
1

Real-Time Algebraic Surface Visualization

Johan Simon Seland1 and Tor Dokken2

1 Center of Mathematics for Applications, University of Oslo johans@cma.uio.no
2 SINTEF ICT tor.dokken@sintef.no

Summary. We demonstrate a ray tracing type technique for rendering algebraic surfaces us-
ing programmable graphics hardware (GPUs). Our approach allows for real-time exploration
and manipulation of arbitrary real algebraic surfaces, with no pre-processing step, except that
of a possible change of polynomial basis.

The algorithm is based on the blossoming principle of trivariate Bernstein-Bézier func-
tions over a tetrahedron. By computing the blossom of the function describing the surface
with respect to each ray, we obtain the coefficients of a univariate Bernstein polynomial, de-
scribing the surface’s value along each ray. We then use Bézier subdivision to find the first
root of the curve along each ray to display the surface. These computations are performed in
parallel for all rays and executed on a GPU.

Key words: GPU, algebraic surface, ray tracing, root finding, blossoming

1.1 Introduction

Visualization of 3D shapes is a computationally intensive task and modern GPUs
have been designed with lots of computational horsepower to improve performance
and quality of 3D shape visualization. However, GPUs were designed to only pro-
cess shapes represented as collections of discrete polygons. Consequently all other
representations have to be converted to polygons, a process known as tessellation, in
order to be processed by GPUs. Conversion of shapes represented in formats other
than polygons will often give satisfactory visualization quality. However, the tessel-
lation process can easily miss details and consequently provide false information.

The qualitatively best shape visualization is currently achieved by ray tracing;
for each pixel in the image plane, straight lines from the center of projection through
the pixel are followed until the shape is intersected. In these points shading is calcu-
lated and possibly combined with shading information calculated from refracted and
reflected continuations of the line. This process is computationally intensive and time
consuming, and in general it is not possible to use ray tracing to achieve interactive
frame rates.

2 Johan Simon Seland and Tor Dokken

Fig. 1.1. A quintic surface with 31-double points, also known as a Dervish (left), and a ran-
domly generated degree 4 surface with curvature visualization (right). Both surfaces above are
rendered at interactive frame rates. We emphasize that no tessellation has taken place.

For a function f : R3 → R, an implicit surface can be defined by the level set of
the equation f (x,y,z) = c, where x,y,z,c∈R. By reordering the terms, we can, with-
out loss of generality, just consider the zero-set of the function, e.g. f (x,y,z)−c = 0.
For this work, all functions and surfaces are considered to be real-valued. If the func-
tion f is an algebraic polynomial, the resulting surface is called an algebraic surface.
Such surfaces can easily describe intricate, smooth shapes with varying topology,
and also allow for the interpolation and blending of such surfaces. Their polynomial
nature also makes it easy to find analytic directional derivatives, normals and curva-
ture. The standard example of an algebraic surface is that of a sphere with radius r
centered at the origin:

x2 + y2 + z2− r2 = 0.

This paper proposes a method for high quality, high performance, ray tracing
type rendering of algebraic surfaces using GPUs. The approach guarantees that the
topology of the visualized surface is correct within pixel accuracy. The current pro-
totype can be used for real-time visualization of algebraic surfaces of total degree
five, the limitation being the current number of registers in each fragment processor
and not the floating point capabilities of the GPU.

The approach aims at algebraic surfaces of degree 3 and higher, as conversion of
these to high quality tessellations is a very challenging task. Such conversion requires
detailed knowledge of the topology of the algebraic surface. For quadratic algebraic
surfaces the traditional classification into spheres, cylinders, cones, ellipsoids, hyper-
boloids, as well as the degenerate cases aids the process of generating tessellations.
Cubic algebraic surfaces can be classified into 45 classes [19], but for higher de-
grees no such useful classification exists. However, our method is applicable also for
quadratic and cubic algebraic surfaces.

1 Real-Time Algebraic Surface Visualization 3

This paper is organized as follows: We begin with an overview of related work in
Sect. 1.2. Thereafter we give a short, informal description of our method, focusing
on how the GPU pipeline can be used for ray tracing. In Sect. 1.4 we describe de-
tails of our GPU implementation, as well as performance benchmarks of our method
compared to state-of-the-art CPU ray tracing for algebraic surfaces. To avoid adding
too much mathematical detail to Sects. 1.3 and 1.4, we present the basic ideas first,
using forward references to equations, which are presented in Sect. 1.5 together with
more mathematical background. Finally we conclude and present some thoughts on
future work in Sect. 1.6.

1.2 Related Work

Using the GPU for non-graphical simulations is an emerging field, called GPGPU
(General-Purpose Computing on Graphics Processing Units). A survey of recent ac-
tivity is given by Owens et. al. [30]. Chapter [8] in this book details activity at Sintef
and programming techniques for GPUs.

Since programming GPUs is rather complex, several systems have been devel-
oped to use the CPU for automatic generation of shader code. A group at the Uni-
versity of Waterloo has developed Sh [26] which is a metaprogramming language
which uses the syntax of C++ for the development of shader programs for different
generations of GPUs. A group at Stanford have developed Brook for GPUs [3] which
is designed for using the GPU as a general stream processor.

Ray tracing on GPUs has seen a flurry of activity in recent years. A CPU simula-
tion of GPU ray tracing was implemented by Purcell et. al. [31] when programmable
graphics hardware was starting to appear. Later the master theses by Karlsson and
Ljungsted [21] and Christen [6] describe concrete implementations running on pro-
duction hardware. Thrane and Simonsen [40] compare acceleration structures for
GPU based ray tracing, and conclude that bounding volume hierarchies (BVH) is the
best technique. Carr et. al. [5] accelerate the BVH approach by storing it on the GPU
as a geometry image [17].

Displacement mapping on GPUs has also been implemented by using ray tracing
like techniques. Hirche et. al. [18] displace a triangle mesh along the normal direction
by replacing base mesh triangles with triangles that cover the area on the screen that
would be affected by the displaced base mesh. Donnelly [10] uses sphere tracing to
effectively implement bounded displacement mapping using fragment shaders.

