
ory without any transfer of geometry to or from the
CPU. The method requires only a moderate implemen-
tation effort and can thus be easily integrated into exist-
ing applications, while currently outperforms all other
known GPU-based iso-surface extraction approaches.
For completeness, we also propose how this algorithm
can be implemented in the general GPU programming
language CUDA [14].

The main element of our approach is the Histogram
Pyramid [19] (short: HistoPyramid), which has shown
to be an efficient data structure for GPU stream com-
paction. In this paper, we have extended the HistoPy-
ramid to handle general GPU stream expansion. This
simple, yet fundamental modification, together with a
reformulation of the MC algorithm as a stream com-
paction and expansion process, enables us to map the
MC algorithm onto the GPU.

We begin with an overview of previous and re-

lated work in Section 2, followed by a description of
HistoPyramids in Section 3. In Section 4, we describe
the MC algorithm, its mapping to HistoPyramid stream
processing, and implementation details for both the
OpenGL and the CUDA implementations. After that,
we provide a performance analysis in Section 5, before
we conclude in the final section.

2 Previous and Related work
In recent years, iso-surface extraction on stream pro-
cessors (like GPUs) has been a topic of intensive re-
search. MC is particularly suited for parallelization, as
each MC cell can be processed individually. Neverthe-
less, the number of MC cells is substantial, and some
approaches employ pre-processing strategies to avoid
processing of empty regions at render time. Unfortu-
nately, this greatly reduces the applicability of the ap-
proach to dynamic data. Also, merging the outputs of
the MC cells’ triangles into one compact sequence is
not trivial to parallelize.

Prior to the introduction of geometry shaders, GPUs
completely lacked functionality to create primitives di-
rectly. Consequently, geometry had to be instanti-
ated by the CPU or be prepared as a vertex buffer ob-
ject (VBO). Therefore, a fixed number of triangles had
to be assumed for each MC cell, and by making the
GPU cull degenerate primitives, the superfluous trian-
gles could be discarded. Some approaches used MT
to reduce the amount of redundant triangle geometry,
since MT never requires more than two triangles per
MT tetrahedron. In addition, the configuration of a
MT tetrahedron can be determined by inspecting only
four corners, reducing the amount of inputs. How-
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ever, for a cubical grid, each cube must be subdivided
into at least five tetrahedra, which makes the total num-
ber of triangles usually larger in total than for an MC-
generated mesh. Beyond that, tetrahedral subdivision
of cubical grids introduces artifacts [2].

Pascucci et al. [15] represents each MT tetrahedron
with a quad and let the vertex shader determine inter-
sections. The input geometry is comprised of triangle
strips arranged in a 3D space-filling curve, which min-
imizes the workload of the vertex shader. The MT ap-
proach of Klein et al. [10] renders the geometry into
vertex arrays, moving the computations to the fragment
shader. Kipfer et al. [9] improved upon this by letting
edge intersections be shared. Buatois et al. [1] applied
multiple stages and vertex texture lookups to reduce re-
dundant calculations. Some approaches reduce the im-
pact of fixed expansion by using spatial data-structures.
Kipfer et al. [9], for example, identify empty regions
in their MT approach using an interval tree. Goetz et
al. [3] let the CPU classify MC cells, and only feed
surface-relevant MC cells to the GPU, an approach also
taken by Johansson et al. [7], where a kd-tree is used to
cull empty regions. But they also note that this pre-
processing on the CPU limits the speed of the algo-
rithm. The geometry shader (GS) stage of SM4 hard-
ware can produce and discard geometry on the fly. Ural-
sky [17] propose a GS-based MT approach for cubical
grids, splitting each cube into six tetrahedra. An imple-
mentation is provided in the Nvidia OpenGL SDK-10,
and has also been included in the performance analysis.

Most methods could provide a copy of the iso-surface
in GPU memory, using either vertex buffers or the
new transform feedback mechanism of SM4-hardware.
However, except for GS-based approaches, the copy
would be littered with degenerate geometry, so ad-
ditional post-processing, such as stream compaction,
would be needed to produce a compact sequence of tri-
angles.

Horn’s early approach [6] to GPU-based stream com-
paction uses a prefix sum method to generate output
offsets for each input element. Then, for each output
element, the corresponding input element is gathered
using binary search. The approach has a complexity of
O(n log n) and does not perform well on large datasets.

Prefix Sum (Scan) uses a pyramid-like up-sweep and
down-sweep phase, where it creates, in parallel, a table
that associates each input element with output offsets.
Then, using scattering, the GPU can iterate over input
elements and directly store the output using this off-
set table. Harris [4] designed an efficient implementa-

tion in CUDA. The Nvidia CUDA SDK 1.1 provides an
MC implementation using Scan, and we have included
a highly optimized version in the performance analysis.

Ziegler et al. [19] have proposed another approach to
data compaction. With the introduction of HistoPyra-
mids, data compaction can be run on the GPU of SM3
hardware. Despite a deep gather process for the out-
put elements, the algorithm is surprisingly fast when
extracting a small subset of the input data.

3 HistoPyramids

The core component of our MC implementation is the
HistoPyramid data structure, introduced in [19] for
GPU-based data compaction. We extend its definition
here, and introduce the concept of local key indices (be-
low) to provide for GPU-based 1:m expansion of data
stream elements for all non-negative m. The input is a
stream of data input elements, short: the input stream.
Now, each input element may allocate a given num-
ber of elements in the output stream. If an input ele-
ment allocates zero elements in the output stream, the
input element is discarded and the output stream be-
comes smaller (data compaction). On the other hand,
if the input element allocates more than one output el-
ement, the stream is expanded (data expansion). The
input elements’ individual allocation is determined by a
user-supplied predicate function which determines the
output multiplicity for each input element. As a side-
note, in [19], each element allocated exactly one output
or none.

