Non-uniformly coarsened grid models and a mixed multiscale FEM for reservoir simulation on a geological scale.

Stein Krogstad

(Joint work with Jørg E. Aarnes and Knut-Andreas Lie)

SINTEF ICT, Dept. Applied Mathematics

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. - p. 1

We have seen (in earlier talks) that the Mixed Multiscale FEM (MMsFEM) is a robust alternative to upscaling, and has the potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?

We have seen (in earlier talks) that the Mixed Multiscale FEM (MMsFEM) is a robust alternative to upscaling, and has the potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?

Motivated from the non-uniform coarsening approach in upscaling.

We have seen (in earlier talks) that the Mixed Multiscale FEM (MMsFEM) is a robust alternative to upscaling, and has the potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?

- Motivated from the non-uniform coarsening approach in upscaling.
- Potential of reducing the number of grid blocks needed to obtain satisfactory solutions (increased speed).

We have seen (in earlier talks) that the Mixed Multiscale FEM (MMsFEM) is a robust alternative to upscaling, and has the potential for large geomodels.

Why use the MMsFEM with non-uniform coarsened grids?

- Motivated from the non-uniform coarsening approach in upscaling.
- Potential of reducing the number of grid blocks needed to obtain satisfactory solutions (increased speed).
- The MMsFEM handles arbitrary gridblocks \Rightarrow (almost) no limitation on grids.

• Introduction.

- Introduction.
- Base functions for the MMsFEM.

- Introduction.
- Base functions for the MMsFEM.
- Discussion on criteria for refining/coarsening grids.

- Introduction.
- Base functions for the MMsFEM.
- Discussion on criteria for refining/coarsening grids.
- Numerical experiments.

- Introduction.
- Base functions for the MMsFEM.
- Discussion on criteria for refining/coarsening grids.
- Numerical experiments.
- Conclusion / further work.

Model equations

Elliptic pressure equation:

$$v = -\lambda(S)K\nabla p$$
$$\nabla \cdot v = q$$

Hyperbolic saturation equation:

$$\phi \frac{\partial S}{\partial t} + \nabla \cdot (vf(S)) = q_w$$

Model equations

Elliptic pressure equation:

 $v = -\lambda(S) K \nabla p$ $\nabla \cdot v = q$

Hyperbolic saturation equation:

$$\phi \frac{\partial S}{\partial t} + \nabla \cdot (vf(S)) = q_w$$

• Total velocity:

 $v = v_o + v_w$

• Total mobility:

$$\lambda = \lambda_w(S) + \lambda_o(S)$$
$$= k_{rw}(S)/\mu_w + k_{ro}(S)/\mu_o$$

- Saturation water: S
- Fractional flow water:

 $f(S) = \lambda_w(S) / \lambda(S)$

Mixed formulation of the pressure equation:

Find $(v, p) \in H_0^{1, \operatorname{div}} \times L^2$ such that

$$\int (\lambda K)^{-1} u \cdot v dx - \int p \nabla \cdot v dx = 0, \qquad \forall u \in H_0^{1, \operatorname{div}},$$
$$\int l \nabla \cdot v dx = \int q l dx, \quad \forall l \in L^2.$$

() SINTEF

Mixed formulation of the pressure equation:

Find $(v, p) \in H_0^{1, \operatorname{div}} \times L^2$ such that

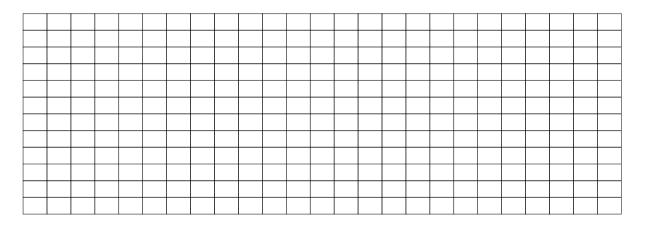
$$\int (\lambda K)^{-1} u \cdot v dx - \int p \nabla \cdot v dx = 0, \qquad \forall u \in H_0^{1, \operatorname{div}},$$
$$\int l \nabla \cdot v dx = \int q l dx, \quad \forall l \in L^2.$$

Multiscale discretisation: Seek solutions in low-dimensional subspaces

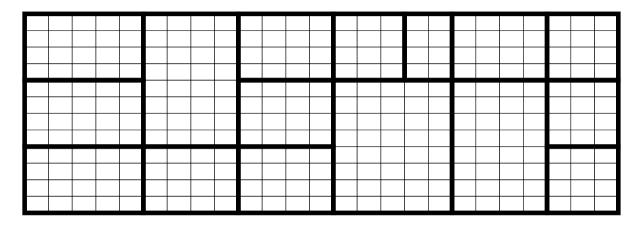
$$U^{ms} \subset H_0^{1,\operatorname{div}} \text{ and } V \in L^2,$$

where local fine scale properties are incorporated into the basis functions.

