Upgridding by Amalgamation: Flow-Adapted Grids for Multiscale Simulations

Knut–Andreas Lie and Jostein R. Natvig, SINTEF, Norway

SIAM Conference on Mathematical and Computational Issues in the Geosciences
Long Beach, CA, March 21–24, 2011
What is multiscale simulation?

Generally:
Methods that incorporate fine-scale information into a set of coarse scale equations in a way which is consistent with the local property of the differential operator.

Herein:

- **Multiscale pressure solver (upsampling + downscaling in one step)**
 \[\nabla \cdot \vec{v} = q, \quad \vec{v} = -\lambda(S)K \nabla p \]

- **Transport solver (on fine, intermediate, or coarse grid)**
 \[\phi \frac{\partial S}{\partial t} + \nabla \left(\vec{v} f(S) \right) = q \]

= Multiscale simulation of models with higher detail
What is multiscale simulation?

Coarse partitioning:

Flow field with subresolution:

Local flow problems:

Flow solutions → basis functions:
Goal:
Given the ability to model velocity on geomodels and transport on coarse grids: Find a suitable coarse grid that best resolves fluid transport and minimizes loss of accuracy.

Formulated as the minimization of two measures:
1. the *projection error* between fine and coarse grid
2. the *evolution error* on the coarse grid
Flow-adapted coarsening

Assumptions:

- a matching polyhedral grid with \(n \) cells \(c_i \),
- a mapping \(\mathcal{N}(c) \) between cell \(c \) and its nearest neighbours,
- a set of flow indicators \(I(c_i) \) in cell \(c_i \)

We seek a coarse grid that:

- adapts to the flow pattern predicted by indicator \(I \),
- is formed by grouping cells into \(N \) blocks \(B_\ell \),
- is described by a partition vector \(p \) with \(n \) elements, in which element \(p_i \) assumes the value \(\ell \) if cell \(c_i \) is member of block \(B_\ell \).
Coarsening principles

▶ Minimize heterogeneity of flow field inside each block

$$\min_{B_j} \left(\sum_{p_i = j} |I_1(c_i) - I_1(B_j)|^p |c_i| \right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty,$$

▶ Equilibrate indicator values over grid blocks

$$\min \left(\sum_{j=1}^{N} |I_2(B_j) - \bar{I}_2(\Omega)|^p |B_j| \right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty,$$

▶ Keep block sizes within prescribed lower and upper bounds
Amalgamation algorithm

Amalgamation of cells:

- Difficult to formulate a practical and well-posed minimization problem for optimal coarsening \rightarrow *ad hoc algorithms*
- Coarsening process steered by a set of admissible and feasible amalgamation directions

50 × 50 **lognormal permeability:**

- Regular: 25 blocks
- Flow magnitude: 26 blocks
- Isocontours [p]: 26 blocks
Motivation: layered reservoir

Permeability and velocity

Time-of-flight

Partition
Heuristic minimization: algorithmic components

Formulated using a set of:

- **sources** that create a partition vector based upon grid topology, geometry, flow-based indicator functions, error estimates, or expert knowledge supplied by the user, thereby introducing the feasible amalgamation directions

- **filters** that take a set of partition vectors as input and create a new partition as output, by
 - combining/intersecting different partitions
 - performing sanity checks, ensuring connected partitions according to admissible directions, etc
 - modifying partition by merging small blocks or splitting large blocks
Heuristic minimization: algorithmic components

Partition:

▶ prescribed topology or predefined shapes
▶ segmentation of cells c_i into bins \tilde{B}_ℓ

\[c_i \subset \tilde{B}_\ell \text{ if } I(c_i) \in [\ell, \ell + 1). \]

assuming indicator function I scaled to the interval $[1, M + 1]$

Intersection:

▶ intersect two or more partitions to produce a new partition
▶ split multiply connected blocks into sets of singly connected cells
Merging:
If block B violates the condition

$$I(B) |B| \geq \frac{N_L}{n} \bar{I}(\Omega) |\Omega|,$$

for a prescribed constant N_L, the block is merged with the neighbouring block B' that has the closest indicator value, i.e.,

$$B' = \arg\min_{B'' \subset \mathcal{N}(B)} |I(B) - I(B'')|.$$

Refinement:
Refine blocks B that violate the condition

$$I(B) |B| \leq \frac{N_U}{n} \bar{I}(\Omega) |\Omega|,$$

for a prescribed constant N_U.
Aarnes, Efendiev & Hauge (2007):

Use flow velocities to make a nonuniform grid in which each coarse block admits approximately the same total flow.
Example: non-uniform coarsening
Amalgamation: admissible directions (neighbourship)