The HistoPyramid algorithm consists of two distinct
phases. In the first phase, we create a HistoPyramid, a
pyramid-like data structure very similar to a MipMap.
In the second phase, we extract the output elements by
traversing the HistoPyramid top-down to find the corre-
sponding input elements. In the case of stream expan-
sion, we also determine which numbered copy of the
input element we are currently generating.

3.1 Construction

The first step is to build the HistoPyramid, a stack of
2D textures. At each level, the texture size is a quarter
of the size of the level below, i.e. the same layout as the
MipMap pyramid of a 2D texture. We call the largest
texture, in the bottom of the stack, the base texture, and
the single texel of the 1×1 texture in the top of the stack
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Figure 3: Bottom-up build process of the HistoPyra-
mid, adding the values of four texels repeatedly. The
top texel contains the total number of output elements
in the pyramid.

the top element. Figure 3 shows the levels of a HistoPy-
ramid, laid out from left to right. The texel count in the
base texture is the maximum number of input elements
the HistoPyramid can handle. For simplicity, we as-
sume that the base texture is square and the side length
a power of two (arbitrary sizes can be accommodated
with suitable padding).

In the base level, each input element corresponds to
one texel. This texel holds the number of allocated out-
put elements. In Figure 3 we have an input stream of 16
elements, laid out from left to right and top to bottom.
Thus, elements number 0,1,3,4,6,11, and 12 have allo-
cated one output element each (stream pass-through).
Element number 9 has allocated two output elements
(stream expansion), while the rest of the elements have
not allocated anything (stream compaction). These ele-
ments will be discarded. The number of elements to be
allocated is determined by the predicate function at the
base level. This predicate function may also map the
dimension of the input stream to the 2D layout of the
base level. In our MC application, the input stream is a
3D volume.

The next step is to build the rest of the levels from
bottom-up, level by level. According to the MipMap
principle, each texel in a level corresponds to four tex-
els in the level below. In contrast to the averaging used
in the construction of MipMaps, we sum the four ele-
ments. Thus, each texel receives the sum of the four
corresponding elements in the level below. The exam-
ple in Figure 3 illustrates this process. The sum of the
texels in the 2×2 block in the upper left of the base level
is three, and stored in the upper left texel of Level 1. The

In: Key indices

6 7 8
3 4 5
0 1 2

Out: Texcoords and k

[1,2],1[0,3],0[3,2],0
[3,0],0[2,1],0[1,2],0
[0,0],0[1,0],0[0,1],0

1 0 0 0

0 2 0 1

1 0 1 0

1 1 0 1

Base level

3 1

3 2

Level 1

9

Level 2

1 0 0 0

0 2 0 1

1 0 1 0

1 1 0 1

Base level

3 1

3 2

Level 1

9

Level 2

Figure 4: Element extraction, interpreting partial sums
as interval in top-down traversal. Red traces the extrac-
tion of key index 4 and green traces key index 6.

sum of the texels in the single 2 × 2 block of Level 1
is nine, and stored in the single texel of Level 2, the top
element of the HistoPyramid.

At each level, the computation of a texel depends
only on four texels from the previous one. This allows
us to compute all texels in one level in parallel, without
any data inter-dependencies.

3.2 Traversal

In the second phase, we generate the output stream.
The number of output elements is provided by the top
element of the HistoPyramid. Now, to fill the output
stream, we traverse the HistoPyramid once per output
element. To do this, we linearly enumerate the output
elements with a key index k, and re-interpret HP val-
ues as key index intervals. The traversal requires sev-
eral variables: We let m denote the number of HP lev-
els. The traversal maintains a texture coordinate p and
a current level l, referring to one specific texel in the
HistoPyramid. We further maintain a local key index
kl, which adapts to the local index range. It is initialized
as kl = k. The traversal starts from the top level l = m
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and goes recursively down, terminating at the base level
l = 0. During traversal, kl and p are continuously up-
dated, and when traversal terminates, p points to a texel
in the base level. In the case of stream pass-through,
kl is always zero when traversal terminates. However,
in the case of stream expansion, the value in kl deter-
mines which numbered copy of the input element this
particular output element is.

Initially, l = m and p points to the center of the
single texel in the top level. We subtract one from l,
descending one step in the HistoPyramid, and now p
refers to the center of the 2 × 2 block of texels in level
m − 1 corresponding to the single texel p pointed to
at level m. We label these four texels in the following
manner,

a b
c d

and use the values of these texels to form the four ranges
A,B,C, and D, defined as

A = [0 , a),
B = [a , a + b),
C = [a + b , a + b + c), and
D = [a + b + c , a + b + c + d).

Then, we examine which of the four ranges kl falls into.
If, for example, kl falls into the range B, we adjust p
to point to the center of b and subtract the start of the
range, in this case a, from kl, adapting kl to the local
index range. We recurse by subtracting one from l and
repeating the process until l = 0, when the traversal
terminates. Then, from p we can calculate the index of
the corresponding input stream element, and the value
in kl enumerates the copy.

