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Flow and transport in subsurtace rocks Rock modsls um] - Core models ] Geological models o] » Reuse of basis functions for time-dependent problems: compute them initially and

are multiscale phenomena that involve a update infrequently, e.g., only for large changes in total mobility in a block.
large range of physical scales. Upscaling

is therefore inevitable in reservoir

» Parallelization: all basis functions can be computed independently

modeling. However, upscaling is either a = st o Theoretical Number of Operations Model 2 from SPE10
manual and time-consuming process, or Facies models mi]

o _ _ _ _ - Number of operations for a 128 grid
when automated, not sufficiently robust. Miroscapi Mesoscopic Macroscopi

[__1Basis functions
I Global system

Multiscale Methods o l()ml)

» Methods that incorporate fine-scale information into a set of coarse-scale equations in * —
a way which is consistent with the local property of the differential operator.

» Multiscale pressure solvers perform up/down-scaling in a single step and provide both | | Inhouse code (multiscale + streamlines)
coarse-scale and fine-scale resolution. ] b b B from 2005:
» By clever reuse of computations, these methods promise a significant speedup and can upscaling factor Multiscale: 2 min and 20 sec
enable simulation on grids with seismic/geological resolution. Advantages: The plot shows that once the basis Multigrid: 8 min and 36 sec
functlons have been COmpUtEd, the cost Of Simplification: no gravity, no compressibility — a few percent away

> faster model building and history matching,
> better estimation of uncertainty by running alternative models,
> makes inversion a better instrument to find remaining oll,

from reference solution

each new pressure solution is relatively low.

Example: Fracture Corridors

Visual Review of Key ldeas

1. Introduce a coarse grid in which each block 3. Compute local flow problems:
consists of a connected collection of cells from > One for each pair of » 200 linear fractures randomly
the underlying fine grid. gridblocks using no-flow distributed

boundary conditions, or
For corner-point grids, the simplest and yet most effective approach » Fracture permea blllty 50 darcies
is to partition the input grid in |JK space. This will often give blocks _ ' _
» 800 x 800 Cartesian grid

with highly irregular ge-
» Homogeneous background

ometries, but will pre-
. . _ nermeability, 500 mD.
4. Collect local solutions as basis functions _ . .
Use these to construct a » Flow-based diagonal upscaling to

Permeability Water-cut curves

» one for each coarse-block
interface with prescribed

interface flow.
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serve geological struc- Almost the same as for flow-based upscaling.

tures, simplify the cou- Quarter five-spot production, saturations after 300 days.

pling in the linear sys-
tem, and enable auto-

lobal solution from a mixed ,
matic upgridding. & . 80 x 80 gl’ld
finite-element  formulation. _
2. Postprocess to ensure all blocks are The figure shows a few basis » Multiscale method on 80 x 30
connected and detect all connections between ]':.“rl‘;t'ons for a Norwegian Sea grid with extra coarse blocks
1eld. ‘ T iz T S . : - .- i o,
adjacent gridblocks. added to represent the fractures e — | — ——

800 x 800 80 x 80 upscaled 80.>< 80 multiscale

More details: J. R. Natvig et al. Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. SPE 119132, 2009 RSS.

Mathematical Background

Consider (for simplicity) incompressible single-phase flow Example: Optimizing Net-Present Value
V.-u=0, u=—KVp

Describe the solution as a sum of multiscale basis
functions & = > uj1p;;. Each basis function is
determined by solving a localized flow problem, e.g.,

» Layered model from the Norwegian Sea
» Initially filled with oil

» Seven producers, four injectors

» Simulation model: F(x",x" !, c")