Cell constraints:
- relperm / p_c regions
- facies / rock types
- user supplied

Face constraints:
- faults
- user supplied

Horizons

Geometry:
- distance

Topology:
- face neighbours
- edge neighbours
- point neighbours
- ...
Amalgamation: extended neighbourship (topology)

5-neighborhood

9-neighborhood
Amalgamation: restricted neighbourship (topology)

Upper row: $\mathcal{N}(c_{ij}) = \{c_{i,j}\pm1\}$
Lower row: $\mathcal{N}(c_{ij}) = \{c_{i,j}\pm1, c_{i\pm1,j}, c_{i\pm1,j\pm1}\}$
Amalgamation: restricted neighbourship (facies)

Facies distribution Cartesian PEBI

Constraining to facies / saturation regions:

▶ useful to preserve heterogeneity
▶ useful to avoid upscaling k_r and p_c curves
Amalgamation: restricted neighbourship (satnum)

Realization from SAIGUP study, coarsening within six different saturation regions
Amalgamation: restricted neighbourship (faults)

5 × 5 partition
46 blocks

6 × 5 partition
52 blocks

unconstrained

constrained

52 blocks
58 blocks

Water-cut curves

Fine grid
5x5-based coarse grid
6x5-based coarse grid

Fine grid
5x5-based coarse grid with barrier
6x5-based coarse grid with barrier
Amalgamation: feasible directions (indicators)

Feasible directions

Cell

error estimates

a priori

sensitivity

a posteriori

ad hoc flow-based

transmissibilities

velocity

flux

multipliers

...
Example: flow-based indicators

General observations:

▶ Time-of-flight is typically a better indicator than velocity
▶ Velocity is a better indicator than vorticity
▶ Vorticity is a better indicator than permeability
▶ ...

However, for smooth heterogeneities, the indicators tend to overestimate the importance of flow.
Example: hybrid methods

Velocity + Cartesian partition:

- $n \times m$
- intersect \rightarrow merge \rightarrow refine
- $\log |\vec{v}|$

Time-of-flight + Cartesian partition:

- $n \times m$
- intersect \rightarrow merge \rightarrow refine
- $-\log(\tau \tau_r)$
Example: hybrid methods

Satnum + velocity + Cartesian:

- $n \times m$
- \(\log |\vec{v}| \)
- \(\text{intersect} \rightarrow \text{merge} \rightarrow \text{refine} \)
Flow-adapted coarsening: summary

- Developed a general and flexible framework
 - Heuristic algorithms: good rather than optimal grid
 - Algorithmic components: partition, intersection, merging, refinement
 - Key concepts: flow indicator, admissible and feasible directions
- Systematic way of generating fit-for-purpose grids
 - Several existing methods appear as special cases
- Inclusion of geological information and expert knowledge important
 - Facies, saturation regions, surfaces, faults, etc.
 - Predefined shapes and topologies
Coarse-grid discretisation

Bi-directional fluxes (upwind on fine scale):

\[
S_{\ell}^{n+1} = S_{\ell}^{n} - \frac{\Delta t}{\phi_{\ell}|B_{\ell}|} \left[f(S_{\ell}^{n+1}) \sum_{\partial B_{\ell}} \max(v_{ij}, 0)
- \sum_{k \neq \ell} \left(f(S_{k}^{n+1}) \sum_{\Gamma_{k\ell}} \min(v_{ij}, 0) \right) \right].
\]

This gives a **centred scheme** on the coarse scale.

Net fluxes:

\[
S_{\ell}^{n+1} = S_{\ell}^{n} - \frac{\Delta t}{\phi_{\ell}|B_{\ell}|} \sum_{k \neq \ell} \max \left(f(S_{\ell}^{n+1}) \sum_{\Gamma_{k\ell}} v_{ij},
- f(S_{k}^{n+1}) \sum_{\Gamma_{k\ell}} v_{ij} \right).
\]

This gives an **upwind scheme** on the coarse scale.
Coarse-grid discretisation: numerical diffusion

Layer 37 from SPE10
Coarse-grid discretisation: matrix structure

Flow-adapted grid

Cartesian grid

Coarse-grid discretisation: numerical errors

Average errors over all layers of the two formations in SPE10
Average errors over all layers of the two formations in SPE10
Dynamical adaption

- Inaccurate representation of strong displacement fronts can lead to significant errors.
- **Idea:** Refine dynamically around strong fronts.
- For a Buckley–Leverett displacement:
 - Unswept region ahead of the displacement: coarse grid.
 - Swept region behind the front: coarse grid.
 - At the front: fine or intermediate grid.
Example: layers from SPE10

After injection of 0.1 PVI

adaptive coarse fine grid

Layer 22 from SPE10
Example: layers from SPE10

After injection of 0.5 PVI

adaptive coarse fine grid

Layer 22 from SPE10
Example: layers from SPE10

Layer 37 from SPE10