Generic multiscale framework for reservoir simulation that takes geological models as input

SINTEF: Jørg E. Aarnes
Stein Krogstad
Knut-Andreas Lie
Vera L. Hauge

T. A&M: Yalchin Efendiev
Akhil Datta-Gupta

NTNU: Vegard Stenerud

Stanford: Lou Durlofsky
Motivation

Today:
Geomodels too large and complex for flow simulation: Upscaling performed to obtain
- Simulation grid(s).
- Effective parameters and pseudofunctions.

Reservoir simulation workflow

Tomorrow:
Earth Model shared between geologists and reservoir engineers — Simulators take Earth Model as input, users specify grid-resolution to fit available computer resources and project requirements.
Objective and implication

Main objective:
Build a generic framework for reservoir modeling and simulation capable of taking geomodels as input.

- generic: one implementation applicable to all types of models.

Value: Improved modeling and simulation workflows.
- Geologists may perform simulations to validate geomodel.
- Reservoir engineers gain understanding of geomodeling.
- Facilitate use of geomodels in reservoir management.
Simulation model and solution strategy
Three-phase black-oil model

Equations:
- Pressure equation
 \[ct \frac{\partial p_o}{\partial t} + \nabla \cdot \nu + \sum_j c_j v_j \cdot \nabla p_o = q \]
- Mass balance equation for each component

Primary variables:
- Darcy velocity \(\nu \)
- Liquid pressure \(p_o \)
- Phase saturations \(s_j \), aqueous, liquid, vapor.

Solution strategy: Iterative sequential

\[
\begin{align*}
v_{\nu+1} &= v(s_{j,\nu}), \\
p_{o,\nu+1} &= p_o(s_{j,\nu}), \\
s_{j,\nu+1} &= s_j(p_{o,\nu+1}, \nu+1).
\end{align*}
\]

(Fully implicit with fixed point rather than Newton iteration).
Simulation model and solution strategy
Three-phase black-oil model

Equations:
- Pressure equation
 \[c_t \frac{\partial p_o}{\partial t} + \nabla \cdot v + \sum_j c_j v_j \cdot \nabla p_o = q \]
- Mass balance equation for each component

Primary variables:
- Darcy velocity \(v \)
- Liquid pressure \(p_o \)
- Phase saturations \(s_j \), aqueous, liquid, vapor.

Solution strategy: Iterative sequential

\[v_{\nu+1} = v(s_{j,\nu}), \quad p_{o,\nu+1} = p_o(s_{j,\nu}), \quad s_{j,\nu+1} = s_j(p_{o,\nu+1}, v_{\nu+1}). \]

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:
- Grid for pressure and mass balance equations may be different.
- Multiscale methods may be used to solve pressure equation.
- Pressure eq. allows larger time-steps than mass balance eqs.
Discretization

Pressure equation:
- **Solution grid**: Geomodel — no effective parameters.
- **Discretization**: Multiscale mixed / mimetic method

Coarse grid:
obtained by
up-gridding in
index space

Mass balance equations:
- **Solution grid**: Non-uniform coarse grid.
- **Discretization**: Two-scale upstream weighted FV method — integrals evaluated on geomodel.
- **Pseudofunctions**: No.
Multiscale mixed/mimetic method (4M)
Generic two-scale approach to discretizing the pressure equation:
- Mixed FEM formulation on coarse grid.
- Flow patterns resolved on geomodel with mimetic FDM.
Standard upscaling:
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

![Image of standard upscaling](image)

Coarse grid blocks:

![Coarse grid blocks](image)
Standard upscaling:

Coarse grid blocks:

Flow problems:
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

- Coarse grid blocks:

- Flow problems:

\[
\begin{array}{c|c}
P=1 & P=0 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
P=0 \quad P=1 \\
\end{array}
\]
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

Coarse grid blocks:

Flow problems:

\[\begin{array}{c|c}
P=1 & P=0 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
P=0 & P=1 \\
\hline
\end{array} \]
Standard upscaling:

Coarse grid blocks:

Flow problems:

- \[P=1 \]
- \[P=0 \]
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

- Coarse grid blocks:
- Flow problems:

Multiscale method (4M):

- Coarse grid blocks:
- Flow problems:
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

Coarse grid blocks:

Flow problems:

\[P=1 \rightarrow P=0 \]

\[P=0 \rightarrow P=1 \]

Multiscale method (4M):

Coarse grid blocks:

Flow problems:

\[q=1 \rightarrow q=-1 \]

\[q=1 \rightarrow q=1 \]
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

Coarse grid blocks:

Flow problems:

P=1 P=0
↓ ↓

↑ ↑

Multiscale method (4M):

Coarse grid blocks:

Flow problems:

p=1 p=0
↓ ↓

q=1 q=-1
↓ ↓

q=1
Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

- Coarse grid blocks:

- Flow problems:
 - $P=1$
 - $P=0$
 - $P=1$

Multiscale method (4M):

- Coarse grid blocks:

- Flow problems:
 - $q=1$
 - $q=-1$
 - $q=1$
Discrete hybrid formulation: \((u, v)_m = \int_{T_m} u \cdot v \, dx\)

Find \(v \in V, \, p \in U, \, \pi \in \Pi\) such that for all blocks \(T_m\) we have

\[
(\lambda^{-1} v, u)_m - (p, \nabla \cdot u)_m + \int_{\partial T_m} \pi u \cdot n \, ds = (\omega g \nabla D, u)_m
\]

\[
(c_t \frac{\partial p_o}{\partial t}, l)_m + (\nabla \cdot v, l)_m + (\sum_j c_j v_j \cdot \nabla p_o, l)_m = (q, l)_m
\]

\[
\int_{\partial T_m} \mu v \cdot n \, ds = 0.
\]

for all \(u \in V, \, l \in U\) and \(\mu \in \Pi\).

Solution spaces and variables: \(\mathcal{T} = \{T_m\}\)

\(V \subset H^{\text{div}}(\mathcal{T}), \quad U = \mathcal{P}_0(\mathcal{T}), \quad \Pi = \mathcal{P}_0(\partial T_m \cap \partial T_n)\).

\(v = \text{velocity}, \quad p = \text{block pressures}, \quad \pi = \text{interface pressures}.\)
Each coarse grid block is a connected set of cells from geomodel.

Example: Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations:
One block assigned to each cell in geomodel with well perforation.
Definition of approximation space for velocity:
The approximation space V is spanned by basis functions ψ_i^m that are designed to embody the impact of fine-scale structures.

Definition of basis functions:
For each pair of adjacent blocks T_m and T_n, define ψ by

$$\psi = -K \nabla u \text{ in } T_m \cup T_n,$$
$$\psi \cdot n = 0 \text{ on } \partial(T_m \cup T_n),$$
$$\nabla \cdot \psi = \begin{cases} w_m & \text{in } T_m, \\ -w_n & \text{in } T_n, \end{cases}$$

Split ψ: $\psi_i^m = \psi|_{T_m}$, $\psi_j^n = -\psi|_{T_n}$.

Basis functions time-independent if w_m is time-independent.
Role of weight functions

Let \((w_m, 1)_m = 1\) and let \(v^i_m\) be coarse-scale coefficients.

\[
v = \sum_{m,i} v^i_m \psi^i_m \Rightarrow (\nabla \cdot v)|_{T_m} = w_m \sum_i v^i_m.
\]

\(w_m\) gives distribution of \(\nabla \cdot v\) among cells in geomodel.

Choice of weight functions

\[
\nabla \cdot v \sim c_t \frac{\partial p_o}{\partial t} + \sum_j c_j v_j \cdot \nabla p_o
\]

- Use adaptive criteria to decide when to redefine \(w_m\).
- Use \(w_m = \phi\) \((c_t \sim \phi\) when saturation is smooth).

\(\rightarrow\) Basis functions computed once, or updated infrequently.
Multiscale mixed/mimetic method
Workflow

At initial time
Detect all adjacent blocks

Compute ψ for each domain

For each time-step:
- Assemble and solve coarse grid system.
- Recover fine grid velocity.
- Solve mass balance equations.
Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product \((u, \sigma v)\) is replaced with an approximate explicit form \((u, v \in H^{\text{div}} \text{ and } \sigma \text{ SPD})\), — no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:

- Exact for linear pressure.
- Same implementation applies to all grids.
- Mimetic inner product *needed* to evaluate terms in multiscale formulation, e.g., \((\psi^i_m, \lambda^{-1} \psi^j_m)\) and \((\omega g \nabla D, \psi_{m,j})\).
Grid block for cells with a well
- correct well-block pressure
- no near well upscaling
- free choice of well model.

Alternative well models

1. Peaceman model:

\[q_{\text{perforation}} = -W_{\text{block}}(p_{\text{block}} - p_{\text{perforation}}). \]

Calculation of well-index grid dependent.

