
Non-uniformly coarsened grid models and a mixed
multiscale FEM for reservoir simulation on a geological

scale.

Stein Krogstad
(Joint work with Jørg E. Aarnes and Knut-Andreas Lie)

SINTEF ICT, Dept. Applied Mathematics

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 1



Motivation

We have seen (in earlier talks) that the Mixed Multiscale FEM
(MMsFEM) is a robust alternative to upscaling, and has the
potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?

• Motivated from the non-uniform coarsening approach in
upscaling.

• Potential of reducing the number of grid blocks needed to
obtain satisfactory solutions (increased speed).

• The MMsFEM handles arbitrary gridblocks ⇒ (almost) no
limitation on grids.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 2



Motivation

We have seen (in earlier talks) that the Mixed Multiscale FEM
(MMsFEM) is a robust alternative to upscaling, and has the
potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?
• Motivated from the non-uniform coarsening approach in

upscaling.

• Potential of reducing the number of grid blocks needed to
obtain satisfactory solutions (increased speed).

• The MMsFEM handles arbitrary gridblocks ⇒ (almost) no
limitation on grids.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 2



Motivation

We have seen (in earlier talks) that the Mixed Multiscale FEM
(MMsFEM) is a robust alternative to upscaling, and has the
potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?
• Motivated from the non-uniform coarsening approach in

upscaling.
• Potential of reducing the number of grid blocks needed to

obtain satisfactory solutions (increased speed).

• The MMsFEM handles arbitrary gridblocks ⇒ (almost) no
limitation on grids.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 2



Motivation

We have seen (in earlier talks) that the Mixed Multiscale FEM
(MMsFEM) is a robust alternative to upscaling, and has the
potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?
• Motivated from the non-uniform coarsening approach in

upscaling.
• Potential of reducing the number of grid blocks needed to

obtain satisfactory solutions (increased speed).
• The MMsFEM handles arbitrary gridblocks ⇒ (almost) no

limitation on grids.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 2



Outline of talk:

• Introduction.

• Base functions for the MMsFEM.
• Discussion on criteria for refining/coarsening grids.
• Numerical experiments.
• Conclusion / further work.
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Model equations

Elliptic pressure equation:

v = −λ(S)K∇p

∇ · v = q

Hyperbolic saturation equation:

φ
∂S

∂t
+ ∇ · (vf(S)) = qw

• Total velocity:

v = vo + vw

• Total mobility:

λ = λw(S) + λo(S)

= krw(S)/µw + kro(S)/µo

• Saturation water: S
• Fractional flow water:

f(S) = λw(S)/λ(S)
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Mixed formulation of the pressure equation:

Find (v, p) ∈ H1,div
0

× L2 such that
∫

(λK)−1u · vdx−

∫

p∇ · vdx = 0, ∀u ∈ H1,div
0

,

∫

l∇ · vdx =

∫

qldx, ∀l ∈ L2.

Multiscale discretisation: Seek solutions in low-dimensional
subspaces

Ums ⊂ H1,div
0

and V ∈ L2,

where local fine scale properties are incorporated into the basis
functions.
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Grids and basis functions

We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

We construct a coarse grid, and choose the discretisation
spaces V and Ums such that:

• For each coarse block Ti,there is a basis function φi ∈ V .
• For each coarse edge Γij , there is a basis function
ψij ∈ Ums.
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Basis functions for the velocity field

For each coarse edge Γij define a basis function

ψij : Ti ∪ Tj → R2

with unit flux through Γij , and no flow across ∂(Ti ∪ Tj).

We use ψij = −λK∇φij with

∇ · ψij =











fi(x)/
∫

Ti
fi(x)dx for x ∈ Ti,

−fj(x)/
∫

Tj
fj(x)dx for x ∈ Tj ,

0 otherwise,

with BCs ψij · n = 0 on ∂(Ti ∪ Tj).
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Basis functions for the velocity field cont.

If
∫

Ti
qdx 6= 0 (Ti contains a source), then

fi(x) = q(x).

Otherwise we may choose

fi(x) = 1,

or to avoid high flow through low-perm regions

fi(x) = (det(K(x)))
1

d .
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Non uniform grids - for upscaling and the MMsFEM

• In the non-uniform coarsening approach for upscaling, the
domain is modelled in greater detail in regions of potential
high velocity.

• However: the MMsFEM can represent such regions
correctly even on a very coarse scale.

• Why bother refining?
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When is refinement required?

Case 1: Non uniform direction of flux across coarse edges.

Criteria: Given an initial fine grid velocity field v0, we modify the
coarse grid such that

∫

Γ
|v0 · n| ds

∣

∣

∫

Γ
(v0 · n)ds

∣

∣

is close to 1 for every coarse edge Γ.
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When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Consider the following permeability field with everywhere K = 1,
except barriers (blue) with K = 10−10.

Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
With the MMsFEM on the coarse grid we obtain the following
velocity fields:

Fine grid Coarse − constant source

Coarse − varying source

Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Criteria for refinement: For every basis function ψij we monitor

ψT
ijK

−1ψij .

If for some x ∈ Ti, say, ψij(x)K(x)−1ψij(x) achieves an
unnatural high value, then ψij(x) is trashed and Ti is split in two
new blocks.