Figure 4 show two examples of HistoPyramid traver-
sal. The first example, labeled red, is for the key index
k = 4, a stream pass-through. We start at level 2 and
descend to level 1. The four texels at level 1 form the
ranges

A = [0 , 3), B = [3 , 5), C = [5 , 8), D = [8 , 9).

We see that kl is in the range B. Thus, we adjust the
texture coordinate to point to the upper left texel and
adjust kl to the new index range by subtracting 3 from
kl, which leaves kl = 1. Then, we descend again to the
base level. The four texels in the base level correspond-
ing to the upper left texel of level 1 form the ranges

A = [0 , 0), B = [0 , 1), C = [1 , 2), D = [2 , 2).

The ranges A and D are empty. Here, kl = 1 falls into
C, and we adjust p and kl accordingly. Since we’re at
the base level, the traversal terminates, p = [2, 1] and
kl = 0.

The second example of Figure 4, labeled green, is a
case of stream expansion, with key index k = 6. We
begin at the top of the HistoPyramid and descend to
level 2. Again, the four texels form the ranges

A = [0 , 3), B = [3 , 5), C = [5 , 8), D = [8 , 9),

and kl falls into the range C. We adjust p to point to
c and subtract the start of range C from kl, resulting in
the new local key index kl = 1. Descending, we inspect
the four texels in the lower left corner of the base level,
which form the four ranges

A = [0 , 0), B = [0 , 2), C = [2 , 3), D = [3 , 3),

where kl now falls into range B, and we adjust p and kl

accordingly. Since we’re at the base level, we terminate
traversal, and have p = [1, 2]. kl = 1 implies that
output element 6 is the second copy of the input element
from position [1, 2] in the base texture.

The traversal only reads from the HistoPyramid.
There are no data dependencies between traversals.
Therefore, the output elements can be extracted in any
order — even in parallel.

3.3 Comments

The 2D texture layout of the HistoPyramid fits graphics
hardware very well. It can intuitively be seen that in the
domain of normalized texture coordinate calculations,
the texture fetches overlap with fetches from the level
below. This allows the 2D texture cache to assist HP
traversal with memory prefetches, and thus increases its
performance.

At each descent during traversal, we have to inspect
the values of four texels, which amounts to four texture
fetches. However, since we always fetch 2 × 2 blocks,
we can use a four-channel texture and encode these four
values as RGBA value. This halves the size of all tex-
tures along both dimensions, and thus let us build four
times larger HistoPyramids within the same texture size
limits. In addition, since we quarter the number of tex-
ture fetches, and graphics hardware is quite efficient at
fetching four-channel RGBA values, this usually yields
a speed-up. For more details, see vec4-HistoPyramids
in [19].
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Figure 5: The 15 basic predefined triangulations [11] for edge intersections (left). By symmetry, they provide
triangulations for all 256 MC cases. Ambiguous cases are handled by adding some extra triangulations [12]. A
MC cell (right) where only f is inside the iso-surface, and thus the edges (e, f), (b, f), and (f, h) intersect the
iso-surface.

Memory requirements of the HP are identical to a 2D
MipMap-pyramid, i.e. 1/3 the size of the base level.
Since the lower levels contain only small values, one
could create a composite structure using UINT8 for
the lowest levels, UINT16 for some levels before using
UINT32 for the top levels.

4 Marching Cubes

The Marching Cubes (MC) algorithm [11] of Lorensen
and Cline is probably the most commonly used al-
gorithm for extracting iso-surfaces from scalar fields,
which is why we chose it as basis for our GPU iso-
surface extraction. From a 3D grid of N×M×L scalar
values, we form a grid of (N−1)× (M−1)× (L−1)
cube-shaped “MC cells” in-between the scalar values
such that each corner of the cube corresponds to a scalar
value. The basic idea is to “march” through all the cells
one-by-one, and for each cell, produce a set of triangles
that approximates the iso-surface locally in that partic-
ular cell.

It is assumed that the topology of the iso-surface in-
side a MC cell can be completely determined from clas-
sifying the eight corners of the MC cell as inside or out-
side the iso-surface. Thus, the topology of the local iso-
surface can be encoded into an eight-bit integer, which
we call the MC case of the MC cell. If any of the twelve
edges of the MC cell have one endpoint inside and one
outside, the edge is said to be piercing the iso-surface.
The set of piercing edges is completely determined by
the MC case of the cell. E.g., the MC cell right in Fig-
ure 5 has corner f inside and the rest of the corners

outside. Encoding “inside” with 1 and “outside” with
0, we attain the MC case %00000100 in binary nota-
tion, or 32 in decimal. The three piercing edges of the
MC cell are (b, f), (e, f), and (f, h).

For each piercing edge we determine the intersec-
tion point where the edge intersects the iso-surface. By
triangulating these intersection points we attain an ap-
proximation of the iso-surface inside the MC cell, and
with some care, the triangles of two adjacent MC cells
fit together. Since the intersection points only move
along the piercing edges, there are essentially 256 pos-
sible triangulations, one for each MC case. From 15
basic predefined triangulations, depicted left in Fig-
ure 5, we can create triangulations for all 256 MC cases
due to inherent symmetries [11]. However, some of
the MC cases are ambiguous, which may result in a
discontinuous surface. Luckily, this is easily reme-
died by modifying the triangulations for some of the
MC cases [12]. On the downside, this also increases
the maximum number of triangles emitted per MC cell
from 4 to 5.