2. Exploit pressures on grid interfaces:

\[q_{\text{perforation}} = -\sum_{i} W_{\text{face}i}(p_{\text{face}i} - p_{\text{perforation}}). \]

Generic calculation of \(W_{\text{face}i} \).
Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Primary features
- Coarse pressure solution, subgrid resolution at well locations.
- Coarse velocity solution with subgrid resolution everywhere.
Multiscale mixed/mimetic method
Example: Pressure and velocity errors for each layer of SPE10. Coarse grid: 5×11.

Observation:
Consistent velocity accuracy, occasionally large pressure drop error.
Multiscale mixed/mimetic method
Layer 1, 37 and 46 of SPE10

Logarithm of permeability in layer 1 of SPE10

Logarithm of permeability in layer 37 of SPE10

Logarithm of permeability in layer 46 of SPE10
Multiscale mixed/mimetic method
Pressure and velocity fields for layer 1 of SPE10
Multiscale mixed/mimetic method
Pressure and velocity fields for layer 37 of SPE10

Pressure field computed with mimetic FDM

Pressure field computed with MsMFEM

Velocity field computed with mimetic FDM

Velocity field computed with MsMFEM
Multiscale mixed/mimetic method
Pressure and velocity fields for layer 46 of SPE10
Multiscale mixed/mimetic method
Example: Saturation errors for each layer of SPE10. Coarse grid: 5×11.

Saturation errors after 0.2 PVI of gas injection and 0.2 PVI of water injection: Aqueous saturation error peaks correspond to pressure drop error peaks.
Multiscale mixed/mimetic method
Saturation fields after 0.2 PVI of gas injection and 0.2 PVI of water injection for layer 1
Multiscale mixed/mimetic method
Saturation fields after 0.2 PVI of gas injection and 0.2 PVI of water injection for layer 37

Aqueous saturation for simulation with mimetic FDM

Vapor saturation for simulation with mimetic FDM

Aqueous saturation for simulation with MsMFEM

Vapor saturation for simulation with MsMFEM
Multiscale mixed/mimetic method
Saturation fields after 0.2 PVI of gas injection and 0.2 PVI of water injection for layer 46
Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers.

Coarse grid: 5 × 11 × 17
- Reference
- 4M
- Upscaling + downscaling

4M+streamlines: ~ 2 minutes on desktop PC.
Krogstad and Durlofsky, 2007: Fine grid to annulus, block for each well segment
- No well model needed.
- Drift-flux wellbore flow.
Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:
- 1 million cells, 32 injectors, and 69 producers
- Matching travel-time and water-cut amplitude at producers
- Permeability updated in blocks with high average sensitivity
 → Only few multiscale basis functions updated.

Computation time: \(\sim 17 \) min. on desktop PC. (6 iterations).
Task: Given ability to model velocity on geomodels, and transport on coarse grids:

Find a suitable coarse grid that resolves flow patterns and minimize accuracy loss.
Coarse grid for solving mass balance equations
Example: Layer 37 SPE10 (Christie and Blunt), 5 spot well pattern.
Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define \(g = \ln |v| \) and \(D = (\max(g) - \min(g))/10 \).

Region \(i = \{ c : \min(g) + (i - 1)D < g(c) < \min(g) + iD \} \).

Initial grid: connected subregions — 733 blocks
Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define \(g = \ln |v| \) and \(D = (\max(g) - \min(g))/10. \)

Region \(i = \{ c : \min(g) + (i - 1)D < g(c) < \min(g) + iD \} \).

Initial grid: connected subregions — 733 blocks

Merge: If \(|B| < c \), merge \(B \) with a neighboring block \(B' \) with

\[
\frac{1}{|B|} \int_B \ln |v| \, dx \approx \frac{1}{|B'|} \int_{B'} \ln |v| \, dx
\]

Step 2: 203 blocks
Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — $\int_B \ln |v| \, dx < C$ — is violated, do
- Start at ∂B and build new blocks B' that meet criteria.
- Define $B = B \setminus B'$ and progress inwards until B meets criteria.

Step3: 914 blocks
Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — \(\int_B \ln |v| \, dx < C \) — is violated, do
- Start at \(\partial B \) and build new blocks \(B' \) that meet criteria.
- Define \(B = B \setminus B' \) and progress inwards until \(B \) meets criteria.

