Multiscale Methods for Flow in Porous Media: An Overview of Research at SINTEF

Knut-Andreas Lie, SINTEF, Norway

Houston, February 24, 2011

Generally:

Methods that incorporate fine-scale information into a set of coarse scale equations in a way that is consistent with the local property of the differential operator

Herein:

Multiscale pressure solver (fine and coarse grid)

- + Transport solver (on fine, intermediate, or coarse grid)
- = Multiscale simulation of models with higher detail

What is multiscale simulation? Key ideas

Use of sparsity (multiscale) structure

- effects resolved on different scales
- small changes from one step to next
- small changes from one simulation to next

Multiscale idea

SPE10, Layer 36

- Upscaling and downscaling in one step
- Pressure on coarse grid
- Velocity on fine grid

Incorporate impact of subgrid heterogeneity in approximation spaces

Advantages: utilize more geological data, more accurate solutions, geometrical flexibility

What is multiscale simulation? Graphical illustration

Coarse partitioning:

 \Downarrow

Flow field with subresolution:

Local flow problems:

Flow solutions \rightarrow basis functions:

Prerequisites for real-field applications

More efficient than standard solvers:

- easy to parallelise,
- less memory requirements than fine-grid solvers.

Ability to handle industry-standard grids:

- (highly) skewed and degenerate grid cells,
- non-matching cells,
- unstructured connectivities.

Compatible with current solvers:

- can be built on top of commercial/inhouse solvers,
- must be able to use existing linear solvers.

Complex reservoir geometries

Challenges:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells
- The combination of high aspect and anisotropy ratios can give very large condition numbers

Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:

 $800\times800\times0.25~{\rm m}$

General family of conservative methods

Basic formulation

$$\boldsymbol{u}_i = \boldsymbol{T}_i (\boldsymbol{e}_i p_i - \boldsymbol{\pi}_i), \qquad \boldsymbol{e}_i = (1, \dots, 1)^{\mathsf{T}}$$

 p_i – the pressure at the center of cell i u_i – the vector of outward face fluxes π_i – the vector of face pressures T_i – the one-sided transmissibilities

Special cases:

- The standard two-point method: $T_{ii} = \vec{n}_i \cdot K \vec{c}_i / |\vec{c}_i|^2$
- Multipoint flux-approximation methods (MPFA)
- Mixed finite-element methods
- Mimetic methods

Linear system: mixed hybrid form

$$\begin{bmatrix} B & C & D \\ C^T & 0 & 0 \\ D^T & 0 & 0 \end{bmatrix} \begin{bmatrix} v \\ -p \\ \pi \end{bmatrix} = \begin{bmatrix} 0 \\ g \\ 0 \end{bmatrix},$$

B defines an inner product. The matrix blocks read,

$$b_{ij} = \int_{\Omega} \psi_i (\lambda K)^{-1} \psi_j \, dx, \quad c_{ik} = \int_{\Omega} \phi_k \nabla \cdot \psi_i \, dx, \quad d_{ik} = \int_{\partial \Omega} |\psi_i \cdot n_k| \, dx$$

Linear system: mixed hybrid form

$$\begin{bmatrix} B & C & D \\ C^T & 0 & 0 \\ D^T & 0 & 0 \end{bmatrix} \begin{bmatrix} v \\ -p \\ \pi \end{bmatrix} = \begin{bmatrix} 0 \\ g \\ 0 \end{bmatrix},$$

B defines an inner product. The matrix blocks read,

$$b_{ij} = \int_{\Omega} \psi_i (\lambda K)^{-1} \psi_j \, dx, \quad c_{ik} = \int_{\Omega} \phi_k \nabla \cdot \psi_i \, dx, \quad d_{ik} = \int_{\partial \Omega} |\psi_i \cdot n_k| \, dx$$

Positive-definite system obtained by a Schur-complement reduction

$$(D^T B^{-1} D - F^T L^{-1} F) \pi = F^T L^{-1} g,$$

 $F = C^T B^{-1} D, \quad L = C^T B^{-1} C.$

Reconstruct cell pressures and fluxes by back-substition,

$$Lp = q + F^T \pi, \qquad Bv = Cp - D\pi.$$

Herein: a mimetic method, Brezzi et al., 2005

$$Mu = (ep - \pi) \quad \longleftrightarrow \quad u = T(ep - \pi)$$

Requiring exact solution of linear flow $(p = x^{T}a + k)$:

$$MNK = C$$
 $NK = TC$

C - vectors from cell to face centroids. N: area-weighted normal vectors

Family of schemes (given by explicit formulas):

$$egin{aligned} M &= rac{1}{|\Omega_i|} oldsymbol{C} oldsymbol{K}^{-1} oldsymbol{C}^{\mathsf{T}} + oldsymbol{Q}_N^{\perp}^{\mathsf{T}} oldsymbol{S}_M oldsymbol{Q}_N^{\perp} \ T &= rac{1}{|\Omega_i|} oldsymbol{N} oldsymbol{K} oldsymbol{N}^{\mathsf{T}} + oldsymbol{Q}_C^{\perp}^{\mathsf{T}} oldsymbol{S} oldsymbol{Q}_C^{\perp} \end{aligned}$$

 Q_N^\perp is an orthonormal basis for the null space of N^\top , and S_M is any positive definite matrix. Herein, we use null-space projection

$$\boldsymbol{P}_{N}^{\perp} = \boldsymbol{Q}_{N}^{\perp} \boldsymbol{S}_{M} \boldsymbol{Q}_{N}^{\perp} = \boldsymbol{I} - \boldsymbol{Q}_{N} \boldsymbol{Q}_{N}^{\top}$$

Mixed formulation for incompressible flow

Find $(v,p)\in H^{1,{\rm div}}_0\times L^2$ such that

$$\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \text{div}},$$
$$\int \ell \nabla \cdot v \, dx = \int q\ell \, dx, \quad \forall \ell \in L^2.$$

Standard MFE method

- Seek solution in $\mathbf{V}_h \times W_h \subset H_0^{1, \mathsf{div}} \times L^2$
- Approximation spaces: piecewise polynomials

Mixed formulation for incompressible flow

Find $(v, p) \in H_0^{1, \operatorname{div}} \times L^2$ such that $\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \operatorname{div}},$ $\int \ell \nabla \cdot v \, dx = \int q \ell \, dx, \quad \forall \ell \in L^2.$

Multiscale MFE method

- Seek solution in $\mathbf{V}_{H,h} \times W_{H,h} \subset H_0^{1,\operatorname{div}} \times L^2$
- Approximation spaces: local numerical solutions

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and U^{ms} such that:

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

For each coarse block T_i , there is a basis function $\phi_i \in V$.

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

Basis functions

Decomposition:

- ▶ $p(x,y) = \sum_{i} p_i \phi_i(x,y)$ − sum over all coarse blocks
- ► $v(x,y) = \sum_{ij} v_{ij} \psi_{ij}(x,y)$ sum over all block faces

Basis ψ_{ij} for velocity:

Local flow problems

Velocity basis function ψ_{ij} solves a local system of equations in Ω_{ij} :

$$\begin{split} \vec{\psi}_{ij} &= -\mu^{-1} \mathbf{K} \nabla \varphi_{ij} \\ \nabla \cdot \vec{\psi}_{ij} &= \begin{cases} w_i(\vec{x}), & \text{if } \vec{x} \in \Omega_i, \\ -w_j(\vec{x}), & \text{if } \vec{x} \in \Omega_j, \\ 0, & \text{otherwise.} \end{cases}$$

with no-flow conditions on $\partial \Omega_{ij}$

Source term: $w_i \propto \text{trace}(K_i)$ drives a unit flow through Γ_{ij} .

If there is a sink/source in T_i , then $w_i \propto q_i$.

Multiscale mixed finite elements Algebraic formulation

Split the basis functions, $\psi_{ij} = \psi_{ij}^H - \psi_{ji}^H$, to decouple across coarse faces. Hybrid basis functions ψ_{ij}^H as columns in a matrix Ψ

Coarse-scale hybrid mixed system

$$egin{bmatrix} \Psi^{\mathsf{T}}B\Psi & \Psi^{\mathsf{T}}C\mathcal{I} & \Psi^{\mathsf{T}}D\mathcal{J} \ \mathcal{I}^{\mathsf{T}}C^{\mathsf{T}}\Psi & 0 & 0 \ \mathcal{J}^{\mathsf{T}}D^{\mathsf{T}}\Psi & 0 & 0 \end{bmatrix} egin{bmatrix} v^c \ -p^c \ \lambda^c \end{bmatrix} = egin{bmatrix} 0 \ g^c \ 0 \end{bmatrix}$$

 Ψ – matrix with basis functions

- $\boldsymbol{\mathcal{I}}$ prolongation from blocks to cells
- ${\boldsymbol{\mathcal{J}}}$ prolongation from block faces to cell faces

Reconstruction of fine-scale velocity $v^f = \Psi v^c$ (Pressure bases may also have fine-scale structure if necessary)

Multiscale method inherits properties of fine-scale solver

Single-phase flow, homogeneous K, linear pressure drop Grid TPFA MFDM MsMFEM+TPFA MsMFEM + MFDM

Workflow with automated upgridding in 3D (here for logically Cartesian grids)

1) Coarsen grid by uniform partitioning in index space for corner-point grids

3) Compute basis functions

2) Detect all adjacent blocks

4) Block in coarse grid: component for building global solution

Simple idea: follow geological structures for improved accuracy!

A depositional bed

Eroded layers gives a large number of degenerate and inactive cells. Relative error in saturation at 0.5 PVI:

Coarse grid	Isotropic	Anisotropic	Heterogeneous
Physical	0.1339	0.2743	0.2000
Logical	0.0604	0.1381	0.1415
Constrained	0.0573	0.1479	0.0993

A fully robust method will require post-processing

100 realizations: fault throw normally distributed with standard deviation equal 1/5 of the total reservoir height. Each realization has a new permeability field

Simple guidelines for choosing good coarse grids

- Minimize bidirectional flow over interfaces:
 - Avoid unnecessary irregularity (Γ_{6,7} and Γ_{3,8})
 - Avoid single neighbors (Ω₄)
 - Ensure that there are faces transverse to flow direction (Ω₅)
- Blocks and faces should follow geological layers (Ω₃ and Ω₈)
- Blocks should adapt to flow obstacles whenever possible
- For efficiency: minimize the number of connections
- Avoid having too many small blocks

Fine-grid and coarse-grid formulation

Semi-discretized and linearized pressure equation:

$$c_{\nu-1} \frac{p_{\nu}^n - p^{n-1}}{\Delta t} + \nabla \cdot \vec{u}_{\nu}^n - \zeta_{\nu-1}^n \vec{u}_{\nu-1}^n \cdot \mathbf{K}^{-1} \vec{u}_{\nu}^n = q$$

Hybrid system:

Coarse-grid formulation:

$$egin{bmatrix} \Psi^{\mathsf{T}}B\Psi & \Psi^{\mathsf{T}}C\mathcal{I} & \Psi^{\mathsf{T}}D\mathcal{J} \ \Psi^{\mathsf{T}}(C-V)\mathcal{I} - D_{\lambda}\Phi^{\mathsf{T}}P\mathcal{I} & \mathcal{I}^{\mathsf{T}}P\mathcal{I} & 0 \ \mathcal{J}^{\mathsf{T}}D^{\mathsf{T}}\Psi & 0 & 0 \end{bmatrix} egin{bmatrix} u \ -p \ \pi \end{bmatrix} = egin{bmatrix} 0 \ \mathcal{I}^{\mathsf{T}}Pp_{f}^{n} \ 0 \end{bmatrix}$$

Example 1: tracer transport in ideal gas (Lunati&Jenny 2006)

p(0,t) = 1 bar, p(x,0) = 10 bar, coarse grid: 5 blocks, fine grid: 100 cells

Residuals by domain decomposition

Residual equation:

$$\begin{bmatrix} \boldsymbol{B} & \boldsymbol{C} \\ \boldsymbol{C}^{\mathsf{T}} & \boldsymbol{P} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_{\mathrm{ms}} + \hat{\boldsymbol{u}}^{\nu+1} \\ \boldsymbol{p}_{\mathrm{ms}} + \hat{\boldsymbol{p}}^{\nu+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{P} \boldsymbol{p}^n + \boldsymbol{V} \boldsymbol{u}^{\nu} \end{bmatrix}$$

Localization: $\hat{u} = \sum_i \hat{u}_i$, $\hat{p} = \sum_i \hat{p}_i$

- ▶ zero right-hand-side in $\widehat{\Omega}_i \setminus \Omega_i$
- zero flux BCs on $\partial \widehat{\Omega}_i$

Without overlap:

With overlap:

Example 2: primary production

- Shallow-marine reservoir (realization from SAIGUP)
- Model size: $40 \times 120 \times 20$
- Initially filled with gas, 200 bar
- Single producer, bhp=150 bar
- Multiscale solution for different tolerences compared with fine-scale reference solution.

Multiscale methods need efficient transport solvers

- Streamlines, time-of-flight, etc:
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient

Connections across faults:

Multiscale methods need efficient transport solvers

Streamlines, time-of-flight, etc:

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Time-of-flight (timelines):

Flooded volumes (stationary tracer):

Multiscale methods need efficient transport solvers

Streamlines, time-of-flight, etc:

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Optimal ordering

- same assumptions as for streamlines
- utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
- local control over nonlinear iterations

Topological sorting

Multiscale methods need efficient transport solvers

Streamlines, time-of-flight, etc:

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Optimal ordering

- same assumptions as for streamlines
- utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
- local control over nonlinear iterations

Local iterations:

Johansen formation: 27437 active cells

Global vs local Newton-Raphson solver

global		local	
time	iter	time (sec)	iter
2.26	12.69	0.044	0.93
2.35	12.62	0.047	1.10
2.38	13.25	0.042	1.41
2.50	13.50	0.042	1.99
	glo time 2.26 2.35 2.38 2.50	global time iter 2.26 12.69 2.35 12.62 2.38 13.25 2.50 13.50	globle local time iter local 2.26 12.69 0.044 2.35 12.62 0.047 2.38 13.25 0.042 2.50 13.50 0.042

Multiscale methods need efficient transport solvers

Streamlines, time-of-flight, etc:

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over nonlinear iterations

Amalgamation of cells

- flow-adapted grids
- simple and flexible coarsening
- adaptive gridding schemes
- efficient model reduction

Cartesian grid:

Triangular grids:

Multiscale methods need efficient transport solvers

- Streamlines, time-of-flight, etc:
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over nonlinear iterations

Amalgamation of cells

- flow-adapted grids
- simple and flexible coarsening
- adaptive gridding schemes
- efficient model reduction

Different partitioning:

Adapting to geology

Multiscale methods need efficient transport solvers

- Streamlines, time-of-flight, etc:
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over nonlinear iterations
- Amalgamation of cells
 - flow-adapted grids
 - simple and flexible coarsening
 - adaptive gridding schemes
 - efficient model reduction

Dynamic adaption

Multiscale methods need efficient transport solvers

- Streamlines, time-of-flight, etc:
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over nonlinear iterations

Amalgamation of cells

- flow-adapted grids
- simple and flexible coarsening
- adaptive gridding schemes
- efficient model reduction

26 / 30

Multiscale methods need efficient transport solvers

- Streamlines, time-of-flight, etc:
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over nonlinear iterations

Amalgamation of cells

- flow-adapted grids
- simple and flexible coarsening
- adaptive gridding schemes
- efficient model reduction

- As robust upscaling methods?
- As alternative to upscaling and fine-scale solution?
- To provide flow simulation earlier in the modelling loop?
- ► To get 90% of the answer in 10% of the time?
- Fit-for-purpose solvers in workflows for ranking, history matching, planning, optimization, ...

Usage and outlook Success stories and unreaped potential

More flexible wrt grids than standard upscaling methods: automatic coarsening

Usage and outlook Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency

Operations vs. upscaling factor:

SPE10: 1.1 mill cells

Inhouse code from 2005: multiscale: 2 min and 20 sec multigrid: 8 min and 36 sec Fully unstructured Matlab/C code from 2010: mimetic: 5–6 min

Usage and outlook Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport

Pressure grid:

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing
- \blacktriangleright Fine-scale velocity \longrightarrow different grid for flow and transport
- Method for model reduction:
 - adjoint simulations gradients
 - ensemble simulations with representative basis functions

Water-flood optimization:

Reservoir geometry from a Norwegian Sea field

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing
- \blacktriangleright Fine-scale velocity \longrightarrow different grid for flow and transport
- Method for model reduction:
 - adjoint simulations —> gradients
 - ensemble simulations with representative basis functions

History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale: 7 forward simulations, 6 inversions

	CPU-time (wall clock)			
Solver	Total	Pres.	Transp.	
Multigrid	39 min	30 min	5 min	
Multiscale	17 min	7 min	6 min	

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport
- Method for model reduction:
 - adjoint simulations —> gradients
 - ensemble simulations with representative basis functions
- Improved model fidelity:
 - subscale resolution
 - multiphysics applications

Fracture corridors

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - multicore and heterogeneous computing
- \blacktriangleright Fine-scale velocity \longrightarrow different grid for flow and transport
- Method for model reduction:
 - adjoint simulations —> gradients
 - ensemble simulations with representative basis functions
- Improved model fidelity:
 - subscale resolution
 - multiphysics applications

Stokes-Brinkmann:

Usage and outlook Resolved and unresolved questions

Capabilities:

- ✓ Two-phase flow
- $\checkmark~$ Cartesian / unstructured grids
- $\checkmark~$ Realistic flow physics \Rightarrow iterations
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- $\checkmark \ \ \mathsf{Pointwise} \ \mathsf{accuracy} \Rightarrow \mathsf{iterations}$

Usage and outlook Resolved and unresolved questions

Capabilities:

- ✓ Two-phase flow
- $\checkmark~$ Cartesian / unstructured grids
- $\checkmark \ \ {\sf Realistic flow physics} \Rightarrow {\sf iterations}$
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- $\checkmark \ \ \mathsf{Pointwise} \ \mathsf{accuracy} \Rightarrow \mathsf{iterations}$

Not yet there:

- Compressible three-phase black-oil + non-Cartesian grids
- Parallelization
- Fully implicit formulation
- Compositional, thermal,

Other issues:

- How should unstructured grids be coarsened?
- Need for global information or iterative procedures?
- ► A posteriori error analysis (resolution or fine-scale junk)?
- More than two levels in hierarchical grid?
- How to include models from finer scales?

Current and future research at SINTEF

Three main directions

Geological representation