Where a piercing edge intersects the iso-surface is
determined by the scalar field along the edge. However,
the scalar field is only known at the end-points of the
edge, so some assumptions must be made. A simple
approach is to position the intersection at the midpoint
of the edge, however, this choice leads to an excessively
“blocky” appearance, see the left side of Figure 6. A
better choice is to approximate the scalar field along the
edge with an interpolating linear polynomial, and find
the intersection using this approximation, as shown in
the right half of Figure 6.
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Figure 6: Assuming that edges pierce the iso-surface at
the middle of an edge (left) and using an approximating
linear polynomial to determine the intersection (right).

4.1 Mapping MC to Stream and HistoPy-
ramid Processing

Our approach is to implement MC as a sequence of data
stream operations, with the input data stream being the
cells of the 3D scalar field, and the output stream be-
ing a set of vertices, forming the triangles of the iso-
surface. The data stream operations are executed via the
HistoPyramid or, in one variant, the geometry shader,
which compact and expand the data stream as neces-
sary.

Figure 7 shows a flowchart of our algorithm. We use
a texture to represent the 3D scalar field, and the first
step of our algorithm is to update this field. The 3D
scalar field can stem from a variety of sources: it may
e.g. originate from disk storage, CPU memory, or sim-
ply be the result of GPGPU computations. For static
scalar fields, this update is of course only needed once.

The next step is to build the HistoPyramid. We start
at the base level. Our predicate function corresponds
the base level texels with one MC cell each, and cal-
culates the corresponding 3D scalar field coordinates.
Then, it samples the scalar field to classify the MC cell
corners. By comparing against the iso-level, it can de-
termine which MC cell corners are inside or outside the
iso-surface. This determines the MC case of the cell,
and thus the number of vertices needed to triangulate
this case. We store this value in the base level, and can
now proceed with HistoPyramid build-up for the rest of
the levels, as described in Section 3.1.

After HistoPyramid buildup has been completed, we

read back the single texel at its top level. This makes the
CPU aware of the actual number of vertices required for
a complete iso-surface mesh. Dividing this number by
three yields the number of triangles.

As already mentioned, output elements can be ex-
tracted by traversing the HistoPyramid. Therefore, the
render pass is fed with dummy vertices, enumerated
with increasing key indices. For each input vertex, we
use its key index to conduct a HistoPyramid traversal,
as described in Section 3.2. After the traversal, we have
a texel position in the base level and a key index remain-
der kl. From the texel position in the base texture, we
can determine the corresponding 3D coordinate, invert-
ing the predicate function’s 3D to 2D mapping. Using
the MC case of the cell and the local key index kl, we
can perform a lookup in the triangulation table texture,
a 16×256 table where entry (i, j) tells which edge ver-
tex i in a cell of MC case j corresponds to. Then, we
sample the scalar field at the two end-points of the edge,
determine a linear interpolant of the scalar field along
this edge, find the exact intersection, and emit the cor-
responding vertex.

In effect, the algorithm has transformed the stream
of 3D scalar field values into a stream of vertices, gen-
erated on the fly while rendering iso-surface geometry.
Still, the geometry can be stored in a buffer on the GPU
if so needed, either by using transform feedback buffers
or via a render-to-vertex-buffer pass.

4.2 Implementation Details
In detail, the actual implementation of our MC ap-
proach contains some noteworthy caveats described in
this chapter.

We store the 3D scalar field using a large tiled 2D tex-
ture, know as a Flat 3D layout [5], which allows the
scalar field to be updated using a single GPGPU-pass.
Since the HistoPyramid algorithm performs better for
large amounts of data, we use the same layout for the
base level of the HistoPyramid, allowing the entire vol-
ume to be processed using one HistoPyramid.

We use a four-channel HistoPyramid, where the
RGBA-values of each base level texel correspond to the
analysis of a tiny 2×2×1-chunk of MC cells. The anal-
ysis begins by fetching the scalar values at the common
3×3×2 corners of the four MC cells. We compare these
values to the iso-value to determine the inside/outside
state of the corners, and from this determine the actual
MC cases of the MC cells. The MC case corresponds
to the MC template geometry set forth by the Marching
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Figure 7: A schematic view of the implementation. Thick arrows designate control flow, with blue boxes executing
on the GPU and white boxes on the CPU. The dotted and dashed arrows represent data flow, with dotted arrows
for fetches and dashed arrows for writes. Green boxes stand for dynamic data. Red boxes for static data.

Cubes algorithm. As it is needed in the extraction pro-
cess, we use some of the bits in the base level texels to
cache it. To do this, we let the vertex count be the inte-
ger part and the MC case the fractional part of a single
float32 value. This is sound, as the maximum number
of vertices needed by an MC case is 15, and therefore
the vertex count only needs 4 of the 32 bits in a float32
value. This data co-sharing is only of relevance in the
base-level, and the fractional part is stripped away when
building the first level of the HistoPyramid. HistoPy-
ramid texture building is implemented as consecutive
GPGPU-passes of reduction operations, as exemplified
in “render-to-texture loop with custom MipMap gener-
ation” [8], but instead of using one single framebuffer
object (FBO) for all MipMap levels, we use a sepa-
rate FBO for each MipMap level, yielding a speedup
on some hardware. We retrieve the RGBA-value of the
top element of the HistoPyramid to the CPU as the sum
of these four values is the number of vertices in the iso-
surface.

Our SM3 variant uses the vertex shader to generate
the iso-surface on the fly. Here, rendering is triggered
by feeding the given number of (dummy) vertices to
the vertex shader. The only vertex attribute provided
by the CPU is a sequence of key indices, streamed
off a static vertex buffer object (VBO). Even though
SM4-hardware provides the gl_VertexID-attribute,
OpenGL cannot initiate vertex processing without any
attribute data, and hence a VBO is needed anyway. For
each vertex, the vertex shader uses the provided key in-
dex to traverse the HistoPyramid, determining which
MC cell and which of its edges this vertex is part of.
It then samples the scalar field at both end-points of its

edge, and uses its linear approximation to intersect with
the edge. The shader can also find an approximate nor-
mal vector at this vertex, which it does by interpolating
the forward differences of the 3D scalar field at the edge
end-points.

Our SM4 variant of iso-surface extraction lets the ge-
ometry shader generate the vertices required for each
MC cell. Here, the HistoPyramid is only used for data
stream compaction, discarding MC cells that do not in-
tersect with the iso-surface. To this purpose, we mod-
ified the predicate function to fill the HP base level
with keep (1) or discard (0) values, since no output
cloning is necessary for vertex generation. After re-
trieving the number of geometry-producing MC cells
from the top level of the HistoPyramid, the CPU trig-
gers the geometry shader by rendering one point prim-
itive per geometry-producing MC cell. For each prim-
itive, the geometry shader first traverses the HistoPy-
ramid and determines which MC cell this invocation
corresponds to. Then, based on the stored MC case,
it emits the required vertices and, optionally, their nor-
mals by iterating through the triangulation table tex-
ture. This way, the SM4 variant reduces the number
of HistoPyramid traversals from once for every vertex
of each iso-surface triangle, to once for every geometry-
relevant MC cell.

If the iso-surface is required for post-processing, the
geometry can be recorded directly as a compact list of
triangles in GPU memory using either the new trans-
form feedback extension or a more traditional render-
to-texture setup.

Algorithmically, there is no reason to handle the
complete volume in one go, except for the moderate
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Figure 8: HistoPyramids in CUDA: A chunk. Serial-
ization of the HistoPyramid cells, aka Morton code, is
shown in the cells’ lower left. If unknown, it can be con-
structed via the value one at each cell in the base level.
Using this layout, four numbers that form intervals lie
consecutively in memory. Red arrows (above) show
construction of the linearized HistoPyramid, while the
green arrows (below) show extraction of key index 6, as
exemplified in Figure 4 and explained in Section 3.2.

performance increase at large volume sizes which is
typical for HistoPyramids. Hence, the volume could
also be tiled into suitable chunks, making the memory
impact of the HP small.

4.3 CUDA Implementation

Even though our method can be implemented using
standard OpenGL 2.0, we have noticed increased in-
terest in performance behavior under the GPGPU pro-
gramming language CUDA. In the following section,
we describe some additional insights from porting our
algorithm to CUDA. A thorough introduction to CUDA
itself can be found in [14].

At the core of our algorithm lies the HistoPyramid,
a data structure based on 2D textures. Unfortunately,
in the current release of CUDA, kernels cannot output
data to a 2D texture without an intermediate device-
device copy. Instead, the kernels write output to linear
memory, which can in its turn be bound directly to a
1D sampler. Therefore, we linearize the 2D structure
using Morton-code, which preserves locality very well.
The Morton-code of a point is determined by interleav-
ing the bits of the coordinate values. Figure 8 shows
a HistoPyramid with the Morton-code in the lower left

corners of the elements.To improve the locality between
MipMap-levels, we use chunks, HistoPyramids which
are so small that all their levels remain close in mem-
ory. These chunks are then organized into layers, where
the top level of the chunks in one layer forms the base
of the chunks in the next layer. One example: using
chunks with 64 base layer elements, we use one layer
to handle 3 levels of a comparable 2D HistoPyramid.

Using this layout, we can link our data structures
closely to the CUDA computation concepts grids,
blocks and threads. Each layer of chunks is built by
one grid. Inside the layer, each chunk is built with one
block, using one thread per chunk base level element.
The block’s threads store the chunk base layer in global
memory, but keep a copy in shared memory. Then, the
first quarter of the threads continue, building the next
level of the chunk from shared memory, again storing
it in global mem, with a copy in shared mem and so
on. Four consecutive elements are summed to form an
element in the next level, as shown by the red arrows
in Figure 8. HP Chunk/Layer Traversal is largely anal-
ogous to 2D texture-based traversal, as shown by the
green arrows in Figure 8. In addition, for each chunk
traversed, we must jump to the corresponding chunk in
the layer below. Data extraction based on this traversal
can be carried out in CUDA, by letting CUDA populate
a VBO. Alternately, by letting CUDA store the layers
of chunks in an OpenGL buffer object, HP Chunk/Layer
structures can be traversed in an OpenGL vertex shader.

In effect, we have transformed the HistoPyramid
2D data structure into a novel 1D HistoPyramid
layer/chunk-structure. In principle, the memory re-
quirement of the layer/chunk-structure is one third of
the base layer size, just like for 2D MipMaps. But
since empty chunks are never traversed, they can even
be completely omitted. This way, the size of the input
data needs only be padded up to the number of base
elements in a chunk, which further reduces memory re-
quirements. Furthermore, all layers do not need chunks
with full 32-bit values. MC produces maximally 15 ver-
tices per cell, which allows us to use 8-bit chunks with
16 base level elements in the first layer, and a layer with
16-bit chunks with 256 base level elements, before we
have to start using 32-bit chunks. Thus, the flexibility
of the layer/chunk-structure makes it easier to handle
large datasets, very probably even out-of-core data.

