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Abstract. The possibility to couple discrete (fractures, shear zones) and
continuous (rock matrix) model elements is a prerequisite for simulating
flow and transport processes in fractured rocks. The method described in
this paper uses unstructured triangular grids to explicitly represent the frac-
tures and matrix rock as a single continuum in which one can compute the
transport using a higher-order discontinuous Galerkin method. By mod-
elling the complex fracture networks explicitly, very complex structures can
be modelled and using unstructured triangular grids may be necessary to
accurately model realistic cases. Herein we consider single-phase equations
for advective transport, which have an inherent causality in the sense that
information propagates along streamlines. Our discontinuous Galerkin dis-
cretization preserves this causality. We can therefore use a simple topological
sort of the graph of discrete fluxes to reorder the degrees-of-freedom such
that the discretised linear system gets a lower block-triangular form, from
which the solution can be computed very efficiently using a single-pass for-
ward block substitution. The accuracy and utility of the resulting transport
solver is illustrated through several numerical experiments.

1. Introduction

Accurate representation of fractured reservoirs represents a challenge for
the characterisation, modelling, and simulation of petroleum and groundwater
reservoirs, see [4, 12, 3]. Fractured reservoirs are complex geological structures,
where fractures (cracks and joints created by rock stress) have higher permeabil-
ity and porosity than the surrounding rock (matrix). Although the aperture of
fractures is very small compared with the dimensions of the reservoir, the frac-
ture network often forms the primary pathway for fluid flow and mass transfer
and has a significant impact on the flow characteristics of the porous medium.
The matrix blocks between the conducting fractures, on the other hand, can
significantly increase the storage capacity of the rock.

Models for fractured media have traditionally been of two general types: dis-
crete or multicontinua (porosity) models. In a discrete model, the fractures
are considered as discrete structures integrated in the surrounding rock matrix.
With such a model we have the possibility to model single- and multiphase
flow and transport processes accurately. Using multicontinua models, we have
to make assumption that an representative elementary volume cannot only be
obtained for porous medium–the rock matrix–but also for the fractured system.
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In a dual-porosity model, for instance, the rock is characterised as two overlap-
ping continua, which are both treated as porous media, meaning that also the
matrix blocks are assigned a value of porosity greater than zero.

It is principally possible to use different flow and transport models for the dif-
ferent continua. Exchange terms describing the interaction between the matrix
system and the fracture system are very important using multicontinua mod-
els, see [11]. For a rock mass with large porous blocks between the conducting
fractures, multicontinua models have been used to account for the release of
fluid from storage in the matrix blocks into the fracture network. The primary
advantage of multicontinua flow models is that they provide a mechanism to
account for the delay in the hydraulic response of the rock caused by fluid that
is resident in less permeable matrix blocks.

The interaction of fracture and matrix porosities and permeabilities is very
complex and often makes simple models highly inaccurate. Indeed, it is widely
recognised that state-of-the-art simulation methods based upon multicontinua
descriptions are not able to deliver sufficient resolution of the complex flow pat-
terns that develop when a fractured reservoir is produced. Several approaches
have therefore been taken to accurately describe fracture-fault systems on a
grid-cell scale, that is, based upon complex gridding schemes in which fractures
are represented explicitly as lower-dimensional objects at the cell faces. Herein
we consider an even more ambitions modelling approach that has increased in
popularity lately; in this approach fractures are represented explicitly as thin
volumetric cells in a highly detailed geological model. In the following we con-
sider single-phase flow in semi-realistic 2D models of fractured reservoirs and
use unstructured, conforming triangular grids, where the fractures themselves
are represented explicitly as cells with small width and high permeability (and
porosity). This will lead to models with highly contrasting reservoir properties
and very complex hydraulic conductivities. To accurately model the flow and
transport in regions characterised by high contrast in permeability between the
fractures and the matrix, we will also briefly investigate the use of local adaptive
refinement.

A simple single-phase model is often sufficient to reveal the major displace-
ment patterns in a fractured medium (e.g., if represented as a single continuum
with fractures as volumetric objects). Computing single-phase flow essentially
amounts to solving an elliptic pressure equation. However, to further under-
stand the flow mechanisms one can consider various derived quantities like
timelines, influence regions, reservoir partitioning, tracer profiles, well pairs,
etc., that may be more visual and intuitive than pressure values and discrete
fluxes. One particular quantity of interest is the time-of-flight, which can be
used to identify areas affected by contaminations in groundwater flow or to
determine drainage and flooded volumes in petroleum reservoirs.

Most of such derived quantities are often associated with, and computed by,
streamlines methods. However, since they all can be described by (steady-state)
transport equations, one could equally well use a grid-based method: the pur-
pose of our paper is to develop a finite-volume method for solving time-of-flight
type equations to characterise flow patterns and to compute fluid transport
for highly detailed models with explicit fracture modelling. To discretize the
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time-of-flight equation, we will use a higher-order discontinuous Galerkin (dG)
method, which results in a linear system having a block structure where each
block corresponds to the degrees-of-freedom in a single cell (which we sometimes
will refer to as an element). Blocks corresponding to neighbouring cells in the
grid are coupled through the numerical flux function used to approximate the
physical flux over cell interfaces. By introducing an upwind flux approxima-
tion, the elements can be ordered to ensure that the linear system has a lower
block-triangular form, where each block corresponds to the degrees-of-freedom
in a single cell or in a collection of cells having circular dependence due to ro-
tation in the velocity field. Given the triangular form, the linear system can
be decomposed to a set of small problems, one for each block and solved using
a forward block substitution. This solution procedure is very efficient and has
very low memory requirements: once the elements have been reordered, the
linear system can be assembled and solved in a local block-by-block fashion.
For more details on the efficiency of the reordering method, we refer the reader
to [8, 7], in which the same ideas are applied to multiphase flow. The ideas
presented herein are a continuation of the research in [5], where we presented a
family of discontinuous Galerkin schemes for simulating flow in idealised frac-
tured media using rectangular grids. In this representation, the orientation of
the fractures are restricted to being horizontal or vertical.

The rest of this paper is organised as follows: In Section 2 the equations used
to model single-phase flow are described in detail. Next, Section 3 introduces
the discontinuous Galerkin method used to discretize the fluid transport equa-
tions. Then, numerical results for single-phase transport in fractured 2D media
are given in Section 4. We also verify the accuracy and convergence rates of
our schemes using a simple unfractured case with known analytical solution.
Finally, in Section 5 we summarise and give main conclusions.

2. Single-Phase Flow Models

Single-phase flow in an incompressible porous medium is typically modelled
by a mass-balance equation in combination with Darcy’s law. If we assume
gravity to be negligible, the governing equations can be written

(1) ∇ · v = f, v = − 1
µ
K∇p, x ∈ Ω.

This system can be solved to compute the pressure p and the volumetric flow
velocity v if given a specification of the fluid sources f , the rock permeability K,
the fluid viscosity µ, and proper conditions at the boundary ∂Ω of the physical
domain Ω. Alternatively, the system can be written as a second-order elliptic
equation for the pressure. To simplify the presentation, we assume that there
are no internal fluid sources or sinks and that the flow governed by (1) is driven
entirely by conditions set on the inflow and outflow boundaries, denoted ∂Ω−

and ∂Ω+, respectively.
For many purposes, (1) does not give a sufficient description of the flow pat-

terns and it is therefore customary to introduce additional transport equations
to describe quantities like tracers, contaminants, etc. that are passively advected
with the single-phase flow. This paper focuses on such transport equations. For
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simplicity, we will henceforth assume that v = v(x) is given and is divergence
free and irrotational. (Later we will also assume that v is given implicitly in the
form of fluxes that are constant on each element interface.) Given a fixed flow
velocity, the concentration q of a passively advected quantity evolves according
to the linear hyperbolic equation

(2) φqt + v · ∇q = 0, q|∂Ω− = q−(x, t),

where φ is the porosity of the medium. The steady-state version of (2),

(3) v · ∇q = 0, q|∂Ω− = q−(x),

describes the stationary distribution of a tracer that is injected into a reservoir
at the inflow boundary ∂Ω−. This equation can, for instance, be used to de-
termine the spatial region influenced by an inflow boundary (or a fluid source),
or by reversing the sign of v, the region influencing an outflow boundary (or
drained by a fluid sink). Within reservoir simulation, this could typically be
used to compute the swept region of an injector or the drainage region of a
producer (or combinations thereof).

Another quantity of interest is the time-of-flight τ = τ(x), which is defined
as the time needed for a passive particle to travel from a point on the inflow
boundary to a given point x. Iso-contours of τ define natural timelines in a
reservoir. To define τ , we introduce streamlines, which are a family of curves
that at any point are tangential to the velocity vector v of the flow. For a steady
velocity (as considered herein), streamlines coincide with the path traced out
by a passive particle moving with the flow field. The time-of-flight τ is defined
as

(4) τ(x) =
∫
ψ

φ(r) dr
|v(x(r))|

,

where ψ denotes the streamline that connects x to an inflow boundary (or fluid
source) and r denotes the arclength along the streamline. Note that modern
streamline methods use the time-of-flight τ rather than the arclength r as spatial
coordinates. Equation (4) may alternatively be written in differential form as,

(5) v · ∇τ = φ, τ |x∈∂Ω− = 0.

The transport equations (3) and (5) are special cases of the more general
equation

(6) v · ∇q = H(q,x), q|Ω− = h(x, t).

Similarly, (2) comes on the form (6) if we introduce an appropriate semi-
discretization in time. Accurate solution of (6) is important in areas such
as oil recovery and groundwater hydrology to reveal the transport properties of
v. Solving (6) is rather easy for smooth velocities, but becomes harder when
v has large spatial variations and exhibits fine-scale details that are important
for the global flow pattern.

In the following we present an efficient strategy for solving transport equa-
tions on the form (6) on unstructured triangular grids where we combine higher-
order discontinuous Galerkin (dG) spatial discretizations with an upwind nu-
merical flux function that creates a one-sided dependency between the elements
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in the grid and ensures that we can find a reordering of the elements such that
the resulting system becomes lower block-triangular and can be solved block-
by-block. We have previously studied the dG-reordering method for rectangular
grids [10, 5, 9], for which it proved to be both accurate and highly efficient. In
[8], we demonstrated that the same technique can be applied to semi-discrete
nonlinear transport equations of the form v · ∇F(q) = H(q,x, t) that describe
multiphase and multicomponent flow when gravity, capillarity, and dispersivity
are neglected.

3. Discontinuous Galerkin Schemes with Optimal Ordering

To develop higher-order discontinuous Galerkin methods, we start with a
variational formulation of (6). We then partition the solution domain Ω into
an unstructured grid consisting of non-overlapping triangular elements (cells)
{Tk}, and seek solutions in a finite-dimensional space Vh consisting of piecewise
smooth functions that may be discontinuous over element interfaces. Let Qn =
span{xpyq : 0 ≤ p + q ≤ n} be the space of polynomials of degree at most
n, and let V (n)

h = {ϕ : ϕ|Tk
∈ Qn}. Thus, V (0)

h is the space of elementwise
constant functions, which will give a scheme that is formally first-order accurate.
Similarly, V (1)

h is the space of elementwise linear functions giving a formally
second-order accurate scheme, and so forth. Henceforth, we use dG(n) to denote
the discontinuous Galerkin approximation of polynomial order n. Inside each
element Tk, the discrete solution qh can be written

qh(Tk) =
mk∑
i=1

qki L
k
i , ∀Tk.(7)

where {Lki } is some basis for V (n)
h on Tk and mk is the number of associated

degrees-of-freedom. The unknown coefficients {qki } are collected in the vector
Q for the whole domain and in (sub)vector QT for element T .