Coarse grid: Step 3

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Final grid: 690 blocks
Layer 68 SPE10, 5 spot well pattern

Geomodel: 13200 cells

Logarithm of permeability: Layer 68

Logarithm of velocity on geomodel

Logarithm of velocity on Cartesian coarse grid

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 660 cells

Coarse grid: 649 cells

Coarse grid: 264 cells

Coarse grid: 257 cells
Experimental setup:

Model: Incompressible two-phase flow (oil and water).

Initial state: Completely oil-saturated.

Relative permeability: \(k_{rj} = s_j^2, \quad 0 \leq s_j \leq 1. \)

Viscosity ratio: \(\mu_o/\mu_w = 10. \)

Error measures: (Time measured in PVI)

Saturation error: \(e(S) = \int_0^1 \frac{\|S(\cdot,t) - S_{\text{ref}}(\cdot,t)\|_{L^1(\Omega)}}{\|S_{\text{ref}}(\cdot,t)\|_{L^1(\Omega)}} \, dt. \)

Water-cut error: \(e(w) = \frac{\|w - w_{\text{ref}}\|_{L^2([0,1])}}{\|w_{\text{ref}}\|_{L^2([0,1])}}. \)
Example 1: Geomodel = individual layers from SPE10
5-spot well pattern, upscaling factor ~ 20

Observations:

- First 35 layers smooth \Rightarrow Uniform grid adequate.
- Last 50 layers fluvial \Rightarrow Uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.
Example 2: Geomodel = unstructured corner-point grid
20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ~ 25

\leftarrow 2 realizations.
Geomodel: 15206 cells

Uniform grid: 838 blocks
Non-uniform grid: 647–704 blocks

Observations:
- Coarsening algorithm applicable to unstructured grids
 — accuracy consistent with observations for SPE10 models.
- Results obtained with uniform grid (in index space) inaccurate.
Example 3: Geomodel = four bottom layers from SPE10
Robustness with respect to degree of coarsening, 5-spot well pattern

<table>
<thead>
<tr>
<th>Number of cells in grid (upsampling factor 4–400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform grid</td>
</tr>
<tr>
<td>30x110x4 13200</td>
</tr>
<tr>
<td>20x55x4 4400</td>
</tr>
<tr>
<td>15x44x2 1320</td>
</tr>
<tr>
<td>10x22x2 440</td>
</tr>
<tr>
<td>6x22x1 132</td>
</tr>
<tr>
<td>Non-U. grid</td>
</tr>
<tr>
<td>7516</td>
</tr>
<tr>
<td>3251</td>
</tr>
<tr>
<td>1333</td>
</tr>
<tr>
<td>419</td>
</tr>
<tr>
<td>150</td>
</tr>
</tbody>
</table>

Observations:

- Non-uniform grid gives better accuracy than uniform grid.
- Water-cut error almost grid-independent for non-uniform grid.
Example 4: Geomodel = four bottom layers from SPE10
Dependency on initial flow conditions, upscaling factor ~ 40

Grid generated with respective well patterns.

Grid generated with pattern C

Observation:
Grid resolves high-permeable regions with good connectivity — Grid need *not* be regenerated if well pattern changes.
Example 5: Geomodel = four bottom layers from SPE10
Robustness with respect changing well positions and well rates, upscaling factor ~ 40

5-spot, random prod. rates
grid generated with equal rates

well patterns: 4 cycles A–E
grid generated with pattern C

Observations:
- NU water-cut tracks reference curve closely: 1%–3% error.
- Uniform grid gives $\sim 10\%$ water-cut error.
Conclusions

Multiscale mixed/mimetic method:
- Reservoir simulation tool that can take geomodels as input.
- Solutions in close correspondence with solutions obtained by solving the pressure equation directly.
- Computational cost comparable to flow based upscaling.

Applications:
- Reservoir simulation on geomodels
- Near-well modeling / Improved well models
- History matching on geomodels

Potential value for industry:
Improved modeling and simulation workflows.
Conclusions

Coarse grid for mass balance equations:

- A generic semi-automated algorithm for generating coarse grids that resolve flow patterns has been presented.
- Solutions are significantly more accurate than solutions obtained on uniform coarse grids with similar number of cells.
- Water-cut error: 1%–3% — pseudofunctions superfluous.
- Grid need not be regenerated when flow conditions change!

Potential application:

User-specified grid-resolution to fit available computer resources.

Relation to other methods:

Belongs to family of flow-based grids\(^a\): designed for flow scenarios where heterogeneity, rather than gravity, dominates flow patterns.