We assume we are given a *fine* grid with permeability and porosity attached to each fine grid block.

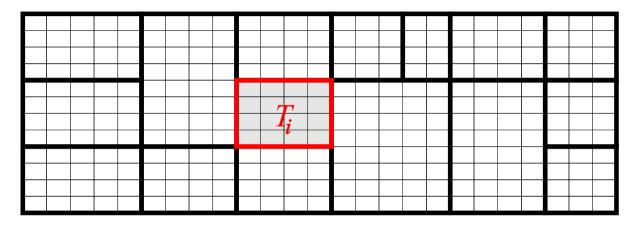


We assume we are given a *fine* grid with permeability and porosity attached to each fine grid block.



We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

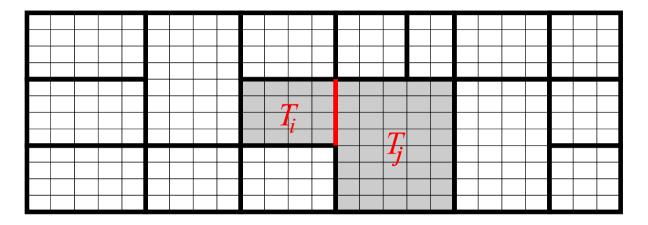
We assume we are given a *fine* grid with permeability and porosity attached to each fine grid block.



We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

• For each coarse block T_i , there is a basis function $\phi_i \in V$.

We assume we are given a *fine* grid with permeability and porosity attached to each fine grid block.



We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

Basis functions for the velocity field

For each coarse edge Γ_{ij} define a basis function

$$\psi_{ij}: T_i \cup T_j \to R^2$$

with unit flux through Γ_{ij} , and no flow across $\partial(T_i \cup T_j)$.

Basis functions for the velocity field

For each coarse edge Γ_{ij} define a basis function

$$\psi_{ij}: T_i \cup T_j \to R^2$$

with unit flux through Γ_{ij} , and no flow across $\partial(T_i \cup T_j)$. We use $\psi_{ij} = -\lambda K \nabla \phi_{ij}$ with

$$\nabla \cdot \psi_{ij} = \begin{cases} f_i(x) / \int_{T_i} f_i(x) dx & \text{ for } x \in T_i, \\ -f_j(x) / \int_{T_j} f_j(x) dx & \text{ for } x \in T_j, \\ 0 & \text{ otherwise}, \end{cases}$$

with BCs $\psi_{ij} \cdot n = 0$ on $\partial(T_i \cup T_j)$.

Basis functions for the velocity field cont.

If $\int_{T_i} q dx \neq 0$ (T_i contains a source), then

 $f_i(x) = q(x).$

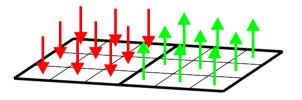
Basis functions for the velocity field cont.

If $\int_{T_i} q dx \neq 0$ (T_i contains a source), then

$$f_i(x) = q(x).$$

Otherwise we may choose

$$f_i(x) = 1,$$



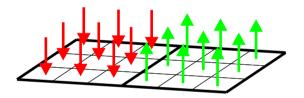
Basis functions for the velocity field cont.

If $\int_{T_i} q dx \neq 0$ (T_i contains a source), then

$$f_i(x) = q(x).$$

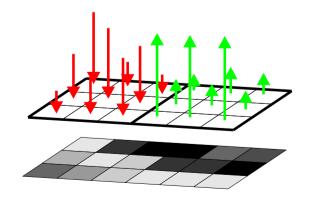
Otherwise we may choose

$$f_i(x) = 1,$$



or to avoid high flow through low-perm regions

$$f_i(x) = (\det(K(x)))^{\frac{1}{d}}.$$



() SINTEF

Non uniform grids - for upscaling and the MMsFEM

 In the non-uniform coarsening approach for upscaling, the domain is modelled in greater detail in regions of potential high velocity.