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 11



When is refinement required?

Case2: Flow of basis functions is forced through barriers.
Velocity fields for all four cases:
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Remarks

The first refinement criterion is based on a global velocity field,
while the second on local properties of the permeability field.

Regularization

• Long/thin grid blocks might
give rise to nonphysical flow.

•

The number of edges associ-
ated with each grid block de-
termines the sparsity pattern
of the discretization matrix.
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Numerical experiments-grid construction

• An initial fine grid (single phase) velocity field v0 is
computed on the fine grid.

• An initial uniform coarse grid is constructed.
• For any coarse edge Γ if

[

max
Γ

(v0 · n) − min
Γ

(v0 · n)

]

∫

Γ
|v0 · n|

∣

∣

∫

Γ
(v0 · n)

∣

∣

> condition,

then one of the neighboring (randomly chosen) blocks are
split.

• Further splitting is performed according to

ψTK−1ψ > condition

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 14



Numerical experiments-grid construction

• An initial fine grid (single phase) velocity field v0 is
computed on the fine grid.

• An initial uniform coarse grid is constructed.

• For any coarse edge Γ if

[

max
Γ

(v0 · n) − min
Γ

(v0 · n)

]

∫

Γ
|v0 · n|

∣

∣

∫

Γ
(v0 · n)

∣

∣

> condition,

then one of the neighboring (randomly chosen) blocks are
split.

• Further splitting is performed according to

ψTK−1ψ > condition

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 14



Numerical experiments-grid construction

• An initial fine grid (single phase) velocity field v0 is
computed on the fine grid.

• An initial uniform coarse grid is constructed.
• For any coarse edge Γ if

[

max
Γ

(v0 · n) − min
Γ

(v0 · n)

]

∫

Γ
|v0 · n|

∣

∣

∫

Γ
(v0 · n)

∣

∣

> condition,

then one of the neighboring (randomly chosen) blocks are
split.

• Further splitting is performed according to

ψTK−1ψ > condition

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 14



Numerical experiments-grid construction

• An initial fine grid (single phase) velocity field v0 is
computed on the fine grid.

• An initial uniform coarse grid is constructed.
• For any coarse edge Γ if

[

max
Γ

(v0 · n) − min
Γ

(v0 · n)

]

∫

Γ
|v0 · n|

∣

∣

∫

Γ
(v0 · n)

∣

∣

> condition,

then one of the neighboring (randomly chosen) blocks are
split.

• Further splitting is performed according to

ψTK−1ψ > condition

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. – p. 14



Numerical experiments 1

A model problem with barriers/ high permeability channels
The fine scale (128 × 128) permeability field consists of

• channels: K = 104,
• barriers: K = 10−4,
• everywhere else K = 1.
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Numerical experiments 1, cont.

The simulation is run with unit mobility λ = 1 ⇒ f(S) = S (the
velocity is computed only once).
We apply four different grids:

• Fine grid, 128 × 128 blocks.
• Coarse grid, 8 × 8.
• Finer coarse grid, 32 × 32

• Non-uniform grid, 230 blocks.
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Numerical experiments 1, cont.

Saturation profiles at t = 0.12.

Fine grid Initial coarse grid

Finer coarse grid Non−uniform grid
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Numerical experiments 1, cont.

Saturation profiles at t = 0.36.

Fine grid Initial coarse grid

Finer coarse grid Non−uniform grid
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Numerical experiments 1, cont.

Saturation profiles at t = 1.2.

Fine grid Initial coarse grid

Finer coarse grid Non−uniform grid
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Numerical experiments 1, cont.

Water cut curves:
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Numerical experiments 2

The bottom layer of the 10. SPE comparative solution project.

Note: The second criteria does not apply to this case (it doesn’t
find any barriers).
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Numerical experiments 2, cont.

We apply four different grids:
• Fine grid, 60 × 220 blocks.
• Coarse grid,with some refinement around the wells

6 × 8 + 12 blocks.
• Finer coarse grid, 12 × 44 blocks.
• Non-uniform grid, 110 blocks.
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Numerical experiments 2, cont.

Saturation profiles at t = 0.15.

Fine grid Initial coarse grid Finer coarse grid Non−uniform grid
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Numerical experiments 2, cont.

Saturation profiles at t = 0.45.

Fine grid Initial coarse grid Finer coarse grid Non−uniform grid
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Numerical experiments 2, cont.

Saturation profiles at t = 1.5.

Fine grid Initial coarse grid Finer coarse grid Non−uniform grid
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Numerical experiments 2, cont.

Water cut curves (λ = 1, f(S) = S):
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Numerical experiments 2, cont.

Water cut curves for

(non linear mobility)

λw =
(S∗)2

µw

, λo =
(1 − S∗)2

µo

,

where S∗ = (S − Swc)/(1 − Swc − Sor), Swc = Sor = 0.2 and
µo/µw = 10.
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Numerical experiments 2, cont.
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Final remarks

• We have seen that the use of non-unform grid models for
the MMsFEM can reduce the number of required grid
blocks, and thus has a potential for computational
speed-up.

Future work:

• Solving the coarse system (preconditioning).
• Adaptivity.
• Theory...
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