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What is multiscale simulation?
Definition

Generally:

Methods that incorporate fine-scale information into a set of coarse scale
equations in a way that is consistent with the local property of the
differential operator

Herein:

Multiscale pressure solver (fine and coarse grid)

+ Transport solver (on fine, intermediate, or coarse grid)

= Multiscale simulation of models with higher detail
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What is multiscale simulation?
Key ideas

Use of sparsity (multiscale) structure

I effects resolved on different scales

I small changes from one step to next

I small changes from one simulation to next

Multiscale idea

SPE10, Layer 36

I Upscaling and downscaling in one
step

I Pressure on coarse grid

I Velocity on fine grid

Incorporate impact of subgrid
heterogeneity in approximation spaces

Advantages: utilize more geological data,
more accurate solutions, geometrical
flexibility
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What is multiscale simulation?
Graphical illustration

Coarse partitioning: Flow field with subresolution:

⇓ ⇑
Local flow problems:

⇒

Flow solutions → basis functions:
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Multiscale simulation
Prerequisites for real-field applications

More efficient than standard solvers:

I easy to parallelise,

I less memory requirements than fine-grid solvers.

Ability to handle industry-standard grids:

I (highly) skewed and degenerate grid cells,

I non-matching cells,

I unstructured connectivities.

Compatible with current solvers:

I can be built on top of commercial/inhouse solvers,

I must be able to use existing linear solvers.
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Discretization of the fine-grid problem
Complex reservoir geometries

Challenges:

I Industry-standard grids are often nonconforming and contain skewed and
degenerate cells

I There is a trend towards unstructured grids

I Standard discretization methods produce wrong results on skewed and
rough cells

I The combination of high aspect and anisotropy ratios can give very large
condition numbers

Corner point: Tetrahedral: PEBI:
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Discretization of the fine-grid problem
Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:

800× 800× 0.25 m
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Discretization of the fine-grid problem
General family of conservative methods

Basic formulation

ui = T i(eipi − πi), ei = (1, . . . , 1)T

pi – the pressure at the center of cell i

ui – the vector of outward face fluxes

πi – the vector of face pressures

Ti – the one-sided transmissibilities

pi πk

Ak
~cik

~nk

Special cases:

I The standard two-point method: T ii = ~ni ·K~ci/|~ci|2

I Multipoint flux-approximation methods (MPFA)

I Mixed finite-element methods

I Mimetic methods

8 / 30



Discretization of the fine-grid problem
Linear system: mixed hybrid form

24 B C D
CT 0 0
DT 0 0

3524 v
−p
π

35 =

240
g
0

35 , vij

λij

pi pj

B defines an inner product. The matrix blocks read,

bij =

Z
Ω

ψi
`
λK
´−1

ψj dx, cik =

Z
Ω

φk∇ · ψi dx, dik =

Z
∂Ω

|ψi · nk| dx

Positive-definite system obtained by a Schur-complement reduction`
DTB−1D − FTL−1F

´
π = FTL−1g,

F = CTB−1D, L = CTB−1C.

Reconstruct cell pressures and fluxes by back-substition,

Lp = q + FTπ, Bv = Cp−Dπ.
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Discretization of the fine-grid problem
Herein: a mimetic method, Brezzi et al., 2005

Mu = (ep− π) ←→ u = T (ep− π)

Requiring exact solution of linear flow (p = xTa+ k):

MNK = C NK = TC

C – vectors from cell to face centroids. N : area-weighted normal vectors

Family of schemes (given by explicit formulas):

M =
1

|Ωi|
CK−1CT +Q⊥N

T
SMQ

⊥
N

T =
1

|Ωi|
NKNT +Q⊥C

T
SQ⊥C

Q⊥N is an orthonormal basis for the null space of NT, and SM is any positive definite matrix. Herein, we use
null-space projection

P
⊥
N = Q

⊥
N SM Q

⊥
N = I −QN QN

T
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Multiscale mixed finite elements
Mixed formulation for incompressible flow

Find (v, p) ∈ H1,div
0 × L2 such thatZ

(λK)−1u · v dx−
Z
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,Z
`∇ · v dx =

Z
q` dx, ∀` ∈ L2.

Standard MFE method

I Seek solution in Vh ×Wh ⊂ H1,div
0 × L2

I Approximation spaces: piecewise polynomials
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(λK)−1u · v dx−
Z
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,Z
`∇ · v dx =

Z
q` dx, ∀` ∈ L2.

Multiscale MFE method

I Seek solution in VH,h ×WH,h ⊂ H1,div
0 × L2

I Approximation spaces: local numerical solutions
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Multiscale mixed finite elements
Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and Ums

such that:

I For each coarse block Ti, there is a basis function φi ∈ V .

I For each coarse edge Γij , there is a basis function ψij ∈ Ums.

12 / 30



Multiscale mixed finite elements
Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and Ums

such that:

I For each coarse block Ti, there is a basis function φi ∈ V .

I For each coarse edge Γij , there is a basis function ψij ∈ Ums.