Non uniform grids - for upscaling and the MMsFEM

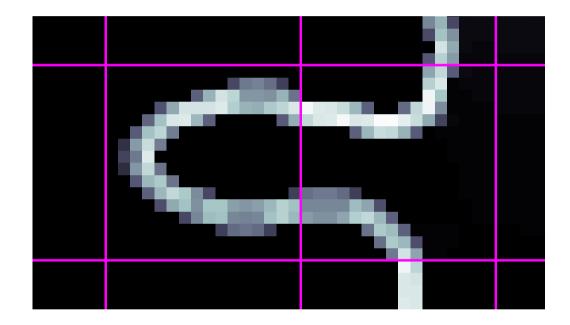
- In the non-uniform coarsening approach for upscaling, the domain is modelled in greater detail in regions of potential high velocity.
- **However**: the MMsFEM can represent such regions correctly even on a very coarse scale.

Non uniform grids - for upscaling and the MMsFEM

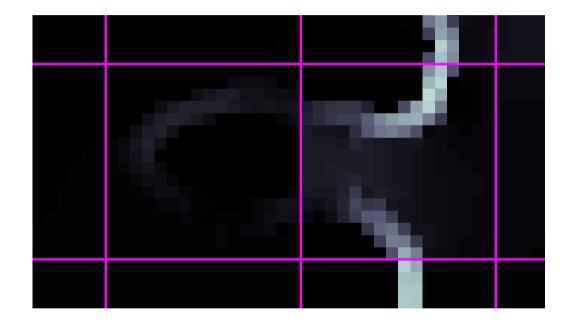
- In the non-uniform coarsening approach for upscaling, the domain is modelled in greater detail in regions of potential high velocity.
- **However**: the MMsFEM can represent such regions correctly even on a very coarse scale.
- Why bother refining?

Case 1: Non uniform direction of flux across coarse edges.

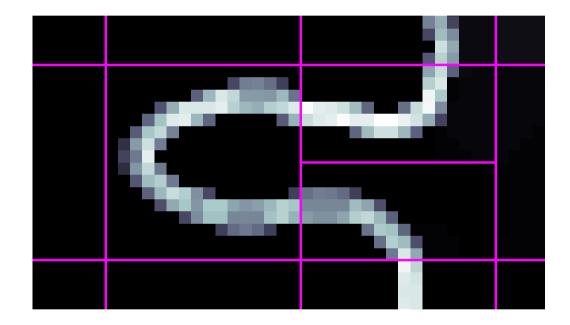
Case 1: Non uniform direction of flux across coarse edges. Consider the following fine grid velocity field:



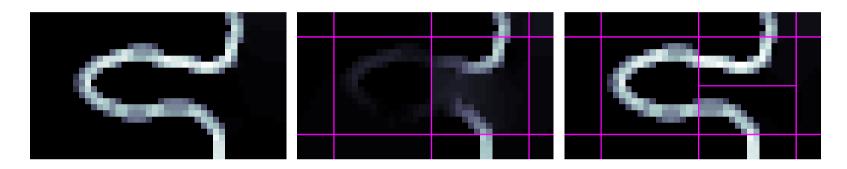
Case 1: Non uniform direction of flux across coarse edges. Solving on the coarse grid, we obtain



Case 1: Non uniform direction of flux across coarse edges. After a local refinement , we obtain



Case 1: Non uniform direction of flux across coarse edges.

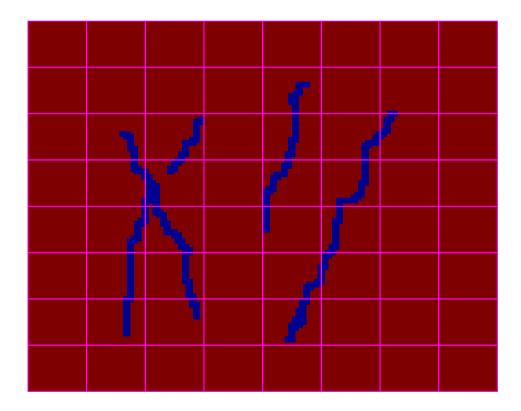


Criteria: Given an initial fine grid velocity field v_0 , we modify the coarse grid such that

 $\frac{\int_{\Gamma} |v_0 \cdot n| \, ds}{\left| \int_{\Gamma} (v_0 \cdot n) ds \right|}$

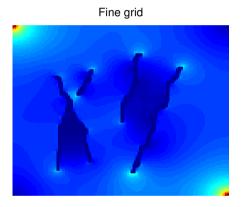
is close to 1 for every coarse edge Γ .