. . wi(x), x € x=state variables, c=controls.
Yy =KV, V=9 -wx), xec » Objective J(x, c), net-present value X0
0, otherwise » Optimization: adjoint formulation I R g‘;ﬂized
with no-flow boundary conditions. The source term OFT, _ _9J7 T v et !
w(x) > 0 is normalized over €2; and drives a unit flow B o ox % 8
from ; to ;. (For homogeneous, isotropic K and 6 304 0t gridblocks hat are conmected via » Solver: .multlscale pressure, flow-based S o
rectangular blocks with no overlap, this construction B el o mected e thit contains the two coarsening for transport S 4
reproduces the standard RTO basis.) .
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Linear Algebra

pressure grid

Forward simulations:

Fine-scale system (mixed/mimetic): Coarse-scale system (algebraic reduction): . o _ |

ol [ o o By wiez wing] [ o Key step: efficient communication between 44 927 cells, 20 time steps, runtime less
u uc : : : - _
cT ool |—p| = |0 7Ty 0 0 el = o the two grids using precomputed mappings. than 5 secs in Matlab: ~ 100x speedup
- TAT c

_D 0 0_ i ﬂ-_ _O_ _‘7 D'w 0 0 1 L 4 i _0_ More details: S. Krogstad et al. Adjoint multiscale mixed finite elements. SPE 119112. 2009 Reservoir Simulation Symposium.

B: inner product of velocity basis functions W: matrix containing multiscale basis functions

C: integral of the divergence of veloctiy b.f. Z: prolongation from coarse blocks to cells in fine grid . I .

D: map from local to global face numbering J . prolongation from block faces to cell faces Examples' CompreSS|blllty / BIaCk OII

The indefinite systems can be made symmetric positive-definite by using a standard Schur

| Primary Production from a Gas Reservoir
complement technique (u = flux, p=cell pressures, r=face pressures).

Permeability Rate in well perforation (m>/day)
_ o » Shallow-marine reservoir S ! * *
Parabolic Problems (Compressibility) (realization from SAIGUP)
In the multiscale finite-volume framework, compressibility is handled by introducing a set of > Model size: 40 x 120 x 20
corre.ction fun.ctions. For MsMFEM, we propose a residuall formulat.ion,.in which the e!liptic > Initially filled with gas, 200 bar o
multiscale basis functions act as a predictor and a parabolic correction is computed using a > Single producer, bhp—150 bar Conree grid -

standard domain-decomposition method. _ _ _
P » Multiscale solution for different

tolerences compared with
fine-scale reference solution.

540

» Construct elliptic basis functions initially

» Residual formulation of linearized flow equations:
B C| |uw+0"™] 0
C' P| [pus+0"] — |Pp"+Vu"

» (Non)overlapping Scharz method with localization:
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Strong Compressibility

> zero right—hand—side In Q,‘ \ Q,’ Without overlap With overlap (H/2)
~ 1 » 1-D heterogeneous 5 S— 5 =Fomane
> zero flux BCs on 04}, ;- coarse grid block . e \ S \ S
» lterate on multiscale and residuals until convergence Q;: overlapping subdomains in DD formulation » Filled with air (]. bar) * \ * \
» Left: inject air (10 bar) K \ E \
References » Right: produce air (1 bar) \¥ E \\
» Fine grid: 100 cells 1 \\;’}‘E,__ 1 e
» S. Krogstad et al. A multiscale mixed finite-element solver for three-phase black-oil flow. SPE 118993, 2009 SPE Reservoir » Coarse grld 5 blocks
Simulation Symposium. DOI: 10.2118/118993-MS. ' ° o L % I “ &
» J. E. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale mixed/mimetic methods on corner-point grids. Comp. Geosci.
12(3):297-315, 2008. DOI: 10.1007 /s10596-007-9072-8. The figures show the multiscale solution in the left half of the reservoir before and after the
» V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Comp. correction step Compared with the fine—grid solution. Using overlap in the domain decompo_

Geosci. 12(3):377-398, 2008. DOI: 10.1007/s10596-007-9074-6.

» Matlab Reservoir Simulation Toolbox. http://www.sintef.no/Projectweb/MRST/ sition mEthOd IS essentlal to correct the errors at coarse—grld mterfaces.
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