A Multiscale Mixed Finite-Element Solver for Compressible Black-Oil Flow

S. Krogstad, K.-A. Lie, J.R. Natvig, H.M. Nilsen, B. Skaflestad, J.E. Aarnes, SINTEF

2009 SPE Reservoir Simulation Symposium
Two-level methods for equations:
- with a near-elliptic behavior
- with strongly heterogeneous coefficients
- without scale separations

Aim:
- describe global flow patterns on coarse grid
- accurately account for fine-scale structures

Provide a mechanism to recover approximate fine-scale solutions
The Multiscale Mixed Finite Element (MsMFE) Method

The algorithm in a nutshell

1) Generate coarse grid (automatically)

- 9 different coarse blocks
- 44,927 cells
- 148 blocks

Solve flow problem for all pairs of blocks
The Multiscale Mixed Finite Element (MsMFE) Method
The algorithm in a nutshell

1) Generate coarse grid (automatically)

2) Detect all adjacent blocks

- 44,927 cells
- 148 blocks

3) Compute basis functions

- Solve flow problem for all pairs of blocks

4) Build global solution

- Basis functions: building blocks for global solution
The Multiscale Mixed Finite Element (MsMFE) Method
The algorithm in a nutshell

1) Generate coarse grid (automatically)

2) Detect all adjacent blocks

3) Compute basis functions

Solve flow problem for all pairs of blocks
The Multiscale Mixed Finite Element (MsMFE) Method

The algorithm in a nutshell

1) Generate coarse grid (automatically)

2) Detect all adjacent blocks

3) Compute basis functions

4) Build global solution

- 9 different coarse blocks
- 44,927 cells
- 148 blocks

Solve flow problem for all pairs of blocks

Basis functions: building blocks for global solution
The Mixed Finite Element (MsMFE) Method
Computation of multiscale basis functions

Each cell Ω_i: pressure basis ϕ_i
Each face Γ_{ij}: velocity basis ψ_{ij}

\[\vec{\psi}_{ij} = -\lambda K \nabla \phi_{ij} \]

\[\nabla \cdot \vec{\psi}_{ij} = \begin{cases} w_i(x), & x \in \Omega_i \\ -w_j(x), & x \in \Omega_j \\ 0, & \text{otherwise} \end{cases} \]
The Mixed Finite Element (MsMFE) Method

Computation of multiscale basis functions

Each cell Ω_i: pressure basis ϕ_i
Each face Γ_{ij}: velocity basis ψ_{ij}

$$\vec{\psi}_{ij} = -\lambda K \nabla \phi_{ij}$$

$$\nabla \cdot \vec{\psi}_{ij} = \begin{cases}
 w_i(x), & x \in \Omega_i \\
 -w_j(x), & x \in \Omega_j \\
 0, & \text{otherwise}
\end{cases}$$
The Mixed Finite Element (MsMFE) Method

Interpretation of the weight function

The weight function distributes $\nabla \cdot v$ on the coarse blocks:

$$(\nabla \cdot v)|_{\Omega_i} = \sum_j \nabla \cdot (v_{ij} \psi_{ij}) = w_i \sum_j v_{ij}$$

$$= w_i \int_{\partial \Omega_i} v \cdot n \, ds = w_i \int_{\Omega_i} \nabla \cdot v \, dx$$

Different roles:

Incompressible flow: $\nabla \cdot v = q$
Compressible flow: $\nabla \cdot v = q - c_t \partial_t p - \sum_j c_j v_j \cdot \nabla p$
The Mixed Finite Element (MsMFE) Method

Choice of weight function, \(w_i = \frac{\theta(x)}{\int_{\Omega_i} \theta(x) \, dx} \)

Incompressible flow:

\[
\int_{\Omega_i} q \, dx = 0, \quad \theta(x) = \text{trace}(K(x))
\]

\[
\int_{\Omega_i} q \, dx \neq 0, \quad \theta(x) = q(x)
\]

