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Abstract
This paper presents a front-tracking method for the numer-
ical simulation of first-contact miscible gas injection pro-
cesses. The method is developed for constructing very ac-
curate (or even exact) solutions to one-dimensional initial-
boundary-value problems in the form of a set of evolv-
ing discontinuities. The evolution of the discontinuities
is given by analytical solutions to Riemann problems. A
complete analytical Riemann solver is presented along with
methods for simplifying the wave structure for Riemann
problems of small amplitude. Several representative ex-
amples are used to illustrate the excellent behavior of the
front-tracking method.

The front-tracking method can be extended to simulate
higher-dimensional processes through the use of stream-
lines. The paper presents an application of this computa-
tional framework for the simulation of miscible flooding in
a three-dimensional, highly heterogeneous formation, and
demonstrate that a miscible water-alternating-gas injec-
tion scheme is more efficient than waterflooding or gas in-
jection alone.

Introduction
Gas injection is one of the most widely used enhanced oil
recovery processes.1–3 The fundamental principle is the
development of miscibility between the resident oil phase
and the injected gas, in order to enhance the mobility of
the hydrocarbon phase and to achieve a high displacement

efficiency. In general, miscibility between the oil present
in the reservoir and the injected gas leads to a complex set
of interactions described by thermodynamical equilibrium
of the system, in which components of the gas dissolve in
the oil, and components of the oil transfer to the vapor.4–6

In this paper, we restrict our attention to simplified ther-
modynamical systems that can be approximated by first-

contact miscible phase behavior. The underlying assump-
tion is that the injection gas (solvent) and the resident
oil mix in all proportions to form a single hydrocarbon
phase. This scenario is optimal with respect to local dis-
placement efficiency, and can be achieved in practice if the
gas is injected at a pressure above the minimum miscibility
pressure.7,8

We present a computational framework for the effi-
cient simulation of first-contact miscible processes in three-
dimensional, heterogeneous reservoir models. The key in-
gredients of our approach are:

1. An analytical solution of the one-dimensional Rie-
mann problem for a three-component, two-phase sys-
tem under the assumption of first-contact miscibility
of the hydrocarbon components.

2. A front-tracking algorithm that makes use of the ana-
lytical Riemann solver as a building block for obtain-
ing approximate solutions to general one-dimensional
problems.

3. A streamline simulator that decouples the three-
dimensional transport equations into a set of one-
dimensional problems along streamlines.

The proposed framework was introduced by the authors
for the simulation of immiscible three-phase flow,9,10 and
is extended here to miscible gas injection problems.

The Riemann problem consists in solving a system of
conservation laws in an infinite one-dimensional domain,
with piecewise constant initial data separated by a sin-
gle discontinuity. The development of analytical solutions
to the Riemann problem of multiphase, multicomponent
flow has received considerable attention over the past two
decades (see, e.g.3 and the references therein). Riemann
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solutions have been constructed for two-phase and three-
phase systems with complex phase behavior for particu-
lar initial and injection conditions. However, the develop-
ment of complete Riemann solvers is a much more challeng-
ing task. A Riemann solver is a mathematical algorithm
that provides the solution to the Riemann problem for any

initial and injection states. A Riemann solver for poly-
mer flooding was originally presented by Isaacson,11 and
then extended by Johansen and Winther to account for
adsorption in two-component12 and multicomponent sys-
tems.13,14 The principle behind polymer flooding is the
addition of a water-soluble polymer to the injected water
to increase its viscosity and, consequently, the efficiency of
a waterflood. We are interested in miscible flooding, where
the injected solvent readily mixes with the oil in place,
and reduces the viscosity of the hydrocarbon phase. How-
ever, under a proper change of variables, the mathematical
structure of the equations is virtually identical to that of
polymer flooding. Therefore, we rely heavily on the devel-
opments of Isaacson11 and Johansen and Winther12 when
formulating the complete Riemann solver for first-contact
miscible flooding. We extend the formulation (slightly) by
accounting for the presence of connate water and residual
oil. We also pay special attention to the efficient implemen-
tation of the analytical solver, because typical applications
require the evaluation of hundreds of millions of Riemann
problems.

Front-tracking methods refer to numerical schemes that
perform tracking of shocks and other evolving disconti-
nuities.15 They were developed to construct approximate
and exact solutions to hyperbolic systems of conservation
laws in one space dimension with general initial data,16

and they have been used as an essential tool in proving
uniqueness of the solution.17 Early application areas of
the method include gas dynamics18 and reservoir simula-
tion.19 Of particular interest is the work of Risebro and
Tveito,20 where the front-tracking method is applied to the
multicomponent polymer flooding system in one dimen-
sion. In our implementation of the front-tracking method,
all waves are treated as discontinuities. Shock waves and
contact discontinuities are tracked exactly, and rarefaction
waves are approximated by small inadmissible shocks. The
discontinuities are tracked until they interact and define a
new Riemann problem. The approximate solution of this
new Riemann problem leads to a new set of discontinu-
ities that need to be tracked. Repeated application of this
procedