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What is multiscale simulation?

Generally:

Methods that incorporate fine-scale information into a set of coarse scale
equations in a way which is consistent with the local property of the
differential operator

Herein:

Multiscale pressure solver (upscaling + downscaling in one step)

∇ · ~v = q, ~v = −λ(S)K∇p

+ Transport solver (on fine, intermediate, or coarse grid)

φ
∂S

∂t
+∇

“
~vf(S)

”
= q

= Multiscale simulation of models with higher detail
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What is multiscale simulation?

Coarse partitioning: Flow field with subresolution:

⇓ ⇑
Local flow problems:

⇒

Flow solutions → basis functions:
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Flow-adapted coarse grids

Goal:

Given the ability to model velocity on geomodels and transport on
coarse grids: Find a suitable coarse grid that best resolves fluid
transport and minimizes loss of accuracy.

Formulated as the minimization of two measures:

1 the projection error between fine and coarse grid

2 the evolution error on the coarse grid
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Flow-adapted coarsening

Assumptions:

I a matching polyhedral grid with n cells ci,

I a mapping N (c) between cell c and its nearest
neighbours,

I a set of flow indicators I(ci) in cell ci

c
i

N(c
i
)

We seek a coarse grid that:

I adapts to the flow pattern predicted by indicator I,

I is formed by grouping cells into N blocks B`,

I is described by a partition vector p with n
elements, in which element pi assumes the value `
if cell ci is member of block B`. 5
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Coarsening principles

I Minimize heterogeneity of flow field inside each block

min
Bj

“X
pi=j

|I1(ci)− I1(Bj)|p |ci|
” 1

p
, 1 ≤ p ≤ ∞,

I Equilibrate indicator values over grid blocks

min
“ NX
j=1

|I2(Bj)− Ī2(Ω)|p |Bj |
” 1

p
, 1 ≤ p ≤ ∞,

I Keep block sizes within prescribed lower and upper bounds
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Amalgamation algorithm

Amalgamation of cells:

I Difficult to formulate a practical and well-posed minimization problem for
optimal coarsening −→ ad hoc algorithms

I Coarsening process steered by a set of admissible and feasible
amalgamation directions

50× 50 lognormal permeability:

regular: 25 blocks flow magnitude: 26 blocks isocontours [p]: 26 blocks
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Motiviation: layered reservoir

Permeability and velocity

Time−of−flight

Partition
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Heuristic minimization: algorithmic components

Formulated using a set of:

sources
that create a partition vector based upon grid

topology, geometry, flow-based indicator functions, error
estimates, or expert knowledge supplied by the user, thereby
introducing the feasible amalgamation directions

filters
that take a set of partition vectors as input and

create a new partition as output, by
I combining/intersecting different partitions
I performing sanity checks, ensuring connected partitions

according to admissible directions, etc
I modifying partition by merging small blocks or splitting large

blocks
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Heuristic minimization: algorithmic components

Partition:

I prescribed topology or predefined shapes

I segmentation of cells ci into bins B̃`

ci ⊂ B̃` if I(ci) ∈ [`, ` + 1).

assuming indicator function I scaled to the interval [1, M + 1]

Intersection:

I intersect two or more partitions to produce a new partition

I split multiply connected blocks into sets of singly connected cells
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Heuristic minimization: algorithmic components

Merging:

If block B violates the condition

I(B) |B| ≥ NL

n
Ī(Ω) |Ω|,

for a prescribed constant NL, the block is merged with the neighbouring
block B′ that has the closest indicator value, i.e.,

B′ = argminB′′⊂N (B) |I(B)− I(B′′)|.

Refinement:

Refine blocks B that violate the condition

I(B) |B| ≤ NU

n
Ī(Ω) |Ω|,

for a prescribed constant NU

9 / 23



Example: non-uniform coarsening

Aarnes, Efendiev & Hauge (2007):

Use flow velocities to make a nonuniform grid in which each coarse block
admits approximately the same total flow.

log(|~v|) sanity merge refine merge NUC grid

Partition: 304 blocks Merging: 29 blocks Refinement: 47 blocks Merging: 39 blocks

10 / 23



Example: non-uniform coarsening
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Amalgamation: admissible directions (neighbourship)

Admissible
directions

Topology

face
neighbours

edge
neighbours

point
neighbours

...

Geometry

distance

Cell
constraints

facies /
rock types

relperm /
pc regions

user
supplied

Face
constraints

faults

horizons

user
supplied
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Amalgamation: extended neighbourship (topology)

5-neighborhood 9-neighborhood
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Amalgamation: restricted neighbourship (topology)

Upper row: N (cij) = {ci,j±1}
Lower row: N (cij) = {ci,j±1, ci±1,j , ci±1,j±1}
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Amalgamation: restricted neighbourship (facies)

Facies distribution Cartesian PEBI

Constraining to facies / saturation regions:

I useful to preserve heterogeneity

I useful to avoid upscaling kr and pc curves
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Amalgamation: restricted neighbourship (satnum)

saturation regions regions separated

region # 3 region #6

Realization from SAIGUP study, coarsening within six different saturation regions
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Amalgamation: restricted neighbourship (faults)

5× 5 partition 6× 5 partition water-cut curves
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Amalgamation: feasible directions (indicators)

Feasible directions Cell

error
estimates

a
posteriori

a priori
sensitivity

...

ad hoc
flow-based

time of
flight

velocity

vorticity

gradients

...

a priori

permeability

porosityvolume

...

Face

fluxvelocity

transmissi-
bilities

multipliers ...
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Example: flow-based indicators

reference solution time-of-flight grid METIS grid
11 864 cells 127 blocks 175 blocks

General observations:

I Time-of-flight is typically a better indicator than velocity

I Velocity is a better indicator than vorticity

I Vorticity is a better indicator than permeability

I . . .

However, for smooth heterogeneities, the indicators tend to overestimate the
importance of flow.
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Example: hybrid methods

Velocity + Cartesian partition:

n×m

intersect merge refine

log |~v|

Time-of-flight + Cartesian partition:

n×m

intersect merge refine

− log(ττr)
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Example: hybrid methods

Satnum + velocity + Cartesian:

n×m

satnum intersect merge refine

log |~v|
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Flow-adapted coarsening: summary

I Developed a general and flexible framework
I Heuristic algorithms: good rather than optimal grid
I Algorithmic components: partition, intersection, merging,

refinement
I Key concepts: flow indicator, admissible and feasible directions

I Systematic way of generating fit-for-purpose grids
I Several existing methods appear as special cases

I Inclusion of geological information and expert knowledge
important

I Facies, saturation regions, surfaces, faults, etc.
I Predefined shapes and topologies
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Coarse-grid discretisation

Bi-directional fluxes (upwind on fine scale):

S
n+1
` = S

n
` −

∆t

φ`|B`|

h
f(S

n+1
` )

X
∂B`

max(vij , 0)

−
X
k 6=`

“
f(S

n+1
k )

X
Γk`

min(vij , 0)
”i
.

This gives a centred scheme on the coarse scale

Net fluxes:

S
n+1
` = S

n
` −

∆t

φ`|B`|

X
k 6=`

max
“
f(S

n+1
` )

X
Γk`

vij ,

−f(S
n+1
k )

X
Γk`

vij

”
.

This gives an upwind scheme on the coarse scale
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Coarse-grid discretisation: numerical diffusion

reference net fluxes bi-directional fluxes

Layer 37 from SPE10
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Coarse-grid discretisation: matrix structure

Flow-adapted grid Cartesian grid
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Layer 68 from SPE10. Top: bi-directional fluxes. Bottom: net fluxes
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Coarse-grid discretisation: numerical errors

Tarbert
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Coarse-grid discretisation: numerical errors

Upper Ness
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Dynamical adaption

I Inaccurate representation of strong displacement
fronts can lead to significant errors.

I Idea: Refine dynamically around strong fronts.

I For a Buckley–Leverett displacement:

I Unswept region ahead of the displacement:
coarse grid.

I Swept region behind the front: coarse grid.
I At the front: fine or intermediate grid.

coarse fine coarse
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Example: layers from SPE10

After injection of 0.1 PVI

adaptive coarse fine grid

Layer 22 from SPE10
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Example: layers from SPE10

After injection of 0.5 PVI

adaptive coarse fine grid

Layer 22 from SPE10
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Example: layers from SPE10
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