There has also been a few recent publications about dedicated hardware for ray
tracing: Carr et. al. [4] describe the necessary modifications to existing GPU de-
signs to support ray tracing. Schmittler et. al. [35] describe a dedicated FPGA chip.
However none of these designs are yet in commercial production. Using dedicated
graphics hardware for ray tracing is however not a new idea, Olano et. al. [28, 29]
used the PixelFlow system developed at the University of North Carolina, to render
spherical primitives in the mid nineties.

GPU assisted rendering of implicit surfaces (metaballs) has been demonstrated
by Uralsky [41], using the geometry shader which will be made available on next

4 Johan Simon Seland and Tor Dokken

pixel plane

f

B[f〈4〉]

B[f〈3〉,b]

B[f〈2〉,b〈2〉]

B[f,b〈3〉]

B[b〈4〉]

b

f̃ b̃

b̂f̂

V

Fig. 1.2. For each ray segment inside the view volume V , we find the front (f) and back (b)
vectors in barycentric coordinates. Then we use blossoming to find the coefficients of the
univariate Bernstein-Bézier function along each ray. Since each ray corresponds to a pixel,
and there is no interdependency between rays we can calculate all rays in parallel on a GPU.

generation (DX10) GPUs. However, his approach uses the GPU to tessellate the
surface to discrete geometry in the classical way, by using a marching-cubes like
algorithm, whereas our method avoids the tessellation step completely. Rendering of
implicit curves using GPUs has been demonstrated by Loop and Blinn [22]. Their
approach was based on rendering the inside of a curve defined over a triangle for
use in font rendering. Our work can be seen as an extension of their approach to
surfaces. During the later stages of our research, Loop and Blinn [23] published
their extension to surfaces, which is very similar to our approach. However, they use
analytic root finding algorithms, thereby limiting the maximum degree of surfaces
they can visualize to general quartic surfaces, as it is not possible to analytically
solve general equations of degree 5 and higher.

One existing comparable software package is also worth mentioning, namely the
package Surfex [20], which uses the (CPU-based) ray tracer SURF [12] to visualize
algebraic surfaces. We will provide some run-time comparisons with the SURF ray
tracer in Sect. 1.4.5.

1.3 Overview of the Algorithm

Our algorithm is based on the classical ray tracing approach, where rays pass from
the eye, and we wish to find the location of each ray’s first intersection with the
surface. For a given algebraic surface f (x,y,z) = 0 of total degree d, we are only in-
terested in intersections inside a view volume V . Hence, it is natural to only consider
the segment of each ray inside V . Let f and b represent the front and back coordinate
of the ray as it enters and leaves V . The segment is then given by the parametrization
p(t) = (1− t)f+ tb, t ∈ [0,1]. We combine this parametrization with the equation of
the algebraic surface, yielding a univariate polynomial g(t) = f (p(t)) of degree d.

1 Real-Time Algebraic Surface Visualization 5

Now the problem of finding the closest intersection to the eye point, can be reformu-
lated to finding the smallest t ∈ [0,1] such that g(t) = 0.

Our algorithm is run fully on a GPU, and heavily exploits the floating point power
and programmable capabilities of modern GPUs. Although we use the GPU to render
graphics, our approach does not use the GPU pipeline in the classical way. In fact,
our use of the graphics pipeline is more closely related to GPGPU techniques than
to classical computer graphics. In the following, we give a short summary of the
rendering pipeline of a GPU, highlighting just the stages relevant for our method.

• To initiate rendering, the CPU sends geometric primitives to the GPU as a set of
triangles.

• Each vertex is thereafter processed in the vertex processor. The vertex processor
may change the position of a vertex and also set up other variables that will be
interpolated across the triangle (e.g.. normals, colors etc.).

• Thereafter the rasterizer-stage generates a set of fragments (meta-pixels) from
the associated geometry.

• The final stage is the fragment processor, which calculates the final color and
depth of the pixel. The fragment processor cannot change the position of the
pixel, but it may discard the pixel if it is not of interest.

Both the vertex and fragment processors can be programmed by the use of shading
languages, and such programs are called shaders. High end GPUs are highly parallel
and typically have 6-8 vertex pipelines and 16-48 fragment pipelines operating in
parallel.

Our use of the GPU can then be summarized as follows

1. Issue spanning geometry to the GPU. The spanning geometry defines our view
volume V , and initiates rendering.

2. Let the GPU rasterize the spanning geometry into a set of fragments, yielding
the coordinates f and b for each ray.

3. Find the univariate polynomial, g(t), representing the value of the algebraic sur-
face along each ray.

4. Find the smallest t such that g(t) = 0. If no zeros are found, we discard the
fragment.

5. For the surviving fragments, calculate the final depth and color by using infor-
mation from the algebraic surface.

Steps 3 to 5 above are executed in the fragment processor of the GPU, and require the
activation of a special shader program, which is outlined in Listing 1.1, and discussed
further in Sect. 1.4.

As GPUs are limited to single precision floating point arithmetic, extreme care
has to be taken with respect to representation formats and algorithmic components
to guarantee the quality of the ray tracing. Our approach uses Bernstein bases both
for representing the (trivariate) algebraic surfaces, see Sect. 1.5.1, and for represent-
ing the (univariate) polynomials describing the intersection of the ray segments of
interest with the algebraic surface, see Sect. 1.5.2. The choice of the Bernstein bases

6 Johan Simon Seland and Tor Dokken

Listing 1.1. The main steps of our fragment shader. This code is executed in parallel for all
rays, and run completely on a GPU.

uniform i n t d e g r e e ;

void main () {
vec4 f = b a r y c e n t r i c f r o n t () ;
vec4 b = b a r y c e n t r i c b a c k () ;
f l o a t c [d e g r e e + 1] ; / / C o n t r o l p o i n t s
f o r (i n t i = 0 ; i < d e g r e e ; ++ i)

c [i] = blossom (f , b , i) ;
i f (n u m b e r o f s i g n c h a n g e s (c) == 0)

d i s c a r d ;
f l o a t t = f i n d l e f t m o s t z e r o (c) ;
vec4 p = (1− t)∗ f + t ∗b ;
g l F r a g C o l o r = s h a d e a n d l i g h t (p) ;
g l F r a g D e p t h = t o c a r t e s i a n (p) . z ;

}

is based on its numerical superiority compared to other polynomial bases for algo-
rithms run in single precision arithmetic. It can be shown that the Bernstein basis
is optimal both for univariate and multivariate polynomials, see[14, 24]. Some more
details and numerical examples are given in Chapter [9] of this book.