The approximate solution qh is determined as the unique solution of the
following weak formulation of (6)

(8) ahT (qh, ϕh) = bhT (qh, ϕh) ∀T, ∀ϕh ∈ V
(n)
h ,

where

ahT (qh, ϕh) = −
∫
T
(qhv) · ∇ϕhdx +

∫
∂T

v · n qhϕhds,

bhT (qh, ϕh) =
∫
T
H(qh,x)ϕhdx.

(9)

Since the solution is discontinuous over element interfaces, we will use an upwind
flux to approximate the integrand of the second integral in ahT (·, ·),

v · n qh ≈ f̂(qh, qexth ,v · n)

= qh max(v · n, 0) + max(qexth , 0) min(v · n, 0).
(10)

Here qh and qexth are the inner and outer approximations at the element inter-
faces. The upwind approximation of the flux preserves the directional depen-
dency of the underlying continuous equation (6). In other words, the solution
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on T will only be influenced by elements U(T ) that are intermediate neigh-
bours in the upwind direction, which we later exploit to compute the solution
in a blockwise fashion. Formally, U(T ) consists of all elements E such that
(v · nT )|∂E∩∂T < 0, where nT is the outward-pointing normal to T . Notice
that compared with a standard upwind approximation, we have introduced an
additional clipping, max(qexth , 0), to prevent negative values from propagating
downstream. Negative values are unphysical, but may arise when using high-
order polynomials.

To find a solution to (8), we choose trial functions ϕh = Lki and evaluate (9)
using appropriate quadrature rules. This gives a set of linear equations for the
degrees-of-freedom in each element,

ATQ = BT , (AT )ij = ahT (Li, Lj), (BT )i = bhT (Li, Lj).

For convenience, we split the coefficient matrix into the element stiffness matrix
RT and the coupling to other elements through the numerical flux integral
FT (Q). Given the upwind approximation of the flux (10), we can split the flux
integral in two parts. Let F+

T QT denote the flux out of element T and F−T QU(T )

denote the flux into element T . Hence, the following system of linear equations
is obtained

(11)
(
−RT + F+

T

)
QT + F−T QU(T ) = BT , ∀T.

The coefficient matrix has a block-banded structure, where the size of each
block is given by the number of degrees-of-freedom in each element or connected
collection of elements, see [8] for a more detailed discussion.

A fast linear solver can now be constructed by observing that the solution
in each element can be computed by inverting (−RT + F+

T ) once the solution
is known in all upstream neighbours of T . We may therefore construct the
solution locally, starting at inflow boundaries (or fluid sources) and proceeding
element by element downstream. From a computational point of view, it is more
convenient to look at this as an optimal ordering of unknowns that renders the
system of equations (11) in lower block-triangular form. If Ne is the number of
elements, such an ordering can be found in Ne operations if it exists.

If the reordering of elements does no exist, there must be circular dependence
among some of the elements and these mutually dependent elements must be
solved for simultaneously. Nevertheless, the reordering still applies, the only
difference is that we locally get a block system associated with a set of in-
terconnected elements instead of a single element. More details are found in
[10, 8].

4. Numerical Examples

In [5], we presented a dG scheme for computing time-of-flight in fractured
porous media represented on rectangular grids. The use of rectangular grid re-
stricts the orientation of fractures to be either horizontal or vertical. In this sec-
tion we will consider more realistic fracture distributions modelled on triangular
grids present results from selected numerical experiments using higher-order
dG schemes and optimal ordering of triangular elements. For each example,
the forcing velocity field will either be given by an analytical expression or be
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computed by a standard conservative method for solving the first-order system
of flow equations (1) or its second-order counterpart, in which case the velocity
will be divergence free and nearly irrotational. We will mainly apply the dG
schemes to compute time-of-flight in semi-realistic examples of fractured me-
dia. Because of the localised nature of the dG formulation, using hybrid grids
consisting of both rectangular and triangular cells are within reach, but is not
considered herein. However, we show one example of adaptively refined grids.

Case 1 (Convergence Study). We start by verifying the accuracy and conver-
gence rates of discontinuous Galerkin schemes on triangular elements. To this
end, we consider a rotating velocity field v = (y,−x) in the domain [1, 2]×[1, 2].
Let T = 0 on the inflow boundaries (x = 1 and y = 2), then the exact time-of-
flight is given by

(12) T (x, y) = tan−1
(y
x

)
− tan−1

(
min(

√
x2 + y2 − 1, 2)

max(
√

max(x2 + y2 − 4, 0), 1)

)
.

Tables 1 and 2 present L2-errors and convergence rates for a grid-refinement
study performed by increasing the order n in dG(n) on four grid types with
increasing roughness (see Figure 1):

Grid 1: triangulation of a uniform N ×N Cartesian grid.
Grid 2: uniform refinement and triangulation of a 10×10 base grid where

each internal node has been given a random perturbation up to 20% in
each spatial direction.

Grid 3: same as Grid 1, but with a perturbation up to 20% of all inner
nodes on the 2N ×N grid.

Grid 4: same as Grid 2, but with a perturbation up to 20% of all new
nodes on the 2N ×N grid for each refinement.