We had good results using 64 elements in the chunk
base layer. With this chunk size, a set of 2563 elements
can be reduced using four layers. Since the chunks’
cells are closely located in linear memory, we have im-
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proved 1D cache assistance — both in theory and prac-
tice.

5 Performance Analysis
We have performed a series of performance benchmarks
on six iso-surface extraction methods. Four are of our
own design: the OpenGL-based HistoPyramid with ex-
traction in the vertex shader (GLHP-VS) or extraction
in the geometry shader (GLHP-GS), and the CUDA-
based HistoPyramid with extraction into a VBO us-
ing CUDA (CUHP-CU), and extraction directly in the
OpenGL vertex shader (CUHP-VS). In addition, we
have benchmarked the MT-implementation [17] from
the Nvidia OpenGL SDK-10 (NV-SDK10), where the
geometry shader is used for compaction and expansion.
For the purpose of this performance analysis, we ob-
tained a highly optimized version of the Scan [4]-based
MC-implementation provided in the Nvidia CUDA 1.1
SDK. This optimized version (CUDA1.1+) is up to
three times faster than the original version from the
SDK, which reinforces that intimate knowledge of the
hardware is of advantage for CUDA application devel-
opment.

To measure the performance of the algorithms un-
der various loads, we extracted iso-surfaces out of six
different datasets, at four different resolutions. The iso-
surfaces are depicted in Figure 9. The first three vol-
umes, “Bunny”, “CThead”, and “MRbrain”, were ob-
tained from the Stanford volume data archive [16], the
“Bonsai” and “Aneurism” volumes were obtained from
volvis.org [18]. The analytical “Cayley” surface is the
zero set of the function f(x, y, z) = 16xyz + 4(x +
y + z)− 1 sampled over [−1, 1]3. While the algorithm
is perfectly capable of handling dynamic volumes with-
out modification, we have kept the scalar field and iso-
level static to get consistent statistics, however, the full
pipeline is run every frame.

Table 5 shows the performance of the algorithms,
given in million MC-cells processed per second, cap-
turing the throughput of each algorithm. In addition,
the frames per second, given in parentheses, captures
the interactiveness on current graphics hardware. Since
the computations per MC cell vary, we recorded the
percentage of MC cells that produce geometry. This
is because processing of a MC cell that intersects the
iso-surface is heavier than for MC cells that do not in-
tersect. On average, each intersecting MC cell produces
roughly two triangles.

All tests were carried out on a single workstation
with an Intel Core2 2.13 GHz CPU and 1 GB RAM,
with four different Nvidia GeForce graphics cards: A
128MB 6600GT, a 256MB 7800GT, a 512MB 8800GT-
640, and a 768MB 8800GTX. Table 5 shows the re-
sults for the 7800GT and the 8800GTX, representing
the SM3.0 and SM4.0 generations of graphics hard-
ware. All tests were carried out under Linux, running
the 169.04 Nvidia OpenGL display driver, except the
test with NVSDK10, which was carried out on MS Win-
dows under the 158.22 OpenGL display driver.

Evaluation shows that the HistoPyramid algorithms
benefit considerably from increasing amounts of vol-
ume data. This meets our expectations, since the
HistoPyramid is particularly suited for sparse input
data, and in large volume datasets, large amounts of
data can be culled early in the MC algorithm. However,
some increase in throughput is also likely to be caused
by the fact that larger chunks of data give increased
possibility of data-parallelism, and require fewer GPU
state-changes (shader setup, etc.) in relation to the data
processed. This probably explains the (moderate) in-
crease in performance for the NV-SDK10.

The 6600GT performs quite consistently at half the
speed of the 7800GT, indicating that HistoPyramid
buildup speeds are highly dependent on memory band-
width, as the 7800GT has twice the memory bandwidth
of the 6600GT. The 8800GT performs at around 90–
100% the speed of the 8800GTX, which is slightly
faster than expected, given it only has 70% of the mem-
ory bandwidth. This might be explained by the architec-
ture improvements carried out along with the improved
fabrication process that differentiates the GT from the
GTX. However, the HP-VS algorithm on the 8800GTX
is 10–30 times faster than on the 7800GT, peaking at
over 1000 million MC cells processed per second. This
difference cannot be explained by larger caches and im-
proved memory bandwidth alone, and shows the bene-
fits of the unified Nvidia 8 architecture, enabling radi-
cally higher performance in the vertex shader-intensive
extraction phase.

The CUDA implementations are not quite as efficient
as the GLHP-VS, running at only 70–80% of its speed.
However, if geometry must not only be rendered but
also stored (GLHP-VS uses transform feedback in this
case), the picture changes. There, CUHP-CU is at least
as fast as GLHP-VS, and up to 60% faster for dense
datasets than our reference. CUHP-VS using trans-
form feedback, however, is consistently slower than the
GLHP-VS with transform feedback, indicating that the
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7800GT 8800GTX 8800GTX 8800GTX 8800GTX 8800GTX 8800GTX
Model MC cells Density GLHP-VS GLHP-VS GLHP-GS CUHP-CU CUHP-VS NVSDK10 CUDA1.1+

B
un

ny

255x255x255 16581375 3.18% — 540 (33) 82 (5.0) 414 (25) 420 (25) — 400 (24)
127x127x127 2048383 5.64% 12 (5.7) 295 (144) 45 (22) 250 (122) 248 (121) — 246 (120)