Compressible flow:

\(\theta \propto q \): compressibility effects concentrated where \(q \neq 0 \)

\(\theta \propto K \): \(\nabla \cdot v \) over/underestimated for high/low \(K \)

Another choice motivated by physics:

\(\theta(x) = \phi(x) \)

Motivation:

\(\partial p / \partial t \propto \phi \)
The Mixed Finite Element (MsMFE) Method

Choice of weight function, \(w_i = \theta(x) / \int_{\Omega_i} \theta(x) \, dx \)

Incompressible flow:

\[
\int_{\Omega_i} q \, dx = 0, \quad \theta(x) = \text{trace}(K(x))
\]

\[
\int_{\Omega_i} q \, dx \neq 0, \quad \theta(x) = q(x)
\]

Compressible flow:

- \(\theta \propto q \): compressibility effects concentrated where \(q \neq 0 \)
- \(\theta \propto K \): \(\nabla \cdot v \) over/underestimated for high/low \(K \)

Another choice motivated by physics:

\[
\theta(x) = \phi(x), \quad \text{Motivation: } c_t \frac{\partial p}{\partial t} \propto \phi
\]
The Mixed Finite Element (MsMFE) Method
Key to efficiency: reuse of computations

Computational cost consists of:

- **basis functions** (fine grid)
- **global problem** (coarse grid)

High efficiency for multiphase flows:

- Elliptic decomposition
- Reuse basis functions
- Easy to parallelize

Example: 128^3 grid

<table>
<thead>
<tr>
<th># operations versus upscaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis functions</td>
</tr>
<tr>
<td>8x8x8</td>
</tr>
</tbody>
</table>

Fine scale solution (AMG) $O(n^{1.2})$
The Mixed Finite Element (MsMFEM) Method
Recap from 2007 SPE RSS: million-cell models in minutes

SPE 10, Model 2:

Water-cut curves at the four producers

grid: $60 \times 220 \times 85$
Coarse grid: $5 \times 11 \times 17$
2000 days production
25 time steps

multiscale + streamlines: 142 sec on a 2.4 GHz PC

- upscaling/downscaling, - multiscale, - fine grid
MsMFE for Complex Grids

Challenges posed by grids from real-life models

Unstructured grids:

(Very) high aspect ratios:

800 × 800 × 0.25 m

Skewed and degenerate cells:

Non-matching cells:
MsMFE for Complex Grids
Applicable to general unstructured grids

Coarse blocks: (arbitrary) connected collection of cells
→ fully automated coarsening strategies

Coarse blocks: logically Cartesian in index space
Coarse blocks: (arbitrary) connected collection of cells

→ fully automated coarsening strategies
MsMFE for Complex Grids
Applicable to general unstructured grids

Coarse blocks: (arbitrary) connected collection of cells
→ fully automated coarsening strategies
MsMFE for Complex Grids
Fine-grid formulation

Discretization using a mimetic method (Brezzi et al):

\[
\begin{align*}
\mathbf{u}_E &= \lambda \mathbf{T}_E (p_E - \pi_E), \\
\mathbf{T}_E &= |E|^{-1} \mathbf{N}_E \mathbf{K}_E \mathbf{N}_E^T + \tilde{\mathbf{T}}_E
\end{align*}
\]

- \(\mathbf{N}_E\): face normals
- \(\mathbf{X}_E\): vector from face to cell centroids
- \(\tilde{\mathbf{T}}_E\): arbitrarily such that \(\tilde{\mathbf{T}}_E \mathbf{X}_E = 0\)

Key features:

- Applicable for general polyhedral cells
- Non-conforming grids treated as conforming polyhedral
- Generic implementation for all grid types
- Monotonicity as for MPFA
MsMFE for Complex Grids

Example: single phase, homogeneous K, linear pressure drop
MsMFE for Compressible Black-Oil Models
Fine-grid formulation