Another advantage is the possibility of representing coordinates in barycentric
coordinates (see Sect. 1.5). This allows us to use a technique know as blossoming
(see Sect. 1.5.3) to find an expression for the surface values along each ray (Item 3
above). Blossoming can be seen as a generalization of the de Casteljau algorithm,
which is used for evaluating Bézier functions. Both of these algorithms are numer-
ically very stable and effective. Barycentric coordinates over a domain in R3 are
represented as 4-component vectors, which fit neatly on GPUs, as they are designed
to operate on 4-component vectors.

The de Casteljau algorithm is however not optimal for evaluating a polynomial,
as it uses O(d2) floating point operations, whereas Horner’s scheme just uses O(d)
operations for an evaluation. However, numerical errors are much more likely to
occur using Horner’s scheme which might lead to visual artifacts.

1.4 GPU Implementation

We will now examine in detail how we have implemented our algorithm on pro-
grammable GPUs, using the OpenGL Shading Language. Other shading languages
such as Cg or HLSL are equally well suited, since there are only minor differences
between them.

Some more terminology from shader programming is necessary to describe our
method. Shader programs are written in a C-like programming language, and com-

1 Real-Time Algebraic Surface Visualization 7

Fig. 1.3. The view volume (black edges) is all that is sent to the GPU, and the rasterization of
the view volume geometry initiates our ray tracing type rendering.

piled at run-time by the graphics driver. The host CPU may set some variables of the
shader program at run-time. These are shared by all the pipelines of the GPU and
are called uniform variables, since they have a uniform value over each primitive.
Communication between the vertex and fragment shader programs takes the form of
varying variables, which are interpolated (and thus varying) across geometric prim-
itives. Uniform variables can only be read by the shader program and can be seen
as global constants. The vertex processor may only write varying variables, and the
fragment processor can only read varying variables. There can also be local variables
for each vertex/fragment which the shader program can read and write at will. How-
ever their number is limited and there exist no stack or heap memories, so recursion
and pointers are not available. For an in-depth overview of GPU programming see
any book on shading languages, e.g. Rost [34] or Fernando and Kilgard [15].

This section uses forward references to equations that will be detailed in Sect. 1.5,
as all mathematical prerequisites are collected there.

1.4.1 Issue spanning geometry

To initiate our algorithm, we must send geometry encompassing the barycentric do-
main to the GPU. Theoretically any convex shape will suffice, but in practice shapes
for which it is trivial to calculate the barycentric front and back coordinates for each
ray are best suited.

The easiest spanning geometry of all is the tetrahedron, where the barycentric
coordinates can be encoded as the color property of each vertex. Linear interpolation
of color across each face will then yield the correct coordinate. However, visualiz-
ing an algebraic surface inside a tetrahedron clips the surface in an unnatural way,
and gives a poor impression of the surface to a human observer. Instead, we have

8 Johan Simon Seland and Tor Dokken

found the sphere to be a good spanning geometry. By issuing a moderately tessel-
lated sphere and linearly interpolating the analytic normal at each vertex over each
face, and thereafter using (1.3) to get the geometric normal (scaled by the radius)
yields a good approximation to the barycentric coordinate at a pixel. Figure 1.3 above
illustrates how the spanning geometry corresponds to the view volume.

To calculate the back coordinate b, several methods can be used. We usually ren-
der the same bounding geometry, using front face culling in a separate render pass,
and store the value in a texture. For simple shapes, like a sphere, it is possible to use
standard intersection equations to calculate b. It is also possible to set up tetrahedrons
such that both coordinates may be calculated in the same pass, as demonstrated by
Weiler et. al. [42] or Wylie et. al. [43].

1.4.2 Multivariate blossoming on GPUs

The most computationally demanding subtask of the visualization is the calculation
of the coefficients of the curve representing the value of f along each ray. We find
these coefficients by blossoming and form an algorithm based on (1.9).

If recursion had been supported by the GPU, we could have implemented (1.9)
directly. However, current generation GPUs do not support recursion, so for a given
degree d, we use the CPU to unroll the recursion and end up with a long expression
(of shader source code) representing the blossom, and use uniform variables to repre-
sent the coefficients of the surface. Since the blossom is recalculated for every frame,
we can easily modify the surface by altering the coefficients, allowing for real-time
shape manipulation.

As the degree of the surface increases, the complexity of the generated shader
source code increases dramatically, and we have triggered several bugs in the shader
compilers while developing this algorithm. Higher degrees also require more reg-
isters for intermediate calculations, and this is the limiting factor on the degree of
surfaces we are able to visualize.

DeRose et. al. [7] describe optimizations to the recursive approach for calculat-
ing the blossom. Relevant to our method is to reuse partial blossom calculations,
as we calculate the control points. We implemented this on the GPU, but the added
bookkeeping actually made our algorithm slower, even if we were able to reduce the
amount of floating point computations, demonstrating the performance penalty of
executing branching code on GPUs.

1.4.3 Polynomial root finding on GPUs

Root finding for polynomials in Bernstein form has been explored in detail by
Spencer [39]. Recent work by Mørken and Reimers [27] demonstrates a totally con-
vergent root finding algorithm with quadratic convergence based on knot insertion of
B-splines. Unfortunately, modern root finders require data structures such as linked
lists that are not yet suitable for GPUs.