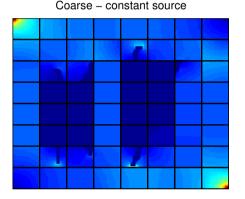
Case2: Flow of basis functions is forced through barriers. Consider the following permeability field with everywhere K = 1, except barriers (blue) with $K = 10^{-10}$.



() SINTEF

Case2: Flow of basis functions is forced through barriers. With the MMsFEM on the coarse grid we obtain the following velocity fields:





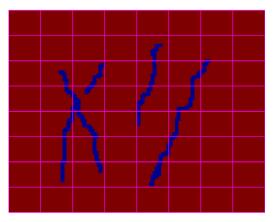
Coarse - varying source

_			7		
	1				
		- 4			
÷.			1		
					1

Case2: Flow of basis functions is forced through barriers. Criteria for refinement: For every basis function ψ_{ij} we monitor

 $\psi_{ij}^T K^{-1} \psi_{ij}.$

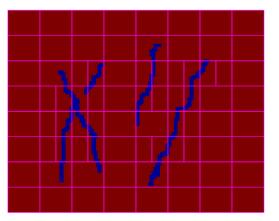
If for some $x \in T_i$, say, $\psi_{ij}(x)K(x)^{-1}\psi_{ij}(x)$ achieves an *unnatural* high value, then $\psi_{ij}(x)$ is trashed and T_i is split in two new blocks.



Case2: Flow of basis functions is forced through barriers. Criteria for refinement: For every basis function ψ_{ij} we monitor

$$\psi_{ij}^T K^{-1} \psi_{ij}.$$

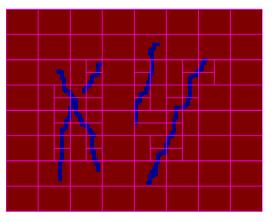
If for some $x \in T_i$, say, $\psi_{ij}(x)K(x)^{-1}\psi_{ij}(x)$ achieves an *unnatural* high value, then $\psi_{ij}(x)$ is trashed and T_i is split in two new blocks.



Case2: Flow of basis functions is forced through barriers. Criteria for refinement: For every basis function ψ_{ij} we monitor

$$\psi_{ij}^T K^{-1} \psi_{ij}.$$

If for some $x \in T_i$, say, $\psi_{ij}(x)K(x)^{-1}\psi_{ij}(x)$ achieves an *unnatural* high value, then $\psi_{ij}(x)$ is trashed and T_i is split in two new blocks.

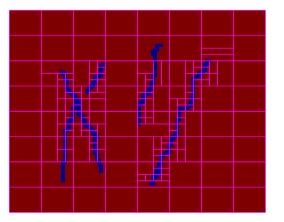


When is refinement required?

Case2: Flow of basis functions is forced through barriers. Criteria for refinement: For every basis function ψ_{ij} we monitor

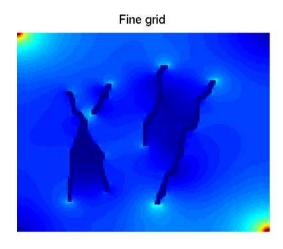
$$\psi_{ij}^T K^{-1} \psi_{ij}.$$

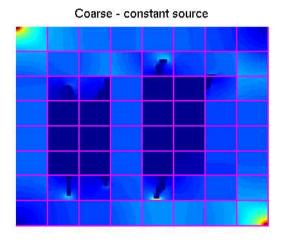
If for some $x \in T_i$, say, $\psi_{ij}(x)K(x)^{-1}\psi_{ij}(x)$ achieves an *unnatural* high value, then $\psi_{ij}(x)$ is trashed and T_i is split in two new blocks.

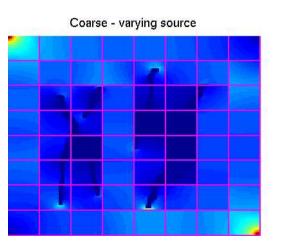


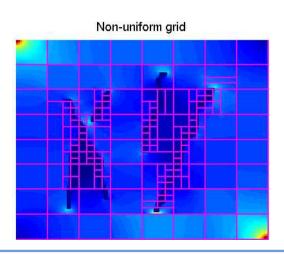
When is refinement required?

