Multiscale Simulation of Highly Heterogeneous and Fractured Reservoirs

Astrid F. Gulbransen Vera Louise Hauge
Jostein R. Natvig Bård Skaflestad

Applied Mathematics, SINTEF ICT
Oslo, Norway

PETROMAKS
Oslo, April 24–25, 2008
Reservoir Simulation Group
Direct simulation of geomodels

Research group

- 3 researchers
- 4 postdocs
- 1–2 PhD students
- 3 programmers

Collaboration with national and international partners in industry and academia

Research vision

Direct simulation of complex grid models of highly heterogeneous and fractured porous media — a technology that bypasses the need for upscaling.

http://www.math.sintef.no/GeoScale/
Applications:
- Validation during development of geomodels
- Fast simulations of multiple realizations
- Optimization of production, well placement, etc
- History matching
- Geological storage of CO$_2$

Funding:
- Strategic research grant and PhD/postdoc grants
- Research grants with end-user involvement
- Industry projects
Challenges:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells.
- There is a trend towards unstructured grids.
- Standard discretization methods produce wrong results on skewed and rough cells.
- The combination of high aspect and anisotropy ratios can give very large condition numbers.
Aim:
To develop a pressure solver with improved accuracy and flexibility.

Solution:
- use a mimetic finite difference method to improve accuracy and to reduce grid sensitivity
- use a multiscale method to balance speed and accuracy.
Model:

\[\lambda_t^{-1} K^{-1} \mathbf{v} + \nabla p = 0, \quad \text{(Darcy)}, \]
\[\nabla \cdot \mathbf{v} = q, \]

Seek discrete \(p \) and \(\mathbf{v} \) that maintain

- mass balance
- a discrete form of Darcy’s law

On polyhedral grids, the mimetic method yields exact solutions for linear pressure.

In fact, this is better than many commercial simulators!
Multiscale-streamline simulation of fractured reservoir

The mimetic method (cont’d)

Standard method + skew grids = grid-orientation effects

\(K \): homogeneous and isotropic, symmetric well pattern \rightarrow \) symmetric flow

Streamlines with two-point method

Streamlines with mimetic method
Mixed and mimetic formulation for one grid block:

$$
\begin{bmatrix}
B & C^T \\
C & C^T
\end{bmatrix}
\begin{bmatrix}
v \\
p
\end{bmatrix}
=
\begin{bmatrix}
-a \\
Q
\end{bmatrix}
$$

By eliminating v we get

$$
CB^{-1} C^T p = Q + CB^{-1} a,
$$

MFEM: $B = \int_K \phi_i \cdot \lambda^{-1} K^{-1} \phi_j \, d\Omega$

Mimetic: $B^{-1} = \lambda_t NKN^T - \text{tr}(K)(1 - UU^T)$
Hybrid formulation:

\[
\begin{bmatrix}
B & C^T & D^T \\
C & \; & \; \\
D & \; & \;
\end{bmatrix}
\begin{bmatrix}
v \\
p \\
a
\end{bmatrix}
=
\begin{bmatrix}
0 \\
Q \\
0
\end{bmatrix}
\]

Elimination of \(p \) and \(v \) yields a positive definite system for \(a \).

MFEM:

\[
B = \int_K \phi_i \cdot \lambda^{-1} K^{-1} \phi_j \, d\Omega
\]

Mimetic:

\[
B^{-1} = \lambda_t NKN^T - \text{tr}(K)(1 - UU^T)
\]
Pressure typically varies smoothly while velocity is largely determined by local heterogeneities.
Pressure typically varies smoothly while velocity is largely determined by local heterogeneities.
The multiscale/mixed pressure solver framework
An efficient alternative to upscaling methods

Key Idea
Express fluid flow in reservoir as a linear combination of local flow solutions on pairs of coarse grid blocks.
Key Idea

Express fluid flow in reservoir as a linear combination of local flow solutions on pairs of coarse grid blocks.
Local flows account for small-scale impact on global flow field
 - Each localized flow field is obtained by resolving independent flow problems
 - Any method may be used to discretize these problems

End Result

High-resolution velocity field computable with comparatively few degrees of freedom (local problems resolved once or infrequently)
Local flows account for small-scale impact on global flow field.
Each localized flow field is obtained by resolving independent flow problems.
Any method may be used to discretize these problems.