In Table 1 the L2-errors are measured in a smooth part of the domain, [1, 1.3]×
[1, 1.3], while in Table 2 the error is integrated over the whole domain. The ta-
bles indicate how different roughness1 in the refined grids impacts the L2-errors
and the convergence rates. For the perturbed grids the rates of convergence
are computed by comparing to two different mesh sizes: the average maximum
mesh size, which is the average of the maximum cell edges of each element, and
by the maximum mesh size, which is the largest cell edge in the domain.

Grids 1 and 2 are refined such that the elements approach half of parallel-
ograms in the asymptotic limit, and hence we observe the expected order of
accuracy in smooth regions. For the whole domain, however, we get reduced
convergence rates because of the kink in the solution along the circular arc
x2 + y2 = 5. This agrees with the results in [10] for rectangular elements. Note
that the kink may impact the regularity of the analytical solution, such that
the decays of convergence rates are expected.

1Rough grids are defined in the literature (see e.g., [6]) as quadrilateral grids that do not
approach parallelograms as the grids are refined. Here, the triangular grids are constructed by
dividing each quadrilateral of a quadrilateral grid into two triangles which have one common
edge. By this definition, Grids 3 and 4 are rough grids. Similar convergence studies have been
performed in [1], where in general a decay in convergence rates may be seen.
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Table 1. L2-errors and convergence rates over a smooth part of the
domain, [1, 1.3]× [1, 1.3], for a grid refinement study with dG(n) on a
series of 2N ×N grids for Grids 1 to 4. Convergence rates on Grids 3
and 4 are computed in terms of the average maximum and maximum
mesh size, respectively.

dG(0) dG(1) dG(2) dG(3)
N Error Rate Error Rate Error Rate Error Rate

10 2.17e-03 — 2.14e-05 — 4.52e-07 — 7.67e-09 —
20 1.09e-03 1.00 5.47e-06 1.97 5.88e-08 2.94 4.81e-10 4.00
40 5.47e-04 1.00 1.37e-06 1.99 7.38e-09 2.99 3.01e-11 4.00
80 2.74e-04 1.00 3.45e-07 1.99 9.12e-10 3.02 1.88e-12 4.00

160 1.37e-04 1.00 8.70e-08 1.99 1.12e-10 3.02 1.18e-13 4.00

10 2.05e-03 — 2.16e-05 — 4.50e-07 — 8.62e-09 —
20 1.03e-03 1.00 5.43e-06 1.99 5.55e-08 3.02 5.51e-10 3.97
40 5.15e-04 1.00 1.36e-06 2.00 6.91e-09 3.01 3.48e-11 3.99
80 2.58e-04 1.00 3.42e-07 1.99 8.50e-10 3.02 2.16e-12 4.01

160 1.29e-04 1.00 8.62e-08 1.99 1.06e-10 3.00 1.35e-13 4.01

10 2.28e-03 —/— 2.22e-05 — /— 4.99e-07 —/— 1.01e-08 —/—
20 1.13e-03 1.01/1.12 5.86e-06 1.92/2.18 6.68e-08 2.90/3.22 6.76e-10 3.90/4.52
40 5.67e-04 0.99/1.04 1.50e-06 1.96/2.05 8.74e-09 2.94/3.03 4.86e-11 3.80/4.03
80 2.85e-04 0.99/1.03 3.84e-07 1.97/2.03 1.15e-09 2.93/3.12 3.25e-12 3.90/3.92

160 1.43e-04 1.00/1.03 9.76e-08 1.98/2.04 1.52e-10 2.92/2.97 2.20e-13 3.88/4.01

10 2.05e-03 —/— 2.16e-05 —/— 4.50e-07 —/— 8.62e-09 —/—
20 1.12e-03 0.90/0.91 6.36e-06 1.81/1.83 7.19e-08 2.71/2.74 8.32e-10 3.46/3.49
40 6.09e-04 0.90/0.93 1.96e-06 1.75/1.80 1.26e-08 2.59/2.67 9.09e-11 3.30/3.40
80 3.35e-04 0.88/0.90 6.25e-07 1.69/1.73 2.28e-09 2.53/2.59 1.07e-11 3.16/3.24

160 1.94e-04 0.80/0.82 2.02e-07 1.67/1.71 4.66e-10 2.35/2.39 1.42e-12 2.99/3.05

Table 2. Same as Table 1, but with the L2-errors and convergence
rates measured over the whole domain, [1, 2]× [1, 2].

dG(0) dG(1) dG(2) dG(3)
N Error Rate Error Rate Error Rate Error Rate

10 1.92e-02 — 8.95e-04 — 2.67e-04 — 1.49e-04 —
20 1.01e-02 0.92 3.06e-04 1.55 1.00e-04 1.42 5.34e-05 1.48
40 5.34e-03 0.92 1.10e-04 1.47 3.23e-05 1.63 1.68e-05 1.67
80 2.81e-03 0.92 3.97e-05 1.48 1.07e-05 1.60 5.46e-06 1.62

160 1.47e-03 0.93 1.42e-05 1.48 3.48e-06 1.61 1.69e-06 1.69

10 1.96e-02 — 1.08e-03 — 3.41e-04 — 2.07e-04 —
20 1.05e-02 0.90 3.65e-04 1.57 1.13e-04 1.60 6.20e-05 1.74
40 5.62e-03 0.90 1.28e-04 1.51 3.61e-05 1.64 1.98e-05 1.64
80 3.00e-03 0.91 4.58e-05 1.48 1.22e-05 1.57 6.15e-06 1.69

