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What is multiscale simulation?

Definition

Generally:

Methods that incorporate fine-scale information into a set of coarse scale
equations in a way that is consistent with the local property of the
differential operator

Herein:
Multiscale pressure solver (fine and coarse grid)
+ Transport solver (on fine, intermediate, or coarse grid)

= Multiscale simulation of models with higher detail
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What is multiscale simulation?

Key ideas

Use of sparsity (multiscale) structure

» effects resolved on different scales

» small changes from one step to next

» small changes from one simulation to next

Multiscale idea

SPE10, Layer 36

» Upscaling and downscaling in one
step

» Pressure on coarse grid

» Velocity on fine grid
Incorporate impact of subgrid
heterogeneity in approximation spaces

Advantages: utilize more geological data,
more accurate solutions, geometrical
flexibility
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What is multiscale simulation?

Graphical illustration

Coarse partitioning:

:

__‘!-_l . 0
B = T
4

Local flow problems:

=L
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Multiscale simulation

Prerequisites for real-field applications

More efficient than standard solvers:
> easy to parallelise,

» less memory requirements than fine-grid solvers.

Ability to handle industry-standard grids:
» (highly) skewed and degenerate grid cells,
» non-matching cells,

» unstructured connectivities.

Compatible with current solvers:

» can be built on top of commercial/inhouse solvers,

» must be able to use existing linear solvers.




Discretization of the fine-grid problem

Complex reservoir geometries

Challenges:

» Industry-standard grids are often nonconforming and contain skewed and
degenerate cells

» There is a trend towards unstructured grids

» Standard discretization methods produce wrong results on skewed and
rough cells

» The combination of high aspect and anisotropy ratios can give very large
condition numbers

PEBI:

Corner point:
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Discretization of the fine-grid problem

Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

- \/
O s

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:
- P

800 x 800 x 0.25 m
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Discretization of the fine-grid problem

General family of conservative methods

Basic formulation
ui:Ti(eipi—ﬂ',-), e, = (1,...,1)T

p; — the pressure at the center of cell ¢
u; — the vector of outward face fluxes

7; — the vector of face pressures

T; — the one-sided transmissibilities

Special cases:
» The standard two-point method: T';; = 7i; -KE}/|E}|2
» Multipoint flux-approximation methods (MPFA)
» Mixed finite-element methods

» Mimetic methods



Discretization of the fine-grid problem

Linear system: mixed hybrid form

B C D v 0 "
cT o ol |-p|l =g, pi L7 p,
DT 0 of |~ 0

B defines an inner product. The matrix blocks read,

bz]:/¢Z(AK)71w] d.T, sz/(]ﬁkvwldm, dsz/ |’¢1nk|d$
Q Q oQ



Discretization of the fine-grid problem

Linear system: mixed hybrid form

B C D v 0 "
cT o ol |-p|l =g, pi L7 p,
DT 0 of |~ 0

B defines an inner product. The matrix blocks read,

sz:/¢Z(AK)71w] d:E, sz/(]ﬁkvwldm, dsz/ |’¢1nk|d$
Q Q oQ

Positive-definite system obtained by a Schur-complement reduction
(D"BT'D-F'L'F)r=F"L g,
F=Cc'B™'D, L=cTB'C.
Reconstruct cell pressures and fluxes by back-substition,

Lp=gq+ F'r, Bv =Cp— D.



Discretization of the fine-grid problem

Herein: a mimetic method, Brezzi et al., 2005

Mu=(ep—7w) «— u=T(ep—m)

Requiring exact solution of linear flow (p = 2"a + k):
MNK =C NK =TC

C' — vectors from cell to face centroids. IN: area-weighted normal vectors
Family of schemes (given by explicit formulas):
_ 1 —1 ~T 1T 1
3
1

T— —
€]

NKN"+Q5"'sQ¢

is an orthonormal basis for the null space o ,an is any positive definite matrix. Herein, we use
~ th | basis for the null fNT, and Sy y positive definite matrix. H
null-space projection
L L L T
PNy =QnNSMQN =1-QnQnN
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Multiscale mixed finite elements

Mixed formulation for incompressible flow
Find (v,p) € Hy®™ x L? such that
/()\K)_lu~vdx—/pv-udm=0, Vu € Hy™,
/év-vd:c = /qzdx, Ve e L2
Standard MFE method

> Seek solution in Vi, x Wy, € Hy* ™™ x L?

» Approximation spaces: piecewise polynomials




Multiscale mixed finite elements

Mixed formulation for incompressible flow
Find (v,p) € Hy™ x L? such that
/()\K)fluwclcv—/1)V~udav:07 Yu e Hy™,
/Kv-vdx = /qzdx, Ve e L2,
Multiscale MFE method

> Seek solution in Vg x Wej, € Hy®™ x L2

» Approximation spaces: local numerical solutions




Multiscale mixed finite elements

Grids and basis functions in general

Fine grid with petrophysical parameters cell
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Multiscale mixed finite elements

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V' and U™
such that:

» For each coarse block T3, there is a basis function ¢; € V.

» For each coarse edge I';;, there is a basis function v;; € U™”.
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Multiscale mixed finite elements

Basis functions

Decomposition:

> p(x,y) = >, pidi(z,y) — sum over all coarse blocks
> v(z,y) = >, vijYij(x,y)  —sum over all block faces
Basis ¢; for pressure: Basis ¢;; for velocity:
1 inT, '
= {0 otherwise. / '

homogeneous (RTO0) heterogeneous

13/30



Multiscale mixed finite elements

Local flow problems

Velocity basis function 1);; solves a local
system of equations in {);;:

bij = —p 'KV
wl(a':'), if £ €€,
VwU: 7’(1)]'(56), |ff€ Qj,
0, otherwise.

with no-flow conditions on 9€);;

Source term: w;  trace (K;) drives a unit
flow through T';;.

If there is a sink/source in T}, then w; o g;.

14 /30



Multiscale mixed finite elements

Algebraic formulation

Split the basis functions, 1,; = 1;; — 1};, to decouple across coarse faces.
Hybrid basis functions 'z,bg. as columns in a matrix ¥

Coarse-scale hybrid mixed system

v'BY ©'CcT ¢'DJ v 0
I'c'w 0 0 —p°| = |g°
J'D'w 0 0 A¢ 0

W — matrix with basis functions
T - prolongation from blocks to cells
J — prolongation from block faces to cell faces

Reconstruction of fine-scale velocity v/ = ®v°
(Pressure bases may also have fine-scale
structure if necessary)
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Multiscale mixed finite elements

Multiscale method inherits properties of fine-scale solver

Single-phase flow, homogeneous K, linear pressure drop

Grid TPFA

MsMFEM-+TPFA MsM

MFDM

FEM

+ MFDM
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Generation of coarse grids

Workflow with automated upgridding in 3D (here for logically Cartesian grids)

1) Coarsen grid by uniform partitioning in
index space for corner-point grids

[ A

44 927 cells

l
148 blocks
9 different coarse blocks

2) Detect all adjacent blocks

3) Compute basis functions

Veapyj = {_

for all pairs of blocks

4) Block in coarse grid: component for
building global solution

17 /30



Generation of coarse grids

Automated generation of coarse grids

(Unique) grid flexibility:
Given a method that can solve local flow problems on the subgrid, the

MsMFE method can be formulated on any coarse grid in which the
coarse blocks consist of a connected collection of fine-grid cells
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Generation of coarse grids

Simple idea: follow geological structures for improved accuracy!

A depositional bed

Eroded layers gives a large number of degenerate and inactive cells.
Relative error in saturation at 0.5PVI:

Coarse grid | Isotropic | Anisotropic | Heterogeneous
Physical | 0.1339 0.2743 0.2000
Logical | 0.0604 0.1381 0.1415
Constrained | 0.0573 0.1479 0.0993

physical

logical

constrained
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Generation of coarse grids

A fully robust method will require post-processing

10
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Pressure discrepancy Flux discrepancy

o

0.2

flux discrepancy

0 005 01 015 02
pressure discrepancy

100 realizations: fault throw normally distributed with standard deviation equal 1/5 of
the total reservoir height. Each realization has a new permeability field
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Generation of coarse grids

Simple guidelines for choosing good coarse grids

e .y . Flow direction =——>
@ Minimize bidirectional flow over T [\

interfaces: ] 11 s
. . . L1716 7 8
» Avoid unnecessary irregularity ML BENN o
(F6,7 and ngg) \] SENs [’ j[”][
» Avoid single neighbors (£24) 1 n 3]
» Ensure that there are faces ol :’4’ /,j
transverse to flow direction (§25) \\I ]E/"
© Blocks and faces should follow Flow direction >
geological layers (€23 and Qg) AU
© Blocks should adapt to flow obstacles 6 kN -
whenever possible = (T
-
@ For efficiency: minimize the number of LT (e
connections i ] #‘12&& [ /j

© Avoid having too many small blocks
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Compressible black-oil models

Fine-grid and coarse-grid formulation

Semi-discretized and linearized pressure equation:

n__ ,n—1
e Pl Ve KT =g
Hybrid system:
B C D [ 0
C'-V)., P,. O||-p,|=|P,ap"'+q
DT 0 0 T 0
Coarse-grid formulation:
" BY v'Ccz ¢'DJ u 0
$'(C-V)I-D)®"PI I'PT 0 -p| = |ZT"Pp}
J' DY 0 0 T 0
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Compressible black-oil models

Example 1: tracer transport in ideal gas (Lunati&Jenny 2006)

constant K lognormal K
— Reference| — Reference|
9 |—Multiscale 9 [ —Multiscale
8| 8|
7] 7]
t
) 6]
& 9 & ¢
4 4
3 3
2] 2]
1 1
0 20 40 60 80 100 o 20 40 60 80 100

L/100 L/100

p(0,t) = 1 bar, p(x,0) = 10 bar, coarse grid: 5 blocks, fine grid: 100 cells
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Compressible black-oil models

Residuals by domain decomposition

Residual equation:

B C] [ums +@ 1] 0

C" P||pn+pt] " PP+ Vu
Localization: &=, 4;, p =D, Ps

> zero right-hand-side in {}; \ ©;
» zero flux BCs on B@i

Without overlap: With overlap:

[—Reference
|—Multiscalo
|—Correction - no overlap|

[ Correction - overlap H2)

plBar]
plBar]

] 20 40 50 ] 20 40 50
L/100 L7100
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Compressible black-oil models

Example 2: primary production

v

vvyyvyy

Shallow-marine reservoir (realization
from SAIGUP)

Model size: 40 x 120 x 20
Initially filled with gas, 200 bar
Single producer, bhp=150 bar

Multiscale solution for different
tolerences compared with fine-scale
reference solution.

01 10 100 1000 1000.0

Rate in well perforation (m?3/day)
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Transport solvers

Multiscale methods need efficient transport solvers

P> Streamlines, time-of-flight, etc: Flow pattern (CO2 injection):
> intuitive visualization + new data 0,
» subscale resolution

> good scaling, known to be efficient




Transport solvers

Multiscale methods need efficient transport solvers

» Streamlines, time-of-flight, etc: Time-of-flight (timelines):
> intuitive visualization + new data
> subscale resolution

> good scaling, known to be efficient
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Transport solvers

Multiscale methods need efficient transport solvers

P Streamlines, time-of-flight, etc: Topological sorting

> intuitive visualization + new data
» subscale resolution
» good scaling, known to be efficient 5]
o
2
» Optimal ordering o
. . I
> same assumptions as for streamlines 5
> utilize causality — O(n) algorithm, o
cell-by-cell solution
> local control over nonlinear iterations
.
(Y]
o
2
6
©
9
Y
o
[}
[o
8

26 /30



Transport solvers

Multiscale methods need efficient transport solvers

P> Streamlines, time-of-flight, etc: Local iterations:
» intuitive visualization + new data

> subscale resolution
> good scaling, known to be efficient

» Optimal ordering

> same assumptions as for streamlines

> utilize causality — O(n) algorithm,
cell-by-cell solution

» local control over nonlinear iterations

Johansen formation: 27437 active cells

Global vs local Newton—Raphson solver

At global local
days  time iter time (sec) iter
125 2.26 12.69 0.044 0.93
250 2.35 12.62 0.047 1.10
500 2.38 13.25 0.042 141
1000 2.50 13.50 0.042 1.99
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Transport solvers

Multiscale methods need efficient transport solvers

P Streamlines, time-of-flight, etc: Cartesian grid:

> intuitive visualization + new data
> subscale resolution
> good scaling, known to be efficient

» Optimal ordering
> same assumptions as for streamlines
> utilize causality — O(n) algorithm, y
cell-by-cell solution y
> local control over nonlinear iterations

» Amalgamation of cells
> flow-adapted grids
> simple and flexible coarsening
> adaptive gridding schemes
> efficient model reduction
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Transport solvers

Multiscale methods need efficient transport solvers

P Streamlines, time-of-flight, etc:

>
>
>

intuitive visualization + new data
subscale resolution
good scaling, known to be efficient

» Optimal ordering

>
>

>

same assumptions as for streamlines
utilize causality — O(n) algorithm,
cell-by-cell solution

local control over nonlinear iterations

» Amalgamation of cells

>

>
>
>

flow-adapted grids

simple and flexible coarsening
adaptive gridding schemes
efficient model reduction

Different partitioning:
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Transport solvers

Multiscale methods need efficient transport solvers

P Streamlines, time-of-flight, etc: Dynamic adaption

> intuitive visualization + new data

> subscale resolution
> good scaling, known to be efficient
» Optimal ordering
> same assumptions as for streamlines
> utilize causality — O(n) algorithm, ™ e
cell-by-cell solution i =
> local control over nonlinear iterations

» Amalgamation of cells
> flow-adapted grids
> simple and flexible coarsening
» adaptive gridding schemes
> efficient model reduction
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Transport solvers

Multiscale methods need efficient transport solvers

P Streamlines, time-of-flight, etc:
> intuitive visualization + new data
> subscale resolution
> good scaling, known to be efficient

» Optimal ordering
> same assumptions as for streamlines
> utilize causality — O(n) algorithm,
cell-by-cell solution
> local control over nonlinear iterations

» Amalgamation of cells
> flow-adapted grids
> simple and flexible coarsening
> adaptive gridding schemes
> efficient model reduction

Model reduction by coarsening:

Water—cut curves

= = = 1581 blocks

o

*

Reference solution

854 blocks
450 blocks
239 blocks
119 blocks

08 09 1

03 04 05 06 O
Pore volume injected
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Transport solvers

Multiscale methods need efficient transport solvers

P> Streamlines, time-of-flight, etc: Model reduction by coarsening:

> intuitive visualization + new data
» subscale resolution

» good scaling, known to be efficient

» Optimal ordering

> same assumptions as for streamlines fine grid

> utilize causality — O(n) algorithm, 11864 cells
cell-by-cell solution

> local control over nonlinear iterations

» Amalgamation of cells . F
> flow-adapted grids flow-based
simple and flexible coarsening 127 blocks

>
> adaptive gridding schemes
> efficient model reduction

” . METIS

175 blocks
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Usage and outlook

For what purposes are multiscale methods useful?

As robust upscaling methods?

As alternative to upscaling and fine-scale solution?

To provide flow simulation earlier in the modelling loop?
To get 90% of the answer in 10% of the time?

Fit-for-purpose solvers in workflows for ranking, history matching,
planning, optimization, . ..

vV vyvVvyVvyywy
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Usage and outlook

Success stories and unreaped potential

» More flexible wrt grids than standard
upscaling methods: automatic coarsening
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Usage and outlook

Success stories and unreaped potential

Operations vs. upscaling factor:
> More flexible wrt grids than standard

upscaling methods: automatic coarsening , -
» Reuse of computations, key to computational ° Fine scale soluon (WWG) 02

efficiency

il

Bxxd 16x16x16  32x32x32 64xBax6A

SPE10: 1.1 mill cells

Inhouse code from 2005:
multiscale: 2 min and 20 sec
multigrid: 8 min and 36 sec

Fully unstructured Matlab/C code from 2010:
mimetic : 5-6 min
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Usage and outlook

Success stories and unreaped potential

> More flexible wrt grids than standard
upscaling methods: automatic coarsening

P Reuse of computations, key to computational
efficiency Basis functions =

P . independent calculations

» Natural (elliptic) parallelism:

» multicore and heterogeneous
computing
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Usage and outlook

Success stories and unreaped potential

Pressure grid:
P> More flexible wrt grids than standard

upscaling methods: automatic coarsening

P> Reuse of computations, key to computational
efficiency

» Natural (elliptic) parallelism:

» multicore and heterogeneous
computing

P Fine-scale velocity — different grid for flow

and transport
Transport grid:

28 /30



Usage and outlook

Success stories and unreaped potential

» More flexible wrt grids than standard Water-flood optimization:

upscaling methods: automatic coarsening
P Reuse of computations, key to computational
efficiency

» Natural (elliptic) parallelism:

» multicore and heterogeneous

computing Reservoir geometry from a Norwegian Sea field
» Fine-scale velocity — different grid for flow T
and transport - - -Gl inital

.
1Y)

= QOil optimized -
= = =Water initial
= Water optimized

o
1S}

» Method for model reduction:
» adjoint simulations — gradients
> ensemble simulations with
representative basis functions

o o

Cum.Prod. [m]
IS

0 2 4 6 8 10
Time [years]

Forward simulations:
44927 cells, 20 time steps, < 5 sec in Matlab
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Usage and outlook

Success stories and unreaped potential

> More flexible wrt grids than standard
upscaling methods: automatic coarsening

P> Reuse of computations, key to computational
efficiency
» Natural (elliptic) parallelism:
» multicore and heterogeneous
computing

» Fine-scale velocity — different grid for flow
and transport

» Method for model reduction:

» adjoint simulations — gradients
» ensemble simulations with
representative basis functions

History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale:

7 forward simulations, 6 inversions

CPU-time (wall clock)

Solver Total Pres. Transp.
Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min
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Usage and outlook

Success stories and unreaped potential

Fracture corridors
. . 800 X 800
P> More flexible wrt grids than standard )

upscaling methods: automatic coarsening

P> Reuse of computations, key to computational
efficiency

» Natural (elliptic) parallelism: ——— —_——
80 X 80 upscale 80 X 80 multiscale
1 B

» multicore and heterogeneous
computing

P Fine-scale velocity — different grid for flow
and transport

» Method for model reduction: - S —

> adjoint simulations — gradients
> ensemble simulations with
representative basis functions

» Improved model fidelity:

» subscale resolution
> multiphysics applications




Usage and outlook

Success stories and unreaped potential

» More flexible wrt grids than standard Stokes—Brinkmann:
upscaling methods: automatic coarsening

Meso scale

» Reuse of computations, key to computational foosee 17
efficiency
» Natural (elliptic) parallelism: —
» multicore and heterogeneous
computing

P Fine-scale velocity — different grid for flow
and transport

» Method for model reduction:

> adjoint simulations — gradients
> ensemble simulations with
representative basis functions

P Improved model fidelity:

» subscale resolution
» multiphysics applications
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Usage and outlook

Resolved and unresolved questions

Capabilities:
v~ Two-phase flow
v Cartesian / unstructured grids

v Realistic flow physics = iterations

» Correction functions + smoothing
> Residual formulation 4+ domain decomposition

v Pointwise accuracy = iterations

29/30



Usage and outlook

Resolved and unresolved questions

Capabilities:
v~ Two-phase flow
v Cartesian / unstructured grids

v Realistic flow physics = iterations

» Correction functions + smoothing
> Residual formulation 4+ domain decomposition

v Pointwise accuracy = iterations

Not yet there:
» Compressible three-phase black-oil + non-Cartesian grids
» Parallelization

» Fully implicit formulation

» Compositional, thermal, ...
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Usage and outlook

Resolved and unresolved questions

Other issues:
» How should unstructured grids be coarsened?
» Need for global information or iterative procedures?
» A posteriori error analysis (resolution or fine-scale junk)?
» More than two levels in hierarchical grid?

» How to include models from finer scales?

29/30



Current and future research at SINTEF

Three main directions

- Split fine / coarse scales
« Very fast

simulator « Near-well modeling

i

(9]
O
(2]
£
o “GeoScale” :> Large-scale
= technology simulation
o
L « Parallelization
} " « Multimillion
. Sr%%pe%rstefgr time-critical reservoir cells
« Optimal model reduction for
. tradeoff between time and
Slmple accuracy
Detailed

Geological representation a0
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