Because of its simple data structure, we decided to use a heuristic method based
on recursive subdivision of the coefficients, as described by Schneider [36]. The idea

1 Real-Time Algebraic Surface Visualization 9

− 1
4

0

1
2

1

1
6

1
3

1
2

2
3

5
6

1
t

f (t) = ∑
3
i=0 biB3

i (t)

b0 = bl
0 = 1

2

bl
1

bl
2

bl
3 = br

0

br
1

br
2

b1 =− 1
4

b2 = 1

b3 = br
3 =− 1

6

Fig. 1.4. A cubic Bézier curve with its original control polygon (dotted) and the control poly-
gon after one iteration of Bézier-subdivision (dashes). The results of the subdivision are two
new sets of control points, each covering half of the interval of the original control polygon.
Observe that the dotted control polygon changes sign more often than f (t). This false crossing
vanishes after one iteration of subdivision. Also note that the curve is completely contained
within the convex hull of the control points.

is to recursively subdivide the polynomial in half by using the de Casteljau algorithm
(see Sect. 1.5.2). At each level of recursion we count the number of sign changes in
the coefficients, and if both sets of coefficients contain sign changes we choose to
continue to subdivide the leftmost of them,while storing the other one as we might
need to unwind the recursion if the first one turns out to be a false zero. If only
one set of coefficients has sign changes, we of course choose this one for further
subdivision. This effectively uses the Bézier convex hull property to ensure that a
zero is within an interval given by the coefficient endpoints. Interval arithmetic has
been used successfully for ray tracing in the past, as demonstrated by Snyder[38] and
Duff [11].

Rockwood et. al. [33] present a variant of the above, where the Bézier curve
is subdivided at the leftmost sign change of the control polygon. While marginally
faster than Schneider’s method, it has some problems near singularities when exe-
cuted on a GPU, leading to visual artifacts.

Since it could happen that there is a false zero (as in Fig 1.4), we must be able to
unwind the recursion and choose another interval to subdivide. On a regular CPU this
would be trivial, but as the GPU lacks a stack we store the other potential coefficients
and the recursion level, and when we detect a false zero we unroll to the last set of
potential coefficients. The number of possible false zeros is bounded by the degree
of the surface, so we know in advance how many sets of coefficients we might need
to store. We terminate the recursion when we can decide that there is no root (no sign
changes of the coefficients), or when we reach a fixed level of subdivisions.

When implementing CPU-based root finders, it is usually effective to have early
termination criteria, such as the “flatness” test described by Schneider. Since such

10 Johan Simon Seland and Tor Dokken

tests lead to more complex branching structures, we have found that such tests actu-
ally hamper performance on current generation GPUs.

Since we only need to find the roots of univariate polynomials, where the deriva-
tives can easily be computed, one might believe that Newton-like methods would
perform extremely well. However, we are plagued with the classical problem of such
methods; a good initial value must be found in order for the method to converge.
Using the control polygon’s first intersection as the initial value for a naive New-
ton iteration yields correct zeros for the majority of cases, and more than triples the
FPS quoted in Table 1.1. However, the relatively few incorrect zeros yield glaring vi-
sual artifacts and a wrong topology of the surface. We believe that significant speed
increases are possible by using hybrid Newton-subdivision methods when dynamic
branching of GPUs improves.

The convergence of the coefficients of a Bézier curve is O(h2), where h is the
interval length. If the original Bézier curve was defined over the interval [0,1], ten
levels of subdivision will give an interval length of 2−10 = 1

1024 , with the maxi-
mal distance between the control polygon and the curve reduced by a factor of
2(1

1024)2 ≈ 0.95367×10−6. This is approximately the accuracy of numbers in single
precision floating point format used by the GPU. Consequently the control polygon
will be near indistinguishable from the curve. A typical displayed image is currently
around 1000×1000 pixels, thus ten levels of subdivision will give the same resolu-
tion orthogonal to the image plane as in the image plane.

1.4.4 Curvature and lighting calculations

When the intersection has been found by the root finder, we know its position t within
the univariate parameter domain. The resulting position in the trivariate domain can
then easily be found by calculating u = (1− t)f + tb, where f and b are the front
and back vectors, respectively. Furthermore we can use the blossom (see (1.11)) to
calculate the directional derivatives and obtain the (barycentric) normal vector of
the surface. Various per-pixel lighting models based on the normal (or higher order
derivatives) can then be trivially implemented. This generally works very well for
most surfaces, however, when all the directional derivatives vanish the equations
break down, as illustrated in Fig. 1.5.

Calculating the mean curvature of an implicit surface is possible, although the
formulas become quite complex as they involve all second derivatives of the surface.
However, the blossom can be used to find all these terms, and repeated use of (1.12)
gives us the terms necessary to calculate the curvature, as illustrated by the right
surface in Fig. 1.1. The performance impact of this curvature calculation is negligible
in comparison to regular shading.

1.4.5 Performance

We have implemented our algorithm using C++ and the OpenGL Shading Language
using Nvidia 6000 and 7000-series hardware. Current ATI drivers have problems
compiling our shader-programs, but we believe that once their drivers improve, our

1 Real-Time Algebraic Surface Visualization 11

Fig. 1.5. A quartic surface where all first order derivatives vanish, leading to a breakdown in
the lighting equation (which is based on calculating the normal by taking the cross product
of derivatives). This breakdown is clearly visible in the left image, where the shape looks flat
and uninteresting. The right image shows the curvature field, clearly depicting the singularity
which is invisible in the first image.

algorithm will be equally well (or better) suited for execution on ATI hardware, as
present day ATI GPUs are better at dynamic branching.

For speed comparisons, we have compared rendering speeds of the same surface
with the SURF ray tracer and our GPU implementation. We have benchmarked using
surfaces with the highest known number of ordinary double points (singularities) for
a given degree[1], thus stressing the root finder. We have also tested with random
surfaces, where are coefficients are in the range (−1,1). All benchmarks have been
executed on an AMD X2 4400 CPU with a Nvidia Geforce 7800 GT GPU, running
Windows XP and Nvidia driver version 91.31. Moreover, both ray tracers were set
up to use a single light source, the same resolution (966× 892, the viewport of our
prototype implementation when running in full-screen) and no anti-aliasing. The ren-
dered surfaces also fill approximately the same number of pixels and the surfaces are
oriented in the same direction. We emphasize that there is a strict correspondence
between the resolution and the frame rate, as performance is directly affected by the
number of pixels rendered. Since Loop and Blinn [23] does not provide any table of
performance, a direct comparison is not possible. However, they use a tensor prod-
uct formulation of the blossom, which has high computational complexity (O(d4)),
but leads to very effective shader source code (a series of nested multiply-and-add
(MAD) operations). The recursive approach has computational complexity O(d3),
but is not as GPU friendly as the tensor formulation. For lower degrees it is appar-
ent that using the tensor product formulation is more effective, the crossing point
is probably around degree 5, for which [23] is no longer applicable as they use an
analytic root finder, which only exist in general for degree 4 and lower.

12 Johan Simon Seland and Tor Dokken

Table 1.1. Speed comparisons of the CPU based ray tracer SURF and our GPU implementa-
tion. Resolution is 966×892 for all benchmarks. The quoted GPU model is Nvidia 7800 GT.
The named surfaces are the surfaces with the highest known number of singularities for their
degree.

Surface Degree SURF (FPS) GPU (FPS) Speedup Dual GPU (FPS) Speedup
Sphere 2 2.6 60.0 23.1 108.0 41.5
Cayley 3 1.3 22.1 16.9 38.0 29.2
random 3 1.3 27.6 21.2 45.0 34.6
Kummer 4 1.1 9.2 8.3 18.2 16.5
random 4 1.0 12.2 12.2 22.3 22.3
Dervish 5 1.2 3.2 2.7 6.4 5.3
random 5 0.9 3.9 4.3 7.6 8.4

SURF is specially designed for rendering algebraic surfaces, and is significantly
faster for such surfaces than the better known ray tracer POV-Ray. We have chosen
to only benchmark against the fastest CPU solution available.

Table 1.1 summarizes our findings. We observe that the GPU based approach is
significantly faster than SURF, but the difference decreases as the degree increases.
The quintic Dervish surface (illustrated in Fig 1.1 (left)) is just 2.7 times faster on
the GPU, while our algorithm is an order of magnitude faster for quartic surfaces.
Since the computational load increases with each degree, one should expect the dif-
ference to be larger. However, the problem of a highly parallel GPU, is that the pixel
pipelines must be synchronized, thus making early termination and adaptivity in the
root finder almost useless. If one pixel requires recursion to the bottom, all pixels in
the pipeline must wait until it is finished. Since higher degrees require more computa-
tions, this penalizes higher degrees more than the lower ones, as more computations
must be executed while the rest of the pixels are waiting. Future GPUs are expected
to improve at dynamic branching, and we expect huge speed increases when more
adaptive root finding algorithms become available.

SURF is also able to exploit sparse polynomials, which our GPU approach fails
to do. This is especially apparent for random surfaces, where all coefficients are
non-zero. SURF is actually slower on a random quartic surface than on the relatively
sparse quintic Dervish surface. In general, for our GPU approach, we observe little
difference in rendering speed between surfaces of the same degree, but random sur-
faces are in general a little bit faster than the ones quoted in Table 1.1, as the surfaces
in the table are chosen for their complexity. While sparse polynomials are important
for studying algebraic surfaces, industrial use of algebraic surfaces will most often
address surfaces with most coefficients non-zero. Consequently for industrial users
the timings for sparse polynomials have little interest, while they are relevant within
algebraic surfaces research.

As there is no interdependency between render passes or neighboring pixels, our
algorithms are very well suited for execution on multi-GPU based systems, such as
ATI CrossFire or Nvidia SLI. We effectively double the performance when using two
Nvidia 7800 GT cards in Split Frame Rendering (SFR) mode.

1 Real-Time Algebraic Surface Visualization 13

In conclusion we emphasize that our GPU approach is still more than twice as fast
as SURF for a quintic surface. For lower degrees the GPU based approach is almost
an order of magnitude faster than the CPU based approach. In addition the CPU is
left free to do other tasks while rendering. However, to effectively render models
represented by a large number of piecewise algebraic surfaces, one would need to
render a large number of primitives, probably including efficient culling strategies,
and rendering speed must be increased further for this to be feasible in real time.
The current rendering speeds for quartic and quintic surfaces can however hardly be
called real time, but it is still possible to interactively alter and explore the surface,
and future GPUs are expected to increase speeds even further.

1.5 Bernstein-Bézier Techniques

This section presents the necessary mathematical background material to understand
our method. The material on blossoming is quite abstract, and comes from spline
and approximation theory. However, a deep understanding of this material is not
crucial to understand our method. The interested reader may consult Ramshaw [32]
or Farin [13] for good and thorough introductions to the material. Statements are
given without proofs, as they can be found in the above texts.

For compactness, we use standard multi-index notation. Thus for tuples j =
(j1, . . . , jn), we let j± k = (j1 ± k1, . . . , jn ± kn), |j| = ∑

n
i=1 ji, j! = ∏

n
i=1 ji! and

xj = ∏
n
i=1 x ji

i . In the following, x will always denote a point in Cartesian coordinates,
while βββ denotes a point in barycentric coordinates.

1.5.1 The Bernstein basis

For the space of real polynomials of total degree d,

Pd,s := Pd(Rs) =

{
p(x) = ∑

|j|≤d
cjxj : cj ∈ R

}
, (1.1)

it is well known that they can be expressed in the Bernstein-Bézier (BB) basis, which
is preferable for use in computations since it is more numerically stable.

The Bernstein basis functions Bd
i of degree d can be expressed as:

Bd
i (βββ) =

d!
i!

βββ
i, |i|= d, |βββ |= 1. (1.2)

Here, βββ = βββ (x) = (β1(x), . . . ,βs+1(x)) denotes the barycentric coordinate of a point
x ∈ Rs with respect to a set of base points, (v1, . . . ,vs+1) ∈ Rs, which form a non-
degenerate simplex Σs = conv(v1, . . . ,vs+1). For instance, the 0-simplex is a point,
the 1-simplex a line segment, the 2-simplex is a triangle and the 3-simplex a tetrahe-
dron.

Conversion between barycentric and Cartesian coordinates (and vice versa) is
uniquely given by the relation:

14 Johan Simon Seland and Tor Dokken

βββ = βββ (x) = A−1
(

x
1

)
, A =

(
v1 . . . vs+1
1 . . . 1

)
. (1.3)

The matrix A above does not depend on a particular point, and can thus be calculated
(along with its inverse) once for a given domain, Σs.

The barycentric coordinates form a partition of unity, ∑
s+1
i=1 βi = 1, so even if we

have increased the number of variables by one, we do not increase the dimension of
the polynomial space. For a point in Σs, its barycentric coordinates are non-negative,
which ensures that all computations are done by true convex combinations, yielding
high numerical stability.

For illustration purposes, we expand the above notation for the trivariate case
and use the standard unit simplex (v1 = (1,0,0)T , v2 = (0,1,0)T , v3 = (0,0,1)T and
v4 = (0,0,0)T). This gives the barycentric coordinate βββ =

(
β1 = x, β2 = y, β3 =

z, β4 = w = (1− x− y− z)
)
.

Bd
i, j,k,`(βββ (x,y,z)) = Bd

i, j,k,`(x,y,z,w) =
d!

i! j!k!`!
xiy jzkw`,

` = d− i− j− k.
(1.4)

For an algebraic polynomial p of total degree d, we now have two alternative
formulations, using either the power or the Bernstein basis:

p(x) = ∑
| j|≤d

cjx j = ∑
|i|=d

biBi(βββ (x)) = f (βββ), x ∈ Σs, (1.5)

where bi are called the BB-coefficients (Bernstein-Bézier) of the function. In the
following we let f (βββ) be any polynomial in Bernstein form.

We also summarize some key properties of the Bernstein basis:

Lemma 1. On the unit simplex, the following hold:

1. Bd
i (βββ (x))≥ 0 for all x ∈ Σs.

2. ∑|i|=d Bd
i (βββ (x)) = 1 for all x ∈ Rs.

3. d!
(d−|r|)! xr = ∑|i|=d

î
(î−r)!

Bd
i (βββ (x)), |r| ≤ d, î = (i1, . . . , is).

For a proof see [25]. The above lemma provides us with the foundations for a change
of basis algorithm between the power and Bernstein bases.

1.5.2 Polynomials in Bernstein form

Given an algebraic polynomial in Bernstein-Bézier form, the de Casteljau algorithm
provides a fast and numerically stable way of evaluating the function. Let bi denote
the coefficients of an algebraic function in BB-form and compute repeated convex
combinations of the base points by setting:

br
i (βββ) =

s+1

∑
j=1

β jbr−1
i+e j

(βββ), b0
i (βββ) = bi,

e1 = (1,0, . . . ,0), . . . , es+1 = (0, . . . ,1).

(1.6)

1 Real-Time Algebraic Surface Visualization 15

bd
00

bd−1
10 bd−1

01

bd−2
20 bd−2

11 bd−2
02

β 1−β

β 1−β β 1−β

Fig. 1.6. The de Casteljau algorithm for a univariate BB-polynomial. Each value is formed
by a convex combination of the values on a lower level. At the lowest level we find the BB-
coefficients of the polynomial. The shaded area indicates the coefficients for the subdivided
polynomial in the interval [0,β].

Then bd
0(β) is the value of the polynomial at the parameter value βββ in a non-

degenerate simplex. The de Casteljau algorithm can be seen as a pyramid-like struc-
ture, where each level is a convex combination of s + 1 values at the level below,
starting with the coefficients. This process is illustrated for a univariate polynomial
in Fig 1.6.

The de Casteljau algorithm also admits a subdivision formula for univariate BB-
polynomials, and hence allows us to find a formula for a polynomial in BB-form over
a sub-interval of the original polynomial. To find the coefficients of a BB-polynomial
over the interval [0,β], we carry out (1.6) and store the leftmost intermediate value
at each iteration:

ci = b j
0(β). (1.7)

Conversely, the rightmost values give the coefficients for the BB-polynomial over
the interval [β ,1]. For multivariate polynomials, blossoming (see Sect. 1.5.3 below),
can be used to find the coefficients over a subset of the domain.

If we use the BB-coefficients of a univariate BB-polynomial f to form the points
bi = bi, j = (j/d,bi) we find the control points of a Bézier parametrization of f , often
called a Bézier curve. The polygon formed by the control points is called the control
polygon of the curve.

Such a parametrization has a number of useful properties:

Lemma 2.

1. Bézier curves have no more sign changes than their control polygons. This is
called the variation diminishing property.

2. The control points generated by repeated subdivision of the control polygon con-
verge to the original Bézier curve.

3. The entire Bézier curve is contained in the convex hull of the control points.

The above properties are used to form the root finding algorithm described in
Sect. 1.4.3.

16 Johan Simon Seland and Tor Dokken

pd
0000

pd−1
1000

pd−1
0100 pd−1

0010

pd−1
0001

pd−2
0200 pd−2

0020

pd−2
0002

pd−2
1100

pd−2
0110

pd−2
0011

βββ1
1

βββ1
2 βββ1

3

βββ1
4

βββ2
3

βββ2
4

βββ2
3

βββ2
4βββ2

1

βββ2
2 βββ2

3 βββ2
2

βββ2
4

Fig. 1.7. The pyramidal structure of trivariate blossoming. Each value is formed as a combi-
nation of four values at the previous level, using βββ i as weights. (Some nodes and weights have
been removed for clarity.)