End Result

High-resolution velocity field computable with comparatively few degrees of freedom (local problems resolved once or infrequently).
Local flows account for small-scale impact on global flow field
Each localized flow field is obtained by resolving independent flow problems
Any method may be used to discretize these problems

End Result
High-resolution velocity field computable with comparatively few degrees of freedom (local problems resolved once or infrequently)
Local flows account for small-scale impact on global flow field
Each localized flow field is obtained by resolving independent flow problems
Any method may be used to discretize these problems

End Result
High-resolution velocity field computable with comparatively few degrees of freedom (local problems resolved once or infrequently)
The multiscale/mixed pressure solver framework
An efficient alternative (cont’d)

- Local flows account for small-scale impact on global flow field
- Each localized flow field is obtained by resolving independent flow problems
- Any method may be used to discretize these problems

End Result
High-resolution velocity field computable with comparatively few degrees of freedom (local problems resolved once or infrequently)
The multiscale/mixed pressure solver framework
Current research problems

- Performance on compressible problems (i.e. with gas)
- Adapting coarse grid to placement of wells
- How to efficiently represent fractures on coarse grids
- How to handle strongly pressure-dependent fluid data
Performance on compressible problems (i.e. with gas)
Adapting coarse grid to placement of wells
How to efficiently represent fractures on coarse grids
How to handle strongly pressure-dependent fluid data
Current research problems

- Performance on compressible problems (i.e. with gas)
- Adapting coarse grid to placement of wells
- How to efficiently represent fractures on coarse grids
- How to handle strongly pressure-dependent fluid data
The multiscale/mixed pressure solver framework

Current research problems

- Performance on compressible problems (i.e. with gas)
- Adapting coarse grid to placement of wells
- How to efficiently represent fractures on coarse grids
- How to handle strongly pressure-dependent fluid data
Modeling of two-phase flow in fractured porous media on unstructured non-uniformly coarsened grids

- We want to determine a coarse grid suitable for saturation simulations that preserves important characteristics of the flow.
- Investigate two coarsening strategies: Non-uniform coarsening and Explicit fracture-matrix separation

Key ideas:
- Velocity computed on a fine grid which resolves the fractures
- Saturation computed on the coarse grid

Homogeneous model with 100 fractures

Heterogeneous model with 100 fractures
Non-uniform coarsening algorithm

Two parameters:

- V_{min}: Minimum volume of a coarse block
- G_{max}: Maximum flow through each coarse block

The most important points from the algorithm:

- Group cells of similar flow magnitude into coarse blocks
- Coarse blocks have to be connected
- Avoid too small blocks
- Avoid too large blocks
Non-uniform coarsening algorithm

Coarse grid: Initial step, 152 cells

Coarse grid: Step 2, 47 cells

Coarse grid: Step 3, 95 cells

Coarse grid: Step 4, 69 cells

Note: Random coloring of blocks
Explicit Fracture-Matrix Separation (EFMS)

Step 1: Introduce an initial coarse grid, here 5×5

Step 2: Separate fracture and matrix part

Step 3: Split non-connected blocks

Initial model: 100×100 grid cells, 50 fracture lines

Disadvantage: Upscaling factor difficult to tune.
Water saturation equation for a water-oil system:

\[S_m = S_m \text{ at previous time step} + \left[\text{Flux in} - \text{Flux out} \right] \]

\(S_m \) = water saturation in coarse grid block \(m \).

- First-order finite volume method discretization
- Fluxes are computed as upstream fluxes with respect to the \emph{fine} grid fluxes on the coarse interfaces
Comparison of coarse grids: NUC, EFMS and Cartesian.

Heterogeneous model with 100 fractures
Saturations solutions at 0.48 PVI.

NUC grid with 206 blocks.

EFMS grid with 236 blocks.

20 × 20 Cartesian grid

Fine grid
Further research

- Capillary diffusion and gravity modeled on non-uniformly coarsened grids
- Compressible flow on non-uniformly coarsened grids
 ⇒ Black-oil model on non-uniformly coarsened grids