Case2: Flow of basis functions is forced through barriers. Velocity fields for all four cases:









SINTEF

Multiscale modeling, and applications in fluid flow and material sciences. October 20, 2004. - p. 12

Remarks

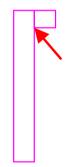
The first refinement criterion is based on a global velocity field, while the second on local properties of the permeability field.

Remarks

The first refinement criterion is based on a global velocity field, while the second on local properties of the permeability field.

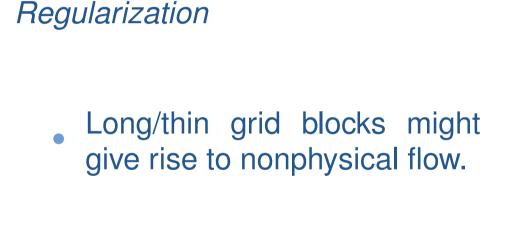
Regularization

• Long/thin grid blocks might give rise to nonphysical flow.

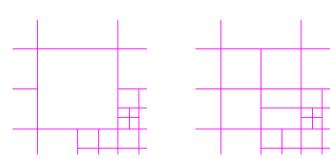


Remarks

The first refinement criterion is based on a global velocity field, while the second on local properties of the permeability field.



The number of edges associated with each grid block determines the sparsity pattern of the discretization matrix.



• An initial fine grid (single phase) velocity field v_0 is computed on the fine grid.

- An initial fine grid (single phase) velocity field v_0 is computed on the fine grid.
- An initial uniform coarse grid is constructed.

- An initial fine grid (single phase) velocity field v_0 is computed on the fine grid.
- An initial uniform coarse grid is constructed.
- For any coarse edge Γ if

$$\left[\max_{\Gamma}(v_0 \cdot n) - \min_{\Gamma}(v_0 \cdot n)\right] \frac{\int_{\Gamma} |v_0 \cdot n|}{\left|\int_{\Gamma}(v_0 \cdot n)\right|} > \text{condition},$$

then one of the neighboring (randomly chosen) blocks are split.

- An initial fine grid (single phase) velocity field v_0 is computed on the fine grid.
- An initial uniform coarse grid is constructed.
- For any coarse edge Γ if

$$\left[\max_{\Gamma}(v_0 \cdot n) - \min_{\Gamma}(v_0 \cdot n)\right] \frac{\int_{\Gamma} |v_0 \cdot n|}{\left|\int_{\Gamma}(v_0 \cdot n)\right|} > \text{condition},$$

then one of the neighboring (randomly chosen) blocks are split.

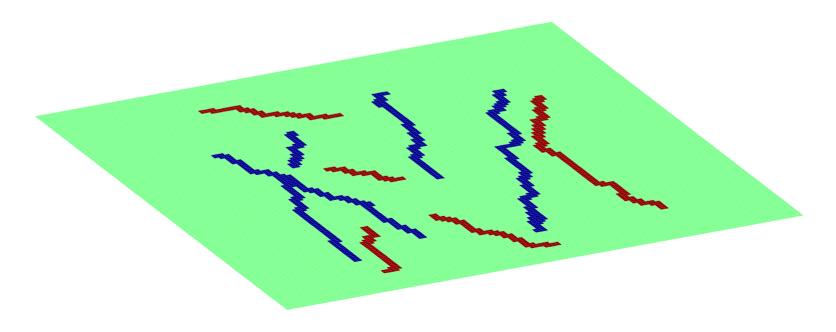
• Further splitting is performed according to

$$\psi^T K^{-1} \psi >$$
condition

Numerical experiments 1

A model problem with barriers/ high permeability channels The fine scale (128×128) permeability field consists of

- channels: $K = 10^4$,
- **barriers**: $K = 10^{-4}$,
- everywhere else K = 1.

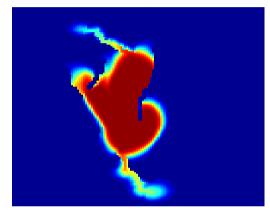


The simulation is run with unit mobility $\lambda = 1 \Rightarrow f(S) = S$ (the velocity is computed only once). We apply four different grids:

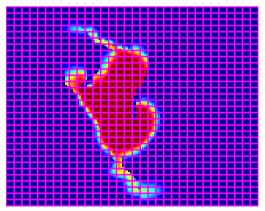
- Fine grid, 128×128 blocks.
- Coarse grid, 8×8 .
- Finer coarse grid, 32×32
- Non-uniform grid, 230 blocks.