Pressure equation:

\[c \frac{\partial p}{\partial t} + \nabla \cdot \vec{u} - \zeta \vec{u} \cdot \mathbf{K}^{-1} \vec{u} = q, \quad \vec{u} = -\mathbf{K} \lambda \nabla p \]

Time-discretization and linearization:

\[c_{\nu-1} \frac{p_{\nu} - p_{\nu-1}}{\Delta t} + \nabla \cdot \vec{u}_{\nu} - \zeta_{\nu-1} \vec{u}_{\nu-1} \cdot \mathbf{K}^{-1} \vec{u}_{\nu} = q \]

Hybrid system:

\[
\begin{bmatrix}
B & C & D \\
C^T - V_{\nu-1}^T & P_{\nu-1} & 0 \\
D^T & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\vec{u}_{\nu} \\
-p_{\nu} \\
\pi_{\nu}
\end{bmatrix}
= \begin{bmatrix}
0 \\
P_{\nu-1}p_{\nu-1}^{n-1} + q
\end{bmatrix}
\]
MsMFE for Compressible Black-Oil Models

Coarse-grid formulation

\[
\begin{bmatrix}
\Psi^T B \Psi & \Psi^T C I & \Psi^T D J \\
\tilde{C}^T & I^T P I & 0 \\
J^T D^T \Psi & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
u \\
-p \\
\pi \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
I^T P p_f^n \\
0 \\
\end{bmatrix}
\]

\(\Psi\) – velocity basis functions
\(\Phi\) – pressure basis functions
\(I\) – prolongation from blocks to cells
\(J\) – prolongation from block faces to cell faces
\(\tilde{C} = \Psi^T (C - V) I - D_\lambda \Phi^T P I\)

New feature: fine-scale pressure

\[u_f \approx \Psi u, \quad p_f \approx I p + \Phi D_\lambda u, \quad D_\lambda = \text{diag}(\lambda_i^0/\lambda_i)\]
MsMFE for Compressible Black-Oil Models

Example 1: tracer transport in gas (Lunati & Jenny 2006)

constant K

$$p(0, t) = 1 \text{ bar, } p(x, 0) = 10 \text{ bar, coarse grid: 5 blocks, fine grid: 100 cells}$$

lognormal K
MsMFE for Compressible Black-Oil Models

Example 1: tracer transport in gas (Lunati & Jenny 2006)

\[p(0, t) = 1 \text{ bar}, \quad p(x, 0) = 10 \text{ bar}, \quad \text{coarse grid: 5 blocks, fine grid: 100 cells} \]

Remedy: correction functions (Lunati, Jenny et al; Nordbotten)
Approximate residual equation by

\[\hat{u} = \sum_{\Omega_i \subseteq \Omega} \hat{u}_i, \quad \hat{p} = \sum_{\Omega_i \subseteq \Omega} \hat{p}_i, \]

such that \(u \approx u_{\text{ms}} + \hat{u} \) and \(p \approx p_{\text{ms}} + \hat{p} \).

Local problems:

\((\hat{u}_i, \hat{p}_i)\) solves residual equation locally in \(\hat{\Omega}_i \) such that

- Zero right-hand-side in \(\hat{\Omega}_i \setminus \Omega_i \)
- Zero flux BCs on \(\partial \hat{\Omega}_i \)
MsMFE for Compressible Black-Oil Models

Example 1: tracer transport in gas (Lunati & Jenny 2006)

Non-overlapping correction:
MsMFE for Compressible Black-Oil Models

Example 1: tracer transport in gas (Lunati & Jenny 2006)

Overlapping $O(H/2)$ correction:
MsMFE for Compressible Black-Oil Models

Example 2: block with a single fault

1000 m³/day water injected into compressible oil at 205 bar (p_{bh} of 200 bar).
Conclusions and Outlook

The MsMFE method:
- is flexible with respect to grids
- allows automated coarsening
- requires correction functions for compressible flow

Future research:
- adaptivity of basis/correction functions
- parallelization
- error estimation (via VMS framework)