
The MATLAB Reservoir Simulation Toolbox

Bård Skaflestad

SIAM Geosciences, Long Beach, March 21–24, 2011

The Matlab Reservoir Simulation Toolbox (MRST)

The toolbox has the following functionality for rapid prototyping of solvers for flow
and transport:

I grid structure, grid factory routines, input/processing
of industry-standard formats, real-life and synthetic
example grids

I petrophysical parameters and incompressible fluid
models, conversion routines to/from SI and common
field units, very simplified geostatistical routines

I routines for setting and manipulating boundary
conditions, sources/sinks, and well models

I reservoir state (pressure, fluxes, saturations,
compositions, . . .)

I visualisation routines for cell and face data (scalars)

Download

http://www.sintef.no/MRST/

Version 2011a was released on the 22nd of February, 2011, and can be downloaded
under the terms of the GNU General Public License (GPL)

2 / 21

Software goals

I General framework for flow and transport in porous media

I Special focus on unstructured grids and multiscale methods

Research:

I Development of new solvers and discretization schemes

I Application to new scientific/engineering problems

I Preserve know-how and promote reuse of results from previous research

I Contribute to accelerating production of new research (by our peers)

I Benchmarking – compare different methods on standard test problems

Students:

I Develop students’ intuition of porous media flow

I Make it easy to test, compare, and extend existing methods

I Textbook (with worked examples) in preparation

3 / 21

Why open-source and why in Matlab?

First of all, prototyping in a scripting language is much more effective than in
traditional compiled languages (C/C++/FORTRAN)

I Explore alternative algorithms/implementations close to mathematics

I Gradually replace individual (or bottleneck) operations with accelerated
editions callable from matlab

I Direct access to matlab environment and prototype whilst developing
replacement components

I More experienced in Matlab/Octave than in e.g., Python,

Why free and open-source software:

I Research funded by Norwegian Research Council should be freely available

I Combined with publications: a means to collaborate and disseminate
results, while protecting IP rights

I Support reproducible research and promote replicability

4 / 21

How is MRST designed?

The fundamental object in MRST is the grid:

I Data structure for geometry and topology

I Several grid factory routines

I Input of industry-standard (proprietary) format(s)

Physical quantities defined as dynamic objects in matlab

I Properties of medium (φ, K, net-to-gross, . . .)

I Reservoir fluids (ρ, µ, kr, PVT, . . .)

I Driving forces (wells, boundary conditions, sources)

I Reservoir state (pressure, fluxes, saturations, etc)

All MRST operations accept, manipulate and produce objects of these types.

Physical quantities are assumed to be in SI units.

5 / 21

How is MRST designed?

MRST core

I routines for creating and manipulating grids and physical properties

I basic flow and transport solvers (sequential splitting) for incompressible
and immiscible flow

Functionality is stable and not expected to change in future releases

Modules

Similar to matlab’s toolboxes. Implements more advanced solvers and tools:

I adjoint methods, experimental multiscale, fractures, MPFA, upscaling

I black-oil models, three-phase flow, vertically integrated models, . . .

I streamlines, (flow-based) coarsening, . . .

I Octave support, C-acceleration, . . .

Some are stable. Some are constantly changing to support ongoing research.
New modules initiated by others are much welcome

5 / 21

Grids in MRST
Complex reservoir geometries

Corner point: Tetrahedral: PEBI:

I Accurate modelling of features such as faults, fractures, or erosion requires grids
that are flexible with respect to geometry.

I Industry-standard grids are often nonconforming and contain complex grid-cell
connectivities, as well as skewed and degenerate cells

I There is a trend towards unstructured grids with general polyhedral cells

I Standard discretization methods produce wrong results on skewed and rough
cells condition numbers

I The representation of (un)structured grids affects the efficiency of numerical
methods

6 / 21

Grids in MRST
Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:

800× 800× 0.25 m

7 / 21

Grids in MRST
All grids are assumed to be unstructured

Basic representation:

cells nodes faces

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =
1 10 1 1 0 2
1 8 1 2 2 3
1 7 2 1 3 5
2 1 2 3 5 0
2 2 3 1 6 2
2 5 3 4 0 6
3 3 4 1 1 3
3 7 4 7 4 1
3 2 5 2 6 4
4 8 5 3 1 8
4 12 6 2 8 5
4 9 6 6 4 7
5 3 7 3 7 8
5 4 7 4 0 7
5 11 8 3
6 9 8 5
6 6 9 3
6 5 9 6
7 13 10 4
7 14 10 5
: : : :

Choices in grid representation guided by utility and convenience in low-order

finite-volume methods. Available geometric information typically limited to

centroids, normals, areas, and volumes

8 / 21

Grids in MRST
Examples of basic grid types

% Rectillinear grid
dx = 1−0.5∗cos((−1:0.1:1)∗pi);
x = −1.15+0.1∗cumsum(dx);
G = tensorGrid(x, sqrt(0:0.05:1));
plotGrid(G);