63x63x63 250047 9.07% 8.5 (34) 133 (530) 27 (108) 94 (378) 119 (474) 28 (113) 109 (436)
31x31x31 29791 13.57% 5.0 (167) 22 (722) 12 (399) 17 (569) 24 (805) 22 (734) 22 (739)

C
T

H
ea

d 255x255x127 8258175 3.73% 16 (2.0) 434 (53) 68 (8.2) 372 (45) 366 (44) — 358 (43)
127x127x63 1016127 6.25% 12 (11) 265 (260) 40 (40) 200 (197) 200 (196) — 217 (213)

63x63x31 123039 9.62% 7.6 (62) 82 (669) 23 (189) 58 (473) 76 (615) 25 (206) 70 (571)
31x31x15 14415 14.46% 4.5 (310) 11 (768) 8 (566) 8.6 (599) 12 (857) 17 (1187) 12 (802)

M
R

B
ra

in 255x255x127 8258175 5.87% 10 (1.3) 305 (37) 38 (4.6) 269 (33) 274 (33) — 279 (34)
127x127x63 1016127 7.35% 9.8 (9.7) 239 (235) 32 (31) 184 (181) 183 (180) — 112 (194)

63x63x31 123039 9.96% 7.4 (60) 82 (663) 21 (169) 57 (466) 75 (611) 26 (215) 70 (566)
31x31x15 14415 14.91% 4.3 (302) 11 (771) 8 (546) 8.5 (589) 12 (837) 18 (1257) 12 (795)

B
on

sa
i 255x255x255 16581375 3.04% — 562 (34) 82 (4.9) 427 (26) 433 (26) — 407 (25)

127x127x127 2048383 5.07% 13 (6.3) 314 (153) 45 (22) 264 (129) 262 (128) — 269 (131)
63x63x63 250047 6.69% 11 (45) 148 (590) 32 (127) 103 (413) 132 (526) 29 (116) 119 (476)
31x31x31 29791 8.17% 8.0 (268) 21 (717) 16 (529) 17 (578) 25 (827) 24 (805) 23 (783)

A
ne

ur
is

m 255x255x255 16581375 1.60% — 905 (55) 134 (8.1) 605 (37) 598 (36) — 510 (31)
127x127x127 2048383 2.11% 29 (14) 520 (254) 98 (48) 396 (193) 427 (209) — 372 (182)

63x63x63 250047 3.70% 19 (77) 169 (676) 50 (199) 116 (464) 152 (607) 33 (132) 136 (544)
31x31x31 29791 6.80% 8.7 (292) 21 (715) 16 (545) 17 (584) 25 (830) 26 (857) 24 (789)

C
ay

le
y 255x255x255 16581375 0.93% — 1135 (68) 245 (15) 695 (42) 700 (42) — 563 (34)

127x127x127 2048383 1.89% 31 (15) 534 (261) 118 (58) 405 (198) 438 (214) — 377 (184)
63x63x63 250047 3.87% 18 (72) 174 (695) 52 (206) 116 (465) 151 (606) 32 (129) 133 (530)
31x31x31 29791 8.10% 7.3 (246) 22 (736) 17 (574) 18 (589) 25 (828) 25 (828) 23 (774)

Table 1: The performance of extraction and rendering of iso-surfaces, measured in million MC cells processed
per second, with frames per second given in parentheses. The implementations are described in Section 5.

1D chunk/layer-layout is not as optimal as the MipMap-
like 2D layout.

The geometry shader approach, GLHP-GS, has
the theoretical advantage of reducing the number of
HistoPyramid traversals to roughly one sixth of the
vertex shader traversal in GLHP-VS. Surprisingly, in
practice we observed a throughput that is four to eight
times less than for GLHP-VS, implying that the data
amplification rate of the geometry shader cannot com-
pete with the HistoPyramid, at least not in this applica-
tion. It seems as if the overhead of this additional GPU
pipeline stage is still considerably larger than the par-
tially redundant HistoPyramid traversals. Similarly, the
NVSDK10-approach shows a relatively mediocre per-
formance compared to GLPHP-VS. But this picture is
likely to change with improved geometry shaders of fu-
ture hardware generations.

The CUDA1.1 approach uses two successive passes
of scan. The first pass is a pure stream compaction pass,
culling all MC cells that will not produce geometry. The
second pass expands the stream of remaining MC cells.

The advantage of this two-pass approach is that it en-
ables direct iteration over the geometry-producing vox-
els, and this avoids a lot of redundant fetches from
the scalar field and calculations of edge intersections.
The geometry-producing voxels are processed homoge-
nously until the final step where the output geometry is
built using scatter write. This approach has approxi-
mately the same performance as our CUDA implemen-
tation for moderatly dense datasets, and slightly worse
for the Aneurism and Cayley datasets, which are sparse
datasets on which the HistoPyramid excels.

We also experimented with various detail changes
in the algorithm. One was to position the vertices at
the edge midpoints, removing the need for sampling
the scalar field in the extraction pass, as mentioned in
Section 4. In theory, this should increase performance,
but experiments show that the speedup is marginal and
visual quality drops drastically, see Figure 6. In addi-
tion, we benchmarked performance with different tex-
ture storage formats, including the new integer storage
format of SM4. However, it turned out that the stor-
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age type still has relatively little impact in this hard-
ware generation. We therefore omitted these results to
improve readability.