160 1.59e-03 0.92 1.65e-05 1.47 4.01e-06 1.60 1.89e-06 1.70

10 1.95e-02 —/— 9.97e-04 —/— 2.91e-04 —/— 1.73e-04 —/—
20 1.05e-02 0.89/0.97 3.25e-04 1.62/1.62 1.15e-04 1.35/1.45 6.29e-05 1.46/1.56
40 5.51e-03 0.93/0.93 1.19e-04 1.45/1.50 3.88e-05 1.56/1.61 1.86e-05 1.76/1.82
80 2.91e-03 0.92/0.95 4.27e-05 1.48/1.50 1.22e-05 1.67/1.71 6.50e-06 1.51/1.52

160 1.53e-03 0.93/0.95 1.54e-05 1.47/1.50 3.99e-06 1.61/1.65 1.89e-06 1.78/1.82

10 1.96e-02 —/— 1.08e-03 —/— 3.41e-04 —/— 2.07e-04 —/—
20 1.13e-02 0.82/0.83 3.98e-04 1.48/1.50 1.44e-04 1.28/1.30 6.97e-05 1.61/1.63
40 6.58e-03 0.80/0.82 1.61e-04 1.34/1.37 4.77e-05 1.64/1.67 2.45e-05 1.55/1.58
80 3.93e-03 0.77/0.78 6.91e-05 1.26/1.29 1.97e-05 1.31/1.34 1.00e-05 1.32/1.36

160 2.35e-03 0.76/0.78 2.85e-05 1.31/1.34 7.51e-06 1.43/1.46 3.81e-06 1.44/1.47
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Grid 2 Grid 3 Grid 4

Figure 1. Two refinement levels for Grids 2, 3 and 4.

For the two rough grids, Grids 3 and 4, the errors increase on each refinement
level. Grid 3 seems to yield marginally lower convergence rates than the formal
order of the method when comparing to the average maximum mesh size. Note,
however, that when using the maximum mesh size to compute rates, they fluc-
tuate above and below the formal convergence rates, which may indicate that
the average maximum mesh size is a somewhat non-conclusive mesh size to
compare convergence against. This may be explained by the nature of random
grid perturbations and the impact this has on the numerically calculated so-
lutions on each refinement level. A long cell edge may impact the shapes of
the neighbouring triangles and may yield larger errors at nodes associated with
these.

Grid 4 experiences loss of convergence orders; this is observed when compar-
ing to both the average maximum mesh size and the maximum mesh size. This
may be explained by the diminishing grid quality such perturbations lead to.
In Figure 2, the histograms for the mesh sizes of the triangular grids have been
plotted for both Grids 3 and 4 for the grid size N = 80. Grid 3 has a normal
distribution of the measured mesh size h for each element, whereas the mesh
distribution in Grid 4 is skewed with a long tail in the interval corresponding
to triangular grid cells with longer edges. Note that by the definition of the
grid perturbation, the first refinement level of Grid 4 is a normal distribution.
As the grids are refined, the mesh distribution becomes more and more skewed,
with a significant tail to the right. Because of this kind of distribution (short
triangle edges combined with longer triangle edges), the mesh quality dimin-
ishes as the grid is refined, which introduces an opposite effect to the pure
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Figure 2. Histogram of edges of triangle meshes for Grid 3 (left)
and Grid 4 (right).

reduction of triangle edge sizes the other grids experience. The observed order
of dG(n) is significantly lower than n + 1 for the Grid 4 refinement and also
seems to decrease as the grids are refined, indicating a stronger effect of the
skewed mesh distribution for increasing numbers of grid cells. Note also that
the decay increases with the order of the basis functions.

These results should be compared with the theoretical results obtained in [6]
and [1], where the convergence of the pressure equation is studied for general
permeability description and irregular geometry. When a transformation to a
computational space is performed for the pressure equation on general quadri-
lateral grids with general permeability, the evaluation of a quantity which may
be viewed as the computational space permeability depending on the Piola map-
ping, becomes important. Different evaluations of the computational space
permeability may have a very different behaviour on rough grids, and conver-
gence may be lost entirely for rough grids that do not handle this evaluation
properly.

In the next example, we consider a case with strongly heterogeneous media
properties.

Case 2 (A Fluvial Medium). Consider a 2D quarter five-spot case with perme-
ability and porosity data from Layer 77 of Model 2 in the 10th SPE Comparative
Solution Project [2]. This layer contains sharp contrasts in permeability (and
porosity) between the low-permeable background and a set of intertwined high-
permeable channels. The strongly heterogeneous structure in this permeability
field is shown in the upper plot in Figure 3; the permeability variation is up to
eleven orders of magnitude. The right column in the figure shows the computed
time-of-flights on triangular elements for dG(n), n = 0, 1, 3, and 5. For compar-
ison, the left column shows the corresponding solutions using the dG scheme
on rectangular elements, see [10]. The grid size is 220× 60 for the rectangular
grid, while the triangular grid is created by dividing each rectangular element
into two triangles. The plots were created by sampling the polynomial patches
in 10×10 uniformly distributed points inside each rectangular elements. In the
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Figure 3. Time-of-flights for Layer 77 from the SPE10 test case
computed using dG(n), n = 0, 1, 3, and 5 on the original rectangular
grid (left column) and on a triangular grid (right column) created by
splitting each rectangular cell in two.

Table 3. The relative L1-errors of the computed time-of-flights for
different vertical cross sections. See Figure 4 for the computed time-
of-flights.

x dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

55 2.0719e-01 1.8535e-01 1.7421e-10 1.5946e-01 1.3955e-01 1.2579e-01
110 4.3507e-01 3.3024e-01 2.9480e-01 2.5810e-01 2.2044e-01 2.0217e-01
165 6.1523e-01 5.2704e-01 5.0089e-01 4.7045e-01 4.3190e-01 3.8929e-01
220 3.2763e-01 1.8338e-01 1.6834e-01 1.4444e-01 1.3316e-01 1.2459e-01

visual norm, the accuracy is approximately the same on the triangular and on
the rectangular grid.

For this case we investigate the computed time-of-flights for four different
vertical cross sections at x = 55, 110, 165, 220. The red graphs in Figure 4
show the dG(5) solution for the different cross sections and the blue graphs
show the solution obtained by back-tracing approximately 8 000 streamlines.
The corresponding relative L1-errors for time-of-flights computed in different
cross sections are present in Table 4. Altogether, we observe that strong het-
erogeneities in the permeability field influence the accuracy of the computed
time-of-flights.
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Figure 4. The computed time-of-flights along vertical cross sections
at x = 55, 110, 165, 220. The red graphs give the dG(5) solution and
the blue graphs give the solutions computed using approximately 8 000
streamlines.

Case 3 (Discrete Fracture Model). In this example, we consider a case with
three high-permeable fractures inside the unit square. We impose no-flow
boundaries at bottom and top, inflow at the left boundary, and outflow at
the right boundary. Two cases are considered with the fractures having a per-
meability of 103 and 105, respectively, relative to the homogeneous and isotropic
background field. The aperture of the fracture is 10−4 length units.

We compare the computed time-of-flights on a triangular grid with 5 048
elements that are adapted around and along the fractures with results on a
coarser grid with 437 elements, a finer grid with 23 463 elements, and a grid
with 5 301 elements but without adaptivity. The four grids are depicted in the
top row of Figure 5. The permeability ratio between matrix and the fractures
is 1 : 105. From the plots, we observe three qualitative tendencies: (i) for
the same number of unknowns (see Table 4), the solution is better for the
grid without adaptivity; (ii) increased polynomial order is more important than
increased grid resolution; and (iii) the improvements obtained by using finer
grid resolutions decays with the polynomial order of the scheme. Finally, we
observe that all the dG solutions establish the qualitative structures of the flow
pattern.
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N = 437 N = 5048 N = 5301 N = 23463

Figure 5. Case 3 with ratio between matrix and fracture permeabil-
ity equal 1 : 105. The rows present the computed time-of-flights using
dG(0), dG(1), and dG(3).

Table 4. Degrees-of-freedom for different order and grid resolution.

N dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

437 437 1311 2622 4370 6555 9177
5048 5048 15144 30288 50480 75720 106008
5301 5301 15903 31806 53010 79515 111321

23463 23463 70389 140778 234630 351945 492723

Next, we consider the pointwise accuracy at the outflow boundary compared
with a highly resolved solution computed by back-tracing approximately 16 000
streamlines. Table 5 shows the discrete relative L1-errors for the time-of-flight
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Table 5. Discrete relative L1-errors in time-of-flight (upper half)
and mass flow (lower half) at the outflow boundary for Case 3 with
ratio Km:Kf between the matrix and fracture permeability. The solu-
tions are compared with solutions computed by tracing approximately
16 000 streamlines.

Km:Kf N dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

1 : 103 437 9.1575e-02 3.5080e-02 1.3979e-02 8.4314e-03 6.2851e-03 5.2484e-03
5048 7.9320e-02 2.0271e-02 7.3588e-03 5.4863e-03 3.9867e-03 3.1843e-03
5301 7.0833e-02 1.9132e-02 7.2066e-03 5.4397e-03 4.1306e-03 3.7196e-03

23463 6.4046e-02 1.4980e-02 6.6697e-03 4.4689e-03 3.4315e-03 2.6675e-03

1 : 105 437 1.2607e-01 4.6378e-02 6.7521e-02 1.6426e-02 6.9459e-02 4.2250e-02
5048 9.4916e-02 3.7634e-02 6.3852e-02 1.5811e-02 6.8247e-02 4.3420e-02
5301 6.1381e-02 1.3697e-02 5.3138e-02 9.5423e-03 6.1411e-02 3.5569e-02

23463 3.9014e-02 1.2143e-02 5.6907e-02 1.5259e-02 1.6766e-02 6.2730e-03

1 : 103 437 1.1240e-00 5.1969e-01 1.7987e-01 1.1910e-01 7.5825e-02 5.8945e-02
5048 9.7077e-01 2.9547e-01 1.1434e-01 6.8977e-02 4.9809e-02 3.8912e-02
5301 8.3155e-01 2.8433e-01 1.0473e-01 6.8073e-02 4.7003e-02 4.0898e-02

23463 7.6335e-01 2.2220e-01 1.1358e-01 6.7778e-02 4.9492e-02 4.0935e-02

1 : 105 437 1.1102e-00 1.0192e-00 9.0023e-01 9.0149e-01 8.7923e-01 8.1843e-01
5048 1.0885e-00 1.0394e-00 9.2523e-01 9.1535e-01 9.2921e-01 8.5429e-01
5301 1.0577e-00 1.0305e-00 9.1703e-01 9.1194e-01 9.1910e-01 8.4378e-01

23463 1.0514e-00 1.0723e-00 1.0027e-00 9.4507e-01 9.2882e-01 7.5827e-01

and the mass flux across the outflow boundary. Figure 6 shows the time-of-flight
at the boundary for permeability ratio 1 : 103. Similarly, Figure 7 shows the
tracer production curve (average tracer concentration at the outflow boundary
versus time) that results from injecting a tracer slug in the time interval t ∈
[0, 0.05]. As above, we observe that high polynomial order is more important
than high grid resolution. In particular, Figure 7 shows that using dG(3) gives
the same qualitative structures for all grid resolutions, whereas dG(0) fails to
compute the correct tracer production on all grids. We also observe from Table 5
that the error increases with increasing ratio between the matrix and fracture
permeability. This observation agrees with the results in [10].

When increasing the grid resolution in the example above, the grid inside the
thin fractures only increased resolution in the longitudinal direction. For the
simple Cartesian grids studied in [5], we observed that it was more important to
increase the grid resolution in the latitudinal direction of the fractures to accu-
rately resolve sharp transitions in time-of-flight arising when the flow changes
from matrix to fracture and vice versa. In the next example, we therefore also
consider refinement in the latitudinal direction of the fractures.

Case 4 (Latitudinal Refinement in Fractures). Consider a unit square with flow
from left to right and no-flow boundaries at bottom and top. The fracture net-
work consists of five horizontal fractures and a skew vertical fracture extending
from top to bottom. The aperture of the fractures is 10−4 unit lengths and the
permeability ratio is 1 : 105. Figure 8 shows time-of-flight computed with dG(n)
for n = 0, 1, and 3. The upper row shows the time-of-flights computed on a
grid where each fracture is represented with one rectangular element divided
into two triangle elements in the latitudinal direction. The lower row shows the
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Figure 6. Time-of-flight for Case 3 with ratio between matrix and
fracture permeability equal 1 : 103. The red graphs show the dG(n)
solutions for n = 0, 1, and 3 (from top to bottom) and the blue graphs
are solutions computed by tracing approximately 16 000 streamlines.
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Figure 7. Average tracer concentration over the outflow boundary
as a function of time for the simulations shown in Figure 6.
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dG(0) dG(1) dG(3)

Figure 8. Time-of-flight for Case 4 with ratio between matrix and
fracture permeability equal 1 : 105. The upper row shows the results
using no latitudinal grid refinement, while the lower row shows the
solutions for a refinement with eight rectangular (divided in sixteen
triangular) elements in the latitudinal direction of the fractures. The
distribution of fractures is depicted as white lines.

solutions with eight rectangular elements (sixteen triangular elements) in the
latitudinal direction.

Table 6 reports the time-of-flights and mass flow computed at the outflow
boundary for the permeability ratios 1 : 103 and 1 : 105. We compare the
computed time-of-flights with a reference solution obtained by back-tracking
streamlines from uniformly distributed points inside each element at the outflow
boundary for a refined grid. With one exception, the errors decrease when
refining the grid in the latitudinal direction inside the fractures. These results
agree with the results in [5], where we observed the importance of sufficient
latitudinal grid resolution to correctly capture large spatial variations inside
the fractures. Capturing these variations is necessary since the time-of-flight is
an integrated quantity that is strongly affected globally by local discretization
errors.

Criteria to guide the choice between single and multicontinua (porosity) for-
mulations in site-specific applications are not easily defined. A simple method
is to consider by measuring the (outflow) concentration of some species present
in a reservoir model during some predefined time interval. Here we consider
breakthrough curves resulting from the injection of a tracer slug/pulse. If the
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Table 6. Discrete relative L1-errors in time-of-flight (upper half)
and mass flow (lower half) at the outflow boundary for Case 4 using M
elements across the fractures. The solutions are compared to solutions
computed by tracing approximately 4 000 streamlines.

Km:Kf M dG(0) dG(1) dG(2) dG(3) dG(4) dG(5)

1 : 103 1 (2) 1.5772e-01 6.7707e-02 3.8263e-02 2.8205e-02 2.0743e-02 1.9426e-02
8 (16) 1.5260e-01 5.7438e-02 3.2888e-02 2.3043e-02 1.7009e-02 1.6180e-02

1 : 105 1 (2) 7.7989e-01 5.8586e-01 3.9670e-01 3.5901e-01 3.2230e-01 2.9336e-01
8 (16) 7.4916e-01 4.6600e-01 2.1120e-01 1.5121e-01 1.3237e-01 1.0724e-01

1 : 103 1 (2) 1.1149e-00 7.5882e-01 6.4524e-01 5.5346e-01 4.3380e-01 4.3060e-01
8 (16) 1.1992e-00 5.9138e-01 3.8487e-01 2.9969e-01 2.3405e-01 2.4164e-01

1 : 105 1 (2) 1.4736e-00 1.2881e-00 6.2057e-01 6.3658e-01 3.9217e-01 3.7723e-01
8 (16) 8.3593e-01 2.6399e-01 2.5384e-01 2.6574e-01 1.8156e-01 1.9228e-01

curve has two peaks, there are two distinct transport mechanisms correspond-
ing to flow in fractures and matrix. On the other hand, if the curve has a single
peak, the medium can be modelled using a discrete model.

In the next example we demonstrate that our dG scheme can provide a fast
and easy method for evaluating tracer-breakthrough curves for flow in fractured
porous media.

Case 5 (Discrete model versus multicontinua model). Consider the same test
example as in Case 4, now with grid refinement in the latitudinal direction of
the fractures. We measure the concentration over the outflow boundaries. The
tracer is a pulse injection for a short time; in our case for t ∈ [0, 0.05]. Figure 9
shows the mass flow over the outflow boundary computed using dG(n) for n = 0,
1, and 4 compared with a highly resolved streamline simulation on a refined
grid. For permeability ratio 1 : 103, shown in the upper row, we obtain multiple
peaks, where the first peak represents the tracer going through the fractures
and the next peak represent tracer flowing through the lower-permeable rock
matrix. The results for permeability ratio 1 : 105 only has a single peak that
breaks through very early, meaning that the tracer goes straight through the
fractures and that this is the predominant transport mechanism. Thus, for the
first case it is necessary to use a multicontinua model, while for the second case
a discrete model may be appropriate.

The previous example demonstrates that the time-of-flight formalism can be
used to find breakthrough curves for highly resolved small-scale models where
fractures are represented explicitly as volumetric object. This may be used as
a guide when choosing an appropriate conceptual model to be used on a larger
scale. Hence, our method may serve as a technical guide for the choice of single
and multicontinua formulation in fractured rocks.

In the next example, we demonstrate how our dG methods can be used to
delineate the reservoir by determining swept and drainage volumes and well
connectivities. To this end, we will solve the steady tracer-concentration equa-
tion (3) rather than the time-of-flight equation. The stationary tracer equation
describes the steady concentration arising if we continuously inject tracer at a
certain part of the inflow boundary. Hence, if the tracer concentration is pos-
itive at a point, the point is influenced by the part of the inflow boundary on
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Figure 9. Computed mass flow over the outflow boundary with per-
meability ratio between matrix and the fractures equal 1 : 103 in the
upper row and 1 : 105 in the lower row. The red graphs give the dG(n)
solutions and the blue graphs give solutions computed by back-tracing
approximately 4 000 streamlines.

which we inject tracer. To partition a reservoir, we define the swept/drained
volumes as the volumes having a concentration larger than 0.5. Notice in par-
ticular that due to the efficient sequential solution procedure, computing each
drainage volume is a single-sweep computations that can be performed with
high order accuracy and modest demands on storage and computing power.

Case 6 (Approximation of Stationary Tracer Distribution). We consider the
stationary tracer distribution for a fractured reservoir shown in Figure 10. The
permeability ratio between the the matrix and the fractures is 1 : 105 and
the the aperture of the fractures is 10−4 length units. Four injection wells are
located in each corner and two production wells are located inside the domain.
Figure 10 shows the tracer distribution for each injector computed using basis
functions of increasing order. The different swept areas are shown in different
colours/shading, and the boundaries between the swept areas correspond to
the 0.5 contour of the different tracer concentrations. The figure illustrates
that low-order approximations do, in general, provide sufficient accuracy to
delineate the reservoir. This was also observed in [10].

Figure 11 shows the stationary tracer distribution in a more challenging
fractured reservoir. The distribution of the fractures is depicted in the figures,
and the permeability ratio between matrix and the fractures is 1 : 103. One
producer is located in the lower left corner and three injectors are located in
the three other corners. Each row in Figure 11 shows the swept areas for the
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Figure 10. Stationary tracer distribution for four injectors placed
one in each corner and two producers are placed inside the domain.

three different injectors computed using dG(0) in the first column and dG(2)
in the second column.

5. Final Remarks

We have previously shown that the combination of a discontinuous Galerkin
spatial discretization and a optimal ordering of cells is a robust, accurate, and
efficient numerical approach for the solution of incompressible flow of fluids
in porous media, see [10, 8]. For multiphase flow [8, 7] and single-phase flow
in media with mild heterogeneity, our experience indicates that a low-order
dG method (the standard upwind method, dG(0), or the second-order dG(1))
is sufficient to accurately capture the fluid transport. For single-phase flow in
strongly heterogeneous media, one may need to increase the order to accurately
capture integrated quantities like time-of-flight and steady tracer concentration.

For fractured media, all our results have so far been presented for Cartesian
grids. However, explicit modelling of complex fracture networks will give rise to
very complex structures, and using unstructured triangular (tetrahedral) grids,
at least locally, may be necessary to accurately model realistic cases. In this
paper, we have made the first steps toward extending our dG methodology to
unstructured grids by presenting results for triangular elements in 2D, from
which the extension to tetrahedral elements in 3D is straightforward.
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dG(0) dG(2)

Figure 11. Tracer distribution for three injectors placed in three of
the corners and one producers placed in the lower left corner.

There are two features with our methodology that may prove very useful
when attacking complex 3D models. First of all, using a discontinuous Galerkin
discretization in combination with an upwind flux, we localise the degrees-of-
freedom (and their assembly) and simplify the coupling of different element
types. Secondly, we use an optimal ordering of the unknowns that allows us
to compute the solutions in an element-by-element fashion. This method is
quite general and applies to any grid where the inter-element dependence can
be described by a graph

For triangular grids, the dG method is convergent for smooth solutions, but
loses accuracy near discontinuities. Case 1 in Section 4 shows how the roughness
of randomly perturbed grids impact the accuracy, leading to reduced conver-
gence rates for rough grids. Considering polynomial degree versus grid resolu-
tion, some of the other examples indicate that increasing the order of the basis
functions is more important than increasing the grid resolution (provided the
flux is resolved with sufficient accuracy). Our experience is that a dG discreti-
sation of sufficiently high order is a relative robust alternative to streamlines
that performs well in a wide range of realistic cases. However, high permeability
contrasts reduce the accuracy of the solution. This may be countermanded by
introducing a sort of a slope limiter as used in [10], where we reduce the order
of the basis functions and refine the grid in areas with high media contrasts.
Finally, to accurately compute time-of-flight in fractured porous media, it is
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important having a sufficient grid resolution in the latitudinal direction of the
fractures. This is necessary since the time-of-flight is an integrated quantity
that is very sensitive to small-scale variations in media properties and contains
large spatial variation, in particular within and close to fractures.

We have also demonstrated how the framework can be used to compute
accurate approximations to the stationary tracer distribution in a reservoir.
Two test cases indicate that low-order approximations have sufficient accuracy
to produce reasonable delineations of a reservoir volume.

Altogether, we have demonstrated that the dG schemes in most cases can
accurately compute time-of-flight and stationary tracer distribution. These
quantities are of practical importance for applications in petroleum reservoir
simulation and groundwater modelling. For petroleum reservoir simulation, the
time-of-flight gives the timelines in the reservoir, whereas computing the tracer
distribution can determine the spatial regions swept or drained by a fluid from a
source or a sink. Within groundwater applications, the evaluation of the time-
of-flight may be a important tool to visualise the spreading of contaminants
and to help understanding the different transport processes.
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