% Extrude a standard MATLAB dataset
load seamount
g = triangleGrid([x(:) y (:)]);
P = pebi(g);
V = makeLayeredGrid(P, 5);
plotGrid(V), view(−40, 60), axis off

% Make and read a simple Eclipse input file
grdecl = simpleGrdecl([20, 10, 5], 0.12)
G = processGRDECL(grdecl);
plotGrid(G,'FaceAlpha',0.8);
plotFaces(G,find(G.faces.tag>0), 'FaceColor','red');
view(40,40), axis off

9 / 21

Grids in MRST
Examples of flexible gridding strategies

Hybrid grid – areal grid consisting
of the following components

– radially refined grid at wells

– Cartesian along boundary

– hexahedral in interior

– polyhedral transition cells

extruded to 3D along vertical lines

Hierarchical grid

– triangular cells adapted to a
curved line

– extruded to 3D, with throw
along curved surface

– coarse grid constructed by
collecting cells from fine grid

9 / 21

Discretization of flow equation
General family of conservative methods for: ∇ · ~v = q, ~v = −K∇p

Basic formulation

ui = T i(eipi − πi), ei = (1, . . . , 1)T

pi – the pressure at the center of cell i

ui – the vector of outward face fluxes

πi – the vector of face pressures

Ti – the one-sided transmissibilities

pi πk

Ak
~cik

~nk

Special cases:

I The standard two-point method: T ii = ~ni ·K~ci/|~ci|2

I Multipoint flux-approximation methods (MPFA)

I Mixed finite-element methods

I Mimetic methods

10 / 21

Discretization of flow equation
Linear system: mixed hybrid form

24 B C D
CT 0 0
DT 0 0

3524 v
−p
π

35 =

240
g
0

35 , vij

λij

pi pj

B defines an inner product. The matrix blocks read,

bij =

Z
Ω

ψi T
−1ψj dx, cik =

Z
Ω

φk∇ · ψi dx, dik =

Z
∂Ω

|ψi · nk| dx

Positive-definite system obtained by a Schur-complement reduction`
DTB−1D − FTL−1F

´
π = FTL−1g,

F = CTB−1D, L = CTB−1C.

Reconstruct cell pressures and fluxes by back-substition,

Lp = q + FTπ, Bv = Cp−Dπ.

11 / 21

Discretization of flow equation
Linear system: mixed hybrid form

24 B C D
CT 0 0
DT 0 0

3524 v
−p
π

35 =

240
g
0

35 , vij

λij

pi pj

B defines an inner product. The matrix blocks read,

bij =

Z
Ω

ψi T
−1ψj dx, cik =

Z
Ω

φk∇ · ψi dx, dik =

Z
∂Ω

|ψi · nk| dx

Positive-definite system obtained by a Schur-complement reduction`
DTB−1D − FTL−1F

´
π = FTL−1g,

F = CTB−1D, L = CTB−1C.

Reconstruct cell pressures and fluxes by back-substition,

Lp = q + FTπ, Bv = Cp−Dπ.

11 / 21

Discretization of flow equation
Herein: a mimetic method, Brezzi et al., 2005

Mu = (ep− π) ←→ u = T (ep− π)

Requiring exact solution of linear flow (p = xTa+ k):

MNK = C NK = TC

C – vectors from cell to face centroids. N – area-weighted normal vectors

Family of schemes (given by explicit formulas):

M =
1

|Ωi|
CK−1CT +Q⊥N

T
SMQ

⊥
N

T =
1

|Ωi|
NKNT +Q⊥C

T
SQ⊥C

Q⊥N is an orthonormal basis for the null space of NT, and SM is any positive definite matrix. Herein, we use
null-space projection

P
⊥
N = Q

⊥
N SM Q

⊥
N = I −QN QN

T

12 / 21

Discretization of flow equation
Example: grid orientation effects

Homogeneous domain with Dirichlet boundary conditions (left,right) and
no-flow conditions (top, bottom) computed with three different pressure solvers
in MRST.

TPFA MFD MPFA

Homogeneous permeability with anisotropy ratio 1 : 1000 aligned with the grid.

100 × 100

13 / 21

Discretization of flow equation
Example: lack of monotonicity

Homogeneous domain with Dirichlet boundary conditions (left,right) and
no-flow conditions (top, bottom) computed with three different pressure solvers
in MRST.

TPFA MFD MPFA

Homogeneous permeability with anisotropy ratio 1 : 1000 rotated by π/6.

10 × 10

13 / 21

Application examples
A (very) simple flow solver

∇ · ~v = q, ~v = −
K

µ

ˆ
∇p+ ρg∇z

˜
Vertical well and Dirichlet boundary

% Grid and rock parameters
nx = 20; ny = 20; nz = 10;
G = computeGeometry(cartGrid([nx, ny, nz]));
rock.perm = repmat(100 ∗ milli∗darcy, [G.cells.num, 1]);
fluid = initSingleFluid('mu', 1∗centi∗poise, ...

'rho' , 1014∗kilogram/meterˆ3);
gravity reset on

% Fluid sources and boundary conditions
c = (nx/2∗ny+nx/2 : nx∗ny : nx∗ny∗nz) .';
src = addSource([], c, ones(size(c)) ./ day());
bc = pside([], G, 'LEFT', 10∗barsa());

% Construct components for mimetic system
S = computeMimeticIP(G, rock, 'Verbose', true);

% Solve the system and convert to bars
rSol = initResSol(G, 0);
rSol = solveIncompFlow(rSol,G,S,fluid,'src',src,'bc' ,bc);
p = convertTo(rSol.pressure(1:G.cells.num), barsa());

From tutorial: simpleSRCandBC.m

Source term and boundary
condition

Pressure distribution

14 / 21

Application examples
Modelling faults in consistent schemes

Faults modelled as internal boundaries,
with internal jump conditions

u±f = Tf (π∓f − π
±
f)

Gives an extended hybrid system. In
addition, method to convert TPFA
multipliers to fault transmissibility Tf

Water cuts from producer #1

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

without multiplier

with multiplier

+ = TPFA solution · = mimetic

 0.1

1

10

100

1000

15 / 21

Application examples
Multiscale module: bypassing the need for upscaling?

Key idea of multiscale methods:

Local decomposition

I p(~x) =
P

Ωi
piφi(~x)

I ~v(~x) =
P

Γij
vij

~ψij(~x)

Ωi – coarse grid block. Γij = ∂Ωi ∩ ∂Ωj

Multiscale basis functions:

homogeneous (RT0) heterogeneous

16 / 21

Application examples
Multiscale module / black-oil module: primary production

I Shallow-marine reservoir (realization
from SAIGUP)

I Model size: 40× 120× 20

I Initially filled with gas, 200 bar

I Single producer, bhp=150 bar

I Multiscale solution for different
tolerences compared with fine-scale
reference solution.

Rate in well perforation (m3/day)

100 200 400 600 800 1000
535

540

545

550

555

560

Reference

5⋅10−2

5⋅10−4

5⋅10−6

5⋅10−7

17 / 21

Application examples
Coarsening module: (flow-based) coarsening by amalgamation

Amalgamation of cells

I flow-adapted grids

I simple and flexible coarsening

I adaptive gridding schemes

I efficient model reduction

Algorithmic primitives working on a
partition vector

I segment (flow) indicator into
bins

I merge small cells

I refine large cells

I intersect partitions

I sanity checks to ensure
connected blocks, etc

−→ great flexibility

Cartesian grid:

Triangular grids:

18 / 21

Application examples
Coarsening module: (flow-based) coarsening by amalgamation

Dynamic adaption Different partitioning:

Adapting to geology

18 / 21

Application examples
Coarsening module: (flow-based) coarsening by amalgamation

Flow-adapted vs METIS:

fine grid
11 864 cells

flow-based
127 blocks

METIS
175 blocks

Model reduction of real-field model:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore volume injected

Water−cut curves

Reference solution
1581 blocks
854 blocks
450 blocks
239 blocks
119 blocks

18 / 21

Application examples
Upcoming adjoint module: production optimization

Specialized simulator: using different
grids for pressure and transport

Multiscale pressure solver:

Transport on flow-adapted grid:

Water-flood optimization:

Reservoir geometry from a Norwegian Sea field

0 2 4 6 8 10
0

2

4

6

8

10

12

14
x 10

6

Time [years]

C
um

.P
ro

d.
 [m

3]

Oil initial
Oil optimized
Water initial
Water optimized

Forward simulations:
44 927 cells, 20 time steps, < 5 sec in Matlab

19 / 21

Application examples
Vertically integrated module: educational and research tool

Vertically integrated module: part of a forthcoming numerical CO2 laboratory

20 / 21

Application examples
Vertically integrated module: educational and research tool

Vertically integrated module: part of a forthcoming numerical CO2 laboratory

20 / 21

Application examples
Vertically integrated module: educational and research tool

Vertically integrated module: part of a forthcoming numerical CO2 laboratory

20 / 21

Application examples
Vertically integrated module: CO2 migration at Sleipner

3D model made by Statoil to study CO2 in the top layer of Utsira.
MRST used to study physical assumptions and numerical methods:

I Simple to modify the code

I Flexible and simple upscaling (homogeneous model)

I Fast response time, simulation 2–10 min in Matlab

Seismic data (2006) / 3D simulation (tough2)

Fra: Chadwick, Noy, Arts & Eiken: Latest time-lapse seismic data from Sleipner yield new
insights into CO2 plume development, Energy Procedia (2009), 2103–2110.

VE simulation

21 / 21

	Introduction
	Grids in MRST
	Discretization
	Examples