1.5.3 The blossom

If we modify the de Casteljau algorithm by introducing a sequence of parameter
points, (βββ 1, . . . ,βββ d) and use a distinct point at each level of recursion, we arrive at
the blossom of the polynomial, which we denote as B. An intermediate value of the
blossom can be expressed as

pr
i =

s+1

∑
j=1

βr j pr−1
i+e j

, p0
i = bi, (1.8)

and the blossom itself is given by

B(f)[βββ 1, . . . ,βββ d] = pd
0 . (1.9)

An illustration of this process for a trivariate polynomial is given in Fig 1.7.
The blossom has traditionally been used as an analytic tool for Bézier and spline

curves and surfaces. In our context we are interested in using it as a computational
algorithm to calculate coefficients and derivatives of an algebraic surface. Some of
the properties of the blossom are summarized below:

Lemma 3. Every BB-polynomial f of degree d, has an associated unique functional,
called the blossom, which we will denote as B.

The blossom has the following properties:

1. It is symmetric in its arguments; B(f)[βββ 1, . . . ,βββ d] = B(f)[π(βββ 1, . . . ,βββ d)], (here
π(·) means any permutation of its arguments).

2. It is multi-affine in each of its variables; B(f)[sααα + tβββ , . . .] = sB(f)[ααα, . . .]+
tB(f)[βββ , . . .], s, t ∈ R.

3. It has the diagonal property; B(f)[βββ , . . . ,βββ] = f (βββ).

1 Real-Time Algebraic Surface Visualization 17

It is common to define the blossom as a functional with the above properties. For
details see [32, 13].

We use notation in the style of Farin and let repetition of arguments be denoted
B(f)[βββ , . . . ,βββ , . . .] = B(f)[βββ 〈n〉, . . .] if the argument βββ is repeated n times.

The key to finding a curve representing the value of f along the line segment
xy is a surprising property of the blossom, which we summarize in the following
lemma:

Lemma 4. Given two points ααα = βββ (x) and γγγ = βββ (y), x,y ∈ Σs and a multivari-
ate BB-polynomial f (βββ). Then the straight line segment from x to y is mapped to
a univariate BB-polynomial of degree d, and its coefficients are given by repeated
blossoming of the endpoints, B(f)[ααα〈d〉],B(f)[ααα〈d−1〉,γγγ], . . . , B(f)[γγγ〈d〉].

For a proof, see [13, 37, 16]. This property then leads to an algorithm for finding the
coefficients (cd,0, . . . ,c0,d) of the univariate polynomial along the ray:

cd−i,i = B(f)[ααα〈d−i〉,γγγ〈i〉], i ∈ (0, . . . ,d), (1.10)

as illustrated in Fig 1.2.
For a point βββ in the domain, we may also use the blossom to find derivatives with

respect to the (barycentric) direction vector d,

Ddr f (βββ) =
d!

(d− r)!
B(f)[d〈r〉,βββ 〈d−r〉], r ≤ d. (1.11)

In the same manner we can also calculate mixed directional derivatives. If d1,d2
represent two distinct vectors their mixed directional derivatives are:

Dr,s
d1,d2

f (βββ) =
d!

(d− r− s)!
B(f)[d〈r〉1 ,d〈s〉2 ,βββ 〈d−r−s〉], r + s ≤ d. (1.12)

To summarize, the blossom provides us with the algorithms needed to convert a
trivariate polynomial into a set of univariate polynomials with respect to each ray.
Furthermore it allows us to find all derivatives of the surface at an arbitrary point.

1.6 Conclusion and Further Work

Our work presents a real-time rendering strategy for algebraic surfaces up to total
degree five. However, as GPU technologies advance we believe it can be improved
further. The two most obvious issues, and thus prime candidates for further work, are
to increase rendering speed and the degree of surfaces we can visualize.

With regards to speed, we believe that better root finders than our current imple-
mentation can dramatically increase the performance. As GPUs get better at dynamic
branching, we believe that hybrid methods will be very well suited for use on GPUs.
Higher speeds will also allow a large number of primitives to be rendered simultane-
ously, which is necessary for displaying piecewise algebraic surfaces.

18 Johan Simon Seland and Tor Dokken

The limiting factor for the maximum degree of surface visualization is the num-
ber of registers available in each fragment pipeline. Our Nvidia 7800 GPU has 32
four-wide temporary registers, in comparison next generation GPUs (DX10) are ex-
pected to have 4096 registers[2], which will allow us to visualize surfaces of much
higher total degree using our current approach.

Using the depth buffer and blending functionality of GPUs to do constructive
solid geometry with algebraic surfaces, as well as integration with mesh based ray
tracing techniques is also possible. Mode complex lighting models, including reflec-
tion, refraction and self-shadows could be possible, but these aspects will also rely
on more registers and better dynamic branching.

With regards to applications, we believe that CAD-systems could benefit sig-
nificantly from modeling shapes by using general algebraic surfaces. However, as
algebraic surfaces often have a non-trivial topology, it has until now been necessary
to analyze and establish the topology of the algebraic surface before tessellation and
visualization can take place. The approach of this paper shows that such a topology
analysis is not necessary and consequently allows efficient visualization of general
algebraic surfaces in CAD-systems.

Acknowledgement. This work was supported by contract number 158911/I30 of The Research
Council of Norway.

References

1. Ordinary double point. http://mathworld.wolfram.com/OrdinaryDoublePoint.

html. Checked as of September 2006.
2. D. Blythe. The Direct3D 10 system. ACM Trans. Graph., 25(3):724–734, 2006.
3. BrookGPU. http://graphics.stanford.edu/projects/brookgpu/.
4. N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In HWWS ’02: Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 37–
46, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

5. N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Fast GPU ray tracing of dynamic
meshes using geometry images. In GI ’06: Proceedings of the 2006 conference on Graph-
ics interface, pages 203–209, Toronto, Ont., Canada, 2006. Canadian Information Pro-
cessing Society.

6. M. Christen. Ray tracing on GPU. Master’s thesis, University of Applied Sciences, Basel,
2005. http://www.clockworkcoders.com/oglsl/rt/.

7. T. D. DeRose, R. N. Goldman, H. Hagen, and S. Mann. Functional composition algo-
rithms via blossoming. ACM Trans. Graph., 12(2):113–135, 1993.

8. T. Dokken, T. R. Hagen, and J. M. Hjelmervik. this book, chapter An Introduction to
General-Purpose Computing on Programmable Graphics Hardware.

9. T. Dokken and V. Skytt. this book, chapter Intersection Algorithms for CAGD.
10. W. Donnelly. GPU Gems 2, chapter Per-Pixel Displacement Mapping with Distance

Functions, pages 123–136. Addison-Wesley, 2005.
11. T. Duff. Interval arithmetic recursive subdivision for implicit functions and constructive

solid geometry. In SIGGRAPH ’92: Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, pages 131–138, New York, NY, USA, 1992.
ACM Press.

1 Real-Time Algebraic Surface Visualization 19

12. S. Endraß. SURF 1.0.5. http://surf.sourceforge.net.
13. G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 2002.
14. R. T. Farouki and T. N. T. Goodman. On the optimal stability of Bernstein basis. Mathe-

matics of Computation, 65:1553–1556, 1996.
15. R. Fernando and M. J. Kilgard. The Cg Tutorial: The Definitive Guide to Programmable

Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

16. R. Goldman. Using degenerate Bézier triangles and tetrahedra to subdivide Bézier curves.
Computer Aided Design, 14(6):307–311, November 1982.

17. X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Computer graphics and interactive techniques, pages
355–361, New York, NY, USA, 2002. ACM Press.

18. J. Hirche, A. Ehlert, S. Guthe, and M. Doggett. Hardware accelerated per-pixel displace-
ment mapping. In GI ’04: Proceedings of the 2004 conference on Graphics interface,
pages 153–158, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society.

19. S. Holzer and O. Labs. Algebraic Geometry and Geometric Modelling, chapter Illustrat-
ing the classification of real cubic surfaces, pages 119–134. Mathematics and Visualiza-
tion. Springer-Verlag, 2006.

20. S. Holzer and O. Labs. SURFEX 0.89. Technical report, University of Mainz, University
of Saarbrücken, 2006. http://www.surfex.AlgebraicSurface.net.

21. F. Karlsson and C. J. Ljungstedt. Ray tracing fully implemented on programmable graph-
ics hardware. Master’s thesis, Department of Computer Engineering, Chalmers University
of Technology, Göteborg, 2004.

22. C. Loop and J. Blinn. Resolution independent curve rendering using programmable
graphics hardware. ACM Trans. Graph., 24(3):1000–1009, 2005.

23. C. Loop and J. Blinn. Real-time GPU rendering of piecewise algebraic surfaces. ACM
Trans. Graph., 25(3):664–670, 2006.

24. T. Lyche and J. M. Pẽna. Optimally stable multivariate bases. Advances in Computational
Mathematics, 20:149–159, 2004.

25. T. Lyche and K. Scherer. On the p-norm condition number of the multivariate triangular
Bernstein basis. J. Comput. Appl. Math., 119(1-2):259–273, 2000.

26. M. D. McCool, Z. Qin, and T. S. Popa. Shader metaprogramming. In SIGGRAPH/Euro-
graphics Graphics Hardware Workshop, pages 57–68, September 2002. revised.

27. K. Mørken and M. Reimers. An unconditionally convergent method for computing zeros
of splines and polynomials. Mathematics of Computation, To appear.

28. M. Olano. A Programmable Pipeline for Graphics Hardware. PhD the-
sis, Department of Computer Science, University of North Carolina, Chapel Hill,
http://www.cs.unc.edu/ olano/papers/dissertation/, April 1998.

29. M. Olano, A. Lastra, and J. Leech. Procedural primitives in a high performance, hard-
ware accelerated, Z-Buffer renderer. Technical Report Tr97–040, UNC Computer Science
Technical Report, 1997.

30. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A survey of general-purpose computation on graphics hardware. In Eurographics
2005, State of the Art Reports, pages 21–51, August 2005.

31. T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on programmable graph-
ics hardware. In SIGGRAPH ’02: Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, pages 703–712, New York, NY, USA, 2002.
ACM Press.

20 Johan Simon Seland and Tor Dokken

32. L. Ramshaw. Blossoming: A connect-the-dots approach to splines. Technical report,
Digital Systems Research, 1987.

33. A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of trimmed surfaces. Com-
puter Graphics, 23(3):107–116, July 1989.

34. R. J. Rost. OpenGL(R) Shading Language. Addison Wesley Longman Publishing Co.,
Inc., 2004.

35. J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek. Realtime ray tracing
of dynamic scenes on an FPGA chip. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 95–106, New York,
NY, USA, 2004. ACM Press.

36. P. J. Schneider. Graphics gems, chapter A Bézier curve-based root-finder, pages 408–415.
Academic Press Professional, Inc., San Diego, CA, USA, 1990.

37. H. P. Seidel. A general subdivision theorem for Bézier triangles, pages 573–581. Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1989.

38. J. M. Snyder. Interval analysis for computer graphics. In SIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graphics and interactive techniques, pages
121–130, New York, NY, USA, 1992. ACM Press.

39. M. R. Spencer. Polynomial real root finding in Bernstein form. PhD thesis, Brigham
Young University, Provo, UT, USA, 1994.

40. N. Thrane and L. O. Simonsen. A comparison of acceleration structures for GPU assisted
ray tracing. Master’s thesis, Department of Computer Science, University of Aarhus,
August 2005.

41. Y. Uralsky. Practical metaballs and implicit surfaces. Game Developers Conference 2006.
http://developer.nvidia.com.

42. M. Weiler, M. Kraus, and T. Ertl. Hardware-based view-independent cell projection. In
VVS ’02: Proceedings of the 2002 IEEE symposium on Volume visualization and graphics,
pages 13–22, Piscataway, NJ, USA, 2002. IEEE Press.

43. B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral projection using vertex
shaders. In VVS ’02: Proceedings of the 2002 IEEE symposium on Volume visualization
and graphics, pages 7–12, Piscataway, NJ, USA, 2002. IEEE Press.

