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Motivation

Flow and transport in subsurface rocks
are multiscale phenomena that involve a
large range of physical scales. Upscaling
is therefore inevitable in reservoir
modeling. However, upscaling is either a
manual and time-consuming process, or
when automated, not sufficiently robust.

Multiscale Methods

I Methods that incorporate fine-scale information into a set of coarse-scale equations in
a way which is consistent with the local property of the differential operator.

I Multiscale pressure solvers perform up/down-scaling in a single step and provide both
coarse-scale and fine-scale resolution.

I By clever reuse of computations, these methods promise a significant speedup and can
enable simulation on grids with seismic/geological resolution. Advantages:

. faster model building and history matching,

. better estimation of uncertainty by running alternative models,

. makes inversion a better instrument to find remaining oil,

Visual Review of Key Ideas

1. Introduce a coarse grid in which each block
consists of a connected collection of cells from
the underlying fine grid.
For corner-point grids, the simplest and yet most effective approach
is to partition the input grid in IJK space. This will often give blocks
with highly irregular ge-
ometries, but will pre-
serve geological struc-
tures, simplify the cou-
pling in the linear sys-
tem, and enable auto-
matic upgridding.

2. Postprocess to ensure all blocks are
connected and detect all connections between
adjacent gridblocks.

3. Compute local flow problems:
I One for each pair of

gridblocks using no-flow
boundary conditions, or

I one for each coarse-block
interface with prescribed
interface flow.

Almost the same as for flow-based upscaling.

4. Collect local solutions as basis functions
Use these to construct a
global solution from a mixed
finite-element formulation.
The figure shows a few basis
functions for a Norwegian Sea
field.

Mathematical Background

Consider (for simplicity) incompressible single-phase flow

∇ · ~u = 0, ~u = −K∇p

Describe the solution as a sum of multiscale basis
functions ~u =

∑
uij
~ψij . Each basis function is

determined by solving a localized flow problem, e.g.,

~ψij = −K∇φij, ∇ · ~ψij =


wi(x), x ∈ Ωi

−wj(x), x ∈ Ωj

0, otherwise

with no-flow boundary conditions. The source term
w(x) > 0 is normalized over Ωi and drives a unit flow
from Ωi to Ωj . (For homogeneous, isotropic K and
rectangular blocks with no overlap, this construction
reproduces the standard RT0 basis.)

Ωi Ωj

Ωij

Ωi and Ωj : two gridblocks that are connected via a
single interface in the coarse grid,
Ωij a single-connected domain that contains the two

Linear Algebra

Fine-scale system (mixed/mimetic):[
B C D

CT 0 0
DT 0 0

] [
u
−p

π

]
=

[
0
0
0

]
B: inner product of velocity basis functions
C: integral of the divergence of veloctiy b.f.
D: map from local to global face numbering

Coarse-scale system (algebraic reduction):[
ΨTBΨ ΨTCI ΨTDJ
ITCTΨ 0 0
J TDTΨ 0 0

] [
uc

−pc

πc

]
=

[
0
0
0

]
Ψ: matrix containing multiscale basis functions
I : prolongation from coarse blocks to cells in fine grid
J : prolongation from block faces to cell faces

The indefinite systems can be made symmetric positive-definite by using a standard Schur
complement technique (u = flux, p=cell pressures, π=face pressures).

Parabolic Problems (Compressibility)

In the multiscale finite-volume framework, compressibility is handled by introducing a set of
correction functions. For MsMFEM, we propose a residual formulation, in which the elliptic
multiscale basis functions act as a predictor and a parabolic correction is computed using a
standard domain-decomposition method.

I Construct elliptic basis functions initially
I Residual formulation of linearized flow equations:[

B C
CT P

] [
ums + ûν+1

pms + p̂ν+1

]
=

[
0

Ppn + Vuν

]
I (Non)overlapping Scharz method with localization:

. zero right-hand-side in Ω̂i \ Ωi

. zero flux BCs on ∂Ω̂i

I Iterate on multiscale and residuals until convergence
Ωi : coarse grid block

Ω̂i : overlapping subdomains in DD formulation

References

I S. Krogstad et al. A multiscale mixed finite-element solver for three-phase black-oil flow. SPE 118993, 2009 SPE Reservoir
Simulation Symposium. DOI: 10.2118/118993-MS.

I J. E. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale mixed/mimetic methods on corner-point grids. Comp. Geosci.
12(3):297–315, 2008. DOI: 10.1007/s10596-007-9072-8.

I V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Comp.
Geosci. 12(3):377–398, 2008. DOI: 10.1007/s10596-007-9074-6.

I Matlab Reservoir Simulation Toolbox. http://www.sintef.no/Projectweb/MRST/

Examples: Efficiency

I Reuse of basis functions for time-dependent problems: compute them initially and
update infrequently, e.g., only for large changes in total mobility in a block.

I Parallelization: all basis functions can be computed independently

Theoretical Number of Operations

Number of operations for a 1283 grid
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The plot shows that once the basis
functions have been computed, the cost of
each new pressure solution is relatively low.

Model 2 from SPE10

Inhouse code (multiscale + streamlines)
from 2005:

Multiscale: 2 min and 20 sec
Multigrid: 8 min and 36 sec

Simplification: no gravity, no compressibility −→ a few percent away
from reference solution

Example: Fracture Corridors

I 200 linear fractures randomly
distributed

I Fracture permeability, 50 darcies
I 800× 800 Cartesian grid
I Homogeneous background

permeability, 500 mD.
I Flow-based diagonal upscaling to

80× 80 grid
I Multiscale method on 80× 80

grid with extra coarse blocks
added to represent the fractures

Permeability Water-cut curves

Quarter five-spot production, saturations after 300 days.

800× 800 80× 80 upscaled 80× 80 multiscale

More details: J. R. Natvig et al. Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. SPE 119132, 2009 RSS.

Example: Optimizing Net-Present Value

I Layered model from the Norwegian Sea
I Initially filled with oil
I Seven producers, four injectors
I Simulation model: F (xn, xn−1, cn)

x=state variables, c=controls.
I Objective J(x, c), net-present value
I Optimization: adjoint formulation

∂FT

∂x
λ = −∂JT

∂x
.

I Solver: multiscale pressure, flow-based
coarsening for transport

pressure grid transport grid

Key step: efficient communication between
the two grids using precomputed mappings.
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Forward simulations:
44 927 cells, 20 time steps, runtime less
than 5 secs in Matlab: ∼ 100× speedup

More details: S. Krogstad et al. Adjoint multiscale mixed finite elements. SPE 119112. 2009 Reservoir Simulation Symposium.

Examples: Compressibility / Black-Oil

Primary Production from a Gas Reservoir

I Shallow-marine reservoir
(realization from SAIGUP)

I Model size: 40× 120× 20
I Initially filled with gas, 200 bar
I Single producer, bhp=150 bar
I Multiscale solution for different

tolerences compared with
fine-scale reference solution.
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Strong Compressibility

I 1-D heterogeneous
I Filled with air (1 bar)
I Left: inject air (10 bar)
I Right: produce air (1 bar)
I Fine grid: 100 cells
I Coarse grid: 5 blocks

Without overlap With overlap (H/2)

The figures show the multiscale solution in the left half of the reservoir before and after the
correction step compared with the fine-grid solution. Using overlap in the domain decompo-
sition method is essential to correct the errors at coarse-grid interfaces.
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