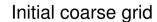
Saturation profiles at t = 0.12.

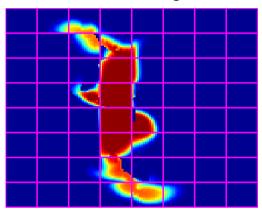
Fine grid



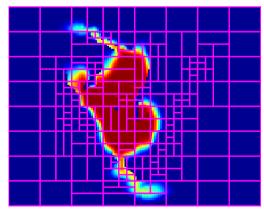
Finer coarse grid





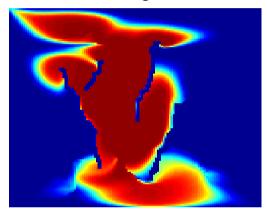


Non-uniform grid

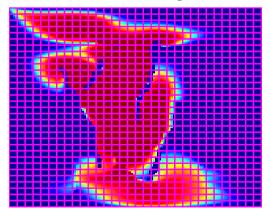


Saturation profiles at t = 0.36.

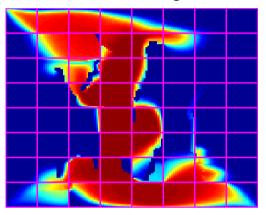
Fine grid



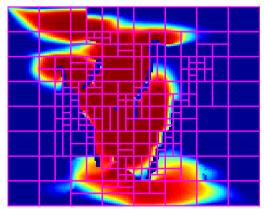
Finer coarse grid



Initial coarse grid

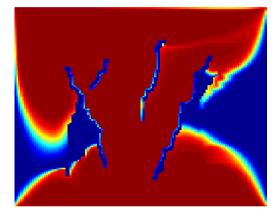


Non–uniform grid

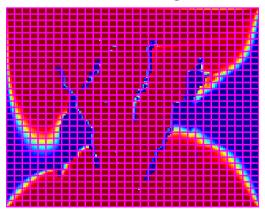


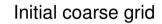
Saturation profiles at t = 1.2.

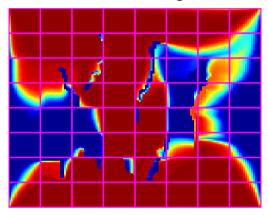
Fine grid



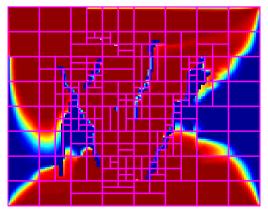
Finer coarse grid



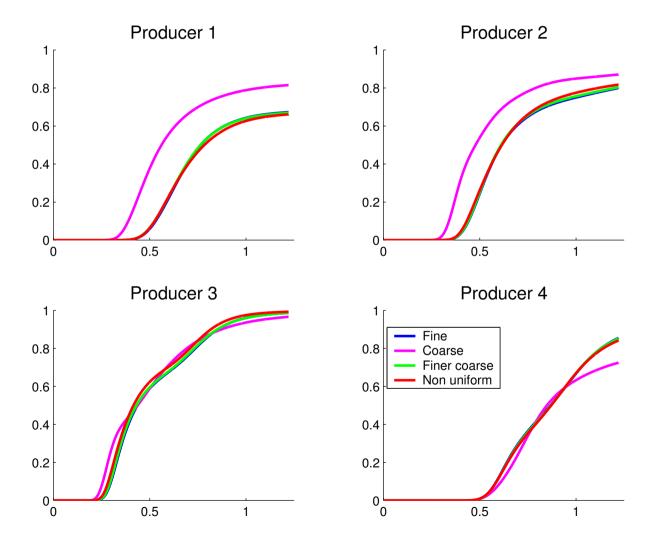




Non–uniform grid



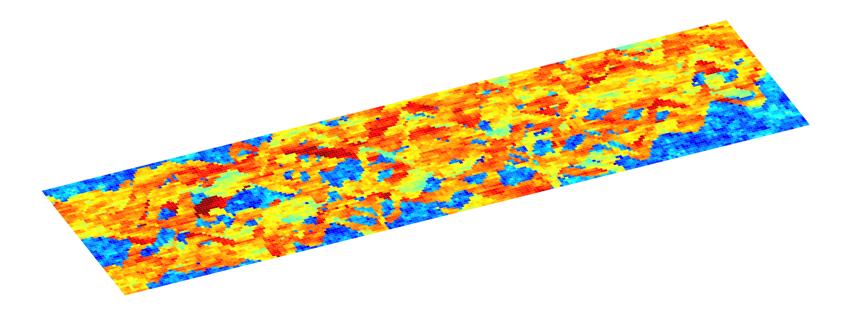
Water cut curves:



Numerical experiments 2

The bottom layer of the 10. SPE comparative solution project.

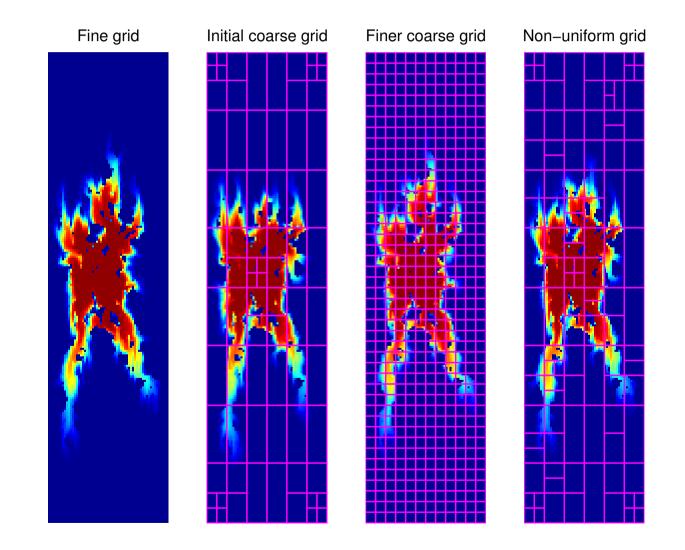
Note: The second criteria does not apply to this case (it doesn't find any barriers).



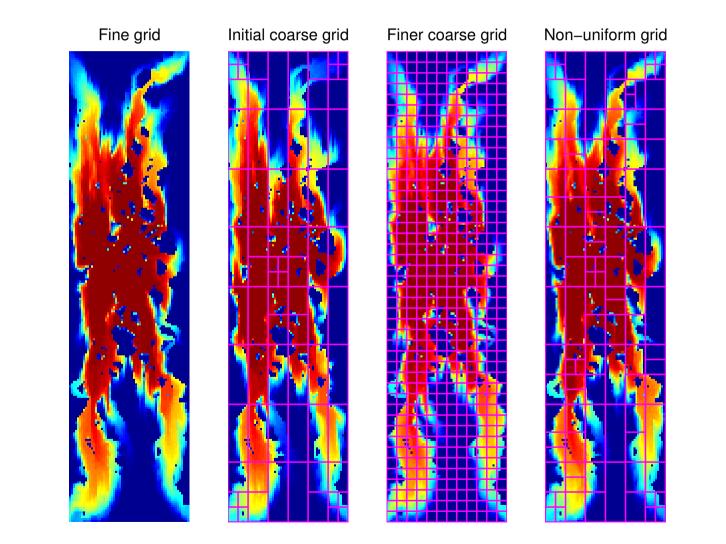
We apply four different grids:

- Fine grid, 60×220 blocks.
- Coarse grid, with some refinement around the wells $6 \times 8 + 12$ blocks.
- Finer coarse grid, 12×44 blocks.
- Non-uniform grid, 110 blocks.

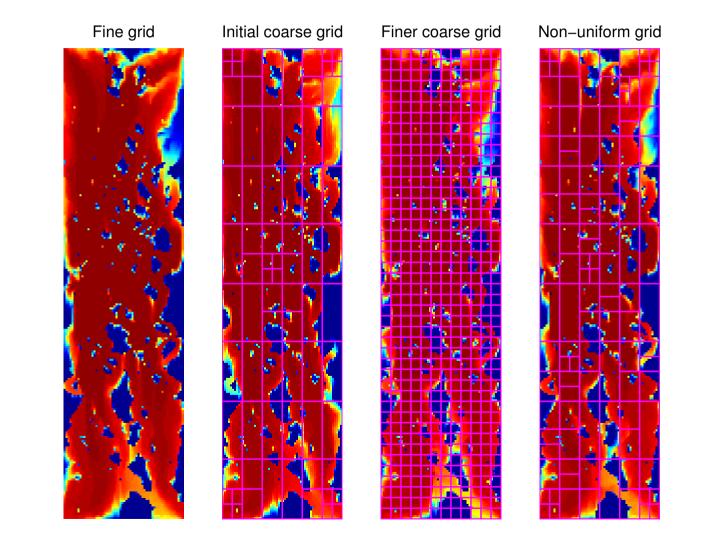
Saturation profiles at t = 0.15.



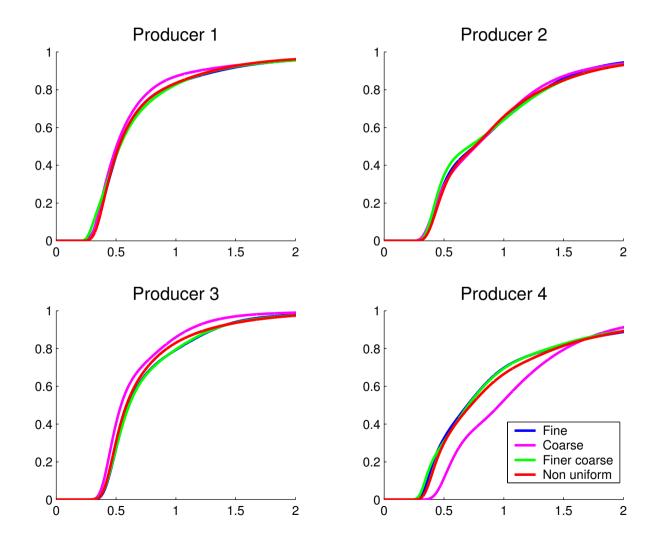
Saturation profiles at t = 0.45.



Saturation profiles at t = 1.5.



Water cut curves ($\lambda = 1$, f(S) = S):



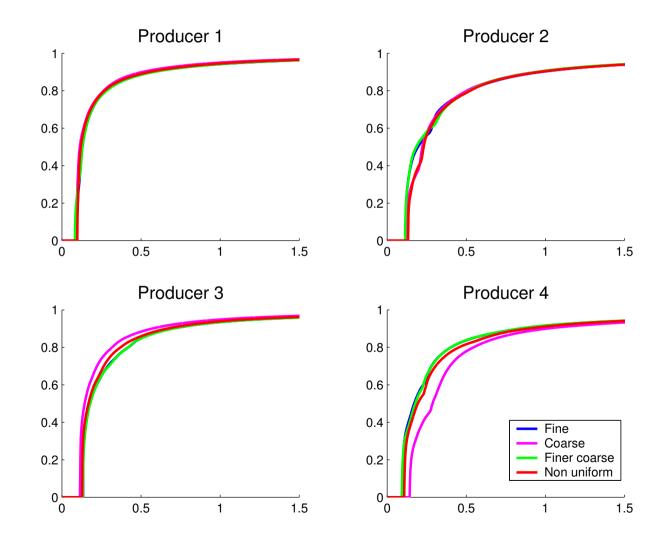
SINTEF

Water cut curves for

$$\lambda_w = \frac{(S^*)^2}{\mu_w}, \lambda_o = \frac{(1-S^*)^2}{\mu_o},$$

where $S^* = (S - S_{wc})/(1 - S_{wc} - S_{or})$, $S_{wc} = S_{or} = 0.2$ and $\mu_o/\mu_w = 10$.

Water cut curves for (non linear mobility)



SINTEF

 We have seen that the use of non-unform grid models for the MMsFEM can reduce the number of required grid blocks, and thus has a potential for computational speed-up.

Future work:

 We have seen that the use of non-unform grid models for the MMsFEM can reduce the number of required grid blocks, and thus has a potential for computational speed-up.

Future work:

• Solving the coarse system (preconditioning).

 We have seen that the use of non-unform grid models for the MMsFEM can reduce the number of required grid blocks, and thus has a potential for computational speed-up.

Future work:

- Solving the coarse system (preconditioning).
- Adaptivity.

 We have seen that the use of non-unform grid models for the MMsFEM can reduce the number of required grid blocks, and thus has a potential for computational speed-up.

Future work:

- Solving the coarse system (preconditioning).
- Adaptivity.
- Theory...