6 Conclusion and Future work
We have presented a fast and general method to ex-
tract iso-surfaces from volume data running completely
on the GPU of OpenGL 2.0 graphics hardware. It
combines the well-known MC algorithm with novel
HistoPyramid algorithms to handle geometry genera-
tion. We have described a basic variant using the
HistoPyramid for stream compaction and expansion,
which works on almost any graphics hardware. In ad-
dition, we have described a version using the geome-
try shader for stream expansion, and one version im-
plemented fully in CUDA. Since our approach does not
require any pre-processing and simply re-generates the
mesh constantly from the raw data source, it can be ap-
plied to all kinds of dynamic data sets, be it analytical,
volume streaming, or a mixture of both (e.g. an ana-
lytical transfer function applied to a static volume, or
volume processing output).

We have conducted an extensive performance anal-
ysis on both versions, and set them in contrast to the
MT implementation of the Nvidia SDK-10, and an op-
timized version of the CUDA-based MC implementa-
tion provided in the CUDA SDK 1.1. At increasing
data sizes, our algorithms outperform all other known
GPU-based iso-surface extraction algorithms. Surpris-
ingly, the vertex-shader based variant of the algorithm
(GLHP-VS) is also the fastest on recent DX-10-class
hardware, even though it does not use any geometry
shader capabilities.

In direct comparison, Scan and HistoPyramids have
some similarities (the Scan up-sweep phase and the
HistoPyramid construction are closely related), while
the difference lies in the extraction process. Scan has
the advantage that only one table lookup is needed,
as long as scatter-write is available. For HistoPyra-
mids, each output element extraction requires a log(n)-
traversal of the HistoPyramid. Despite that algorithmic
complexity, the HistoPyramid algorithm can utilize the
texture cache very efficiently, reducing the performance
hit of the deeper traversal. A second difference is that
Scan’s output extraction iterates over all input elements
and scatters the relevant ones to output, while HistoPy-
ramid iterates on the output elements instead. Scan uses
two passes to minimize the impact of this disadvantage

for the MC application, and often succeeds. However,
if a lot of the input elements are to be culled, which
is the case with MC for larger and sparse volumes, the
HistoPyramid algorithms can play out their strengths,
despite the deep gathering traversal. This is shown by
the performance of GLHP-VS on the Aneurism and
Cayley datasets.

While the CUDA API is an excellent GPGPU tool,
seemingly more fitting to this issue, we still feel that
a pure OpenGL implementation is of considerable in-
terest. First of all, the OpenGL implementation still
outperforms all other implementations. Further, it is
completely platform-independent, and can thus be im-
plemented on AMD hardware or even mobile graphics
platforms, requiring only minor changes. This aside,
we still see more future potential for our CUDA im-
plementation, which we believe is not yet fully mature.
The chunk/layer structure does remedy CUDA’s lack of
render-to-2D texture, which brings the CUDA imple-
mentation up to speed with the OpenGL approach and
introduces a flexible data structure that requires a mini-
mal amount of padding. But we believe that our CUDA
approach would benefit significantly from a traversal al-
gorithm that iterates over every output-producing input
element, which would allow to calculate edge intersec-
tions once per geometry producing voxel and triangles
to be emitted using scattered write, similar to the Scan-
based approach (CUDA1.1+). We have begun investi-
gating approaches to this problem, and preliminary re-
sults look promising.

Further, our algorithm can be applied to any MC vari-
ant that can be factored into two distinct phases, with
the first phase determining the local number of triangles
in the case triangulation, and a second phase extracting
the vertices one-by-one. Under these preconditions, the
approach of Nielson [13], for example, would be a po-
tential candidate for our algorithmic framework. Since
HP algorithms often are memory bandwidth restricted,
the extra computations and evaluations needed for Niel-
son’s approach could virtually be introduced for free.

A port of Marching Cubes to OpenGL ES would be
a good reference for making general data compaction
and expansion available on mobile graphics hardware.
As already mentioned, our geometry generation ap-
proach is not specific to MC; its data expansion prin-
ciple is general enough to be used in totally different ar-
eas, such as providing geometry generation for games,
or advanced mobile image processing. For geometry
shader capable hardware, we are curious if the gap be-
tween geometry shaders and HistoPyramids will actu-
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Bunny, iso=512 CThead, iso=512 MRbrain, iso=1539 Bonsai, iso=36 Aneurism, iso=11 Cayley, iso=0.0

Figure 9: The iso-surfaces used in the performance analysis, along with the actual iso-values used in the extraction
process.

ally close. It is fully possible that general GPU im-
provements will benefit HistoPyramid performance ac-
cordingly, and thus keep this HP-based algorithm useful
even there.

Future work might concentrate on out-of-core appli-
cations, which also benefit greatly from high-speed MC
implementations. Multiple Rendering Targets will al-
low us to generate multiple iso-surfaces or to acceler-
ate HistoPyramid processing (and thus geometry gen-
eration) even further. For example, a view-dependent
layering of volume data could allow for immediate out-
put of transparency sorted iso-surface geometry. We
also consider introducing indexed triangle mesh output
in our framework, as they preserve mesh connectivity.
For that purpose, we would experiment with algorith-
mic approaches that avoid the two passes and scatter-
ing that the straight-forward solution would require. We
have further received notice that this approach should fit
to iso-surface extraction from unstructured grids, since
the whole approach is independent of the input’s data
structure: It only requires a stream of MC cells.

Acknowledgment. We thank Simon Green and Mark
Harris for helpful discussions and comments in this
work, and for providing the optimized version of
the Marching Cubes implementation from the CUDA
SDK 1.1.
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