12 / 30



Multiscale mixed finite elements
Grids and basis functions in general

Fine grid with petrophysical parameters cell

Ti

Construct a coarse grid, and choose the discretisation spaces V and Ums

such that:

I For each coarse block Ti, there is a basis function φi ∈ V .

I For each coarse edge Γij , there is a basis function ψij ∈ Ums.

12 / 30



Multiscale mixed finite elements
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Multiscale mixed finite elements
Basis functions

Decomposition:

I p(x, y) =
∑

i piφi(x, y) – sum over all coarse blocks

I v(x, y) =
∑

ij vijψij(x, y) – sum over all block faces

Basis φi for pressure:

φi =

{
1 in Ti,

0 otherwise.

Basis ψij for velocity:

homogeneous (RT0) heterogeneous
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Multiscale mixed finite elements
Local flow problems

Velocity basis function ψij solves a local
system of equations in Ωij :

~ψij = −µ−1K∇ϕij

∇ · ~ψij =


wi(~x), if ~x ∈ Ωi,

−wj(~x), if ~x ∈ Ωj ,

0, otherwise.

with no-flow conditions on ∂Ωij

Source term: wi ∝ trace (Ki) drives a unit
flow through Γij .

If there is a sink/source in Ti, then wi ∝ qi.

Ωi Ωj

Ωij

Homogeneous medium Heterogeneous medium
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Multiscale mixed finite elements
Algebraic formulation

Split the basis functions, ψij = ψHij −ψHji , to decouple across coarse faces.

Hybrid basis functions ψHij as columns in a matrix Ψ

Coarse-scale hybrid mixed system264 ΨTBΨ ΨTCI ΨTDJ
ITCTΨ 0 0

J TDTΨ 0 0

375
24 vc

−pc

λc

35 =

24 0

gc

0

35
Ψ – matrix with basis functions
I – prolongation from blocks to cells
J – prolongation from block faces to cell faces

Reconstruction of fine-scale velocity vf = Ψvc

(Pressure bases may also have fine-scale
structure if necessary)

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 588
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Multiscale mixed finite elements
Multiscale method inherits properties of fine-scale solver

Single-phase flow, homogeneous K, linear pressure drop

Grid TPFA MFDM
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Generation of coarse grids
Workflow with automated upgridding in 3D (here for logically Cartesian grids)

1) Coarsen grid by uniform partitioning in
index space for corner-point grids

44 927 cells
↓
148 blocks

9 different coarse blocks

3) Compute basis functions

∇·ψij =

(
wi(x),

−wj(x),

for all pairs of blocks

2) Detect all adjacent blocks

4) Block in coarse grid: component for
building global solution
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Generation of coarse grids
Automated generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid, the
MsMFE method can be formulated on any coarse grid in which the
coarse blocks consist of a connected collection of fine-grid cells
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Generation of coarse grids
Simple idea: follow geological structures for improved accuracy!

A depositional bed

Eroded layers gives a large number of degenerate and inactive cells.
Relative error in saturation at 0.5PVI:

Coarse grid Isotropic Anisotropic Heterogeneous

Physical 0.1339 0.2743 0.2000
Logical 0.0604 0.1381 0.1415

Constrained 0.0573 0.1479 0.0993

physical logical constrained
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Generation of coarse grids
A fully robust method will require post-processing
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Generation of coarse grids
Simple guidelines for choosing good coarse grids

1 Minimize bidirectional flow over
interfaces:

I Avoid unnecessary irregularity
(Γ6,7 and Γ3,8)

I Avoid single neighbors (Ω4)
I Ensure that there are faces

transverse to flow direction (Ω5)

2 Blocks and faces should follow
geological layers (Ω3 and Ω8)

3 Blocks should adapt to flow obstacles
whenever possible

4 For efficiency: minimize the number of
connections

5 Avoid having too many small blocks

1 2 3
4

5

6 7 8

Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  

1 3
2

5

6 7 8

Flow direction  Flow direction  
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Compressible black-oil models
Fine-grid and coarse-grid formulation

Semi-discretized and linearized pressure equation:

cν−1
pnν − pn−1

∆t
+∇ · ~unν − ζnν−1~u

n
ν−1 ·K−1~unν = q

Hybrid system:24 B C D

CT − V T
ν−1 P ν−1 0

DT 0 0

3524 uν
−pν
πν

35 =

24 0
P ν−1p

n−1 + q
0

35

Coarse-grid formulation:24 ΨTBΨ ΨTCI ΨTDJ
ΨT(C − V )I −DλΦ

TPI ITPI 0

J TDTΨ 0 0

3524 u
−p
π

35 =

24 0

ITPpnf
0

35
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Compressible black-oil models
Example 1: tracer transport in ideal gas (Lunati&Jenny 2006)

constant K lognormal K

p(0, t) = 1 bar, p(x, 0) = 10 bar, coarse grid: 5 blocks, fine grid: 100 cells
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Compressible black-oil models
Residuals by domain decomposition

Residual equation:»
B C

CT P

– »
ums + ûν+1

pms + p̂ν+1

–
=

»
0

Ppn + V uν

–
Localization: û =

P
i ûi, p̂ =

P
i p̂i

I zero right-hand-side in bΩi \ Ωi

I zero flux BCs on ∂bΩi
Without overlap: With overlap:
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Compressible black-oil models
Example 2: primary production

I Shallow-marine reservoir (realization
from SAIGUP)

I Model size: 40× 120× 20

I Initially filled with gas, 200 bar

I Single producer, bhp=150 bar

I Multiscale solution for different
tolerences compared with fine-scale
reference solution.

Rate in well perforation (m3/day)

100 200 400 600 800 1000
535

540

545

550

555

560

 

 

Reference

5⋅10−2

5⋅10−4

5⋅10−6

5⋅10−7
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Transport solvers
Multiscale methods need efficient transport solvers

I Streamlines, time-of-flight, etc:
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over nonlinear iterations

I Amalgamation of cells
I flow-adapted grids
I simple and flexible coarsening
I adaptive gridding schemes
I efficient model reduction

Flow pattern (CO2 injection):

Connections across faults:
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Transport solvers
Multiscale methods need efficient transport solvers

I Streamlines, time-of-flight, etc:
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over nonlinear iterations

I Amalgamation of cells
I flow-adapted grids
I simple and flexible coarsening
I adaptive gridding schemes
I efficient model reduction

Local iterations:

Johansen formation: 27 437 active cells

Global vs local Newton–Raphson solver

∆t global local

days time iter time (sec) iter

125 2.26 12.69 0.044 0.93

250 2.35 12.62 0.047 1.10

500 2.38 13.25 0.042 1.41

1000 2.50 13.50 0.042 1.99

26 / 30



Transport solvers
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Transport solvers
Multiscale methods need efficient transport solvers
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Different partitioning:

Adapting to geology
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Transport solvers
Multiscale methods need efficient transport solvers

I Streamlines, time-of-flight, etc:
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over nonlinear iterations

I Amalgamation of cells
I flow-adapted grids
I simple and flexible coarsening
I adaptive gridding schemes
I efficient model reduction

Model reduction by coarsening:

fine grid
11 864 cells

flow-based
127 blocks

METIS
175 blocks
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Usage and outlook
For what purposes are multiscale methods useful?

I As robust upscaling methods?

I As alternative to upscaling and fine-scale solution?

I To provide flow simulation earlier in the modelling loop?

I To get 90% of the answer in 10% of the time?

I Fit-for-purpose solvers in workflows for ranking, history matching,
planning, optimization, . . .
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Usage and outlook
Success stories and unreaped potential

I More flexible wrt grids than standard
upscaling methods: automatic coarsening

I Reuse of computations, key to computational
efficiency

I Natural (elliptic) parallelism:
I multicore and heterogeneous

computing

I Fine-scale velocity −→ different grid for flow
and transport

I Method for model reduction:
I adjoint simulations −→ gradients
I ensemble simulations with

representative basis functions

I Improved model fidelity:
I subscale resolution
I multiphysics applications
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Inhouse code from 2005:

multiscale: 2 min and 20 sec
multigrid: 8 min and 36 sec

Fully unstructured Matlab/C code from 2010:

mimetic : 5–6 min
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Reservoir geometry from a Norwegian Sea field
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Forward simulations:
44 927 cells, 20 time steps, < 5 sec in Matlab
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and transport
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History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale:
7 forward simulations, 6 inversions

CPU-time (wall clock)
Solver Total Pres. Transp.
Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min
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Fracture corridors
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I Fine-scale velocity −→ different grid for flow
and transport

I Method for model reduction:
I adjoint simulations −→ gradients
I ensemble simulations with

representative basis functions

I Improved model fidelity:
I subscale resolution
I multiphysics applications

Stokes–Brinkmann:
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Usage and outlook
Resolved and unresolved questions

Capabilities:

X Two-phase flow

X Cartesian / unstructured grids

X Realistic flow physics ⇒ iterations

I Correction functions + smoothing
I Residual formulation + domain decomposition

X Pointwise accuracy ⇒ iterations

Not yet there:

I Compressible three-phase black-oil + non-Cartesian grids

I Parallelization

I Fully implicit formulation

I Compositional, thermal, . . .
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Usage and outlook
Resolved and unresolved questions

Other issues:

I How should unstructured grids be coarsened?

I Need for global information or iterative procedures?

I A posteriori error analysis (resolution or fine-scale junk)?

I More than two levels in hierarchical grid?

I How to include models from finer scales?
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Current and future research at SINTEF
Three main directions

   

Fl
ow

 P
hy

sic
s

Geological representation

Coarse Detailed

Simple

Complex

“GeoScale”
technology

Commercial 
simulators

Fast reservoir
simulator

Super­fast 

lightweight simulation

• Split fine / coarse scales
• Very fast
• Near­well modeling

Large­scale 
simulation

• Parallelization
• Multimillion   

reservoir cells• Support for time­critical 
processes

• Optimal model reduction for 
tradeoff between time and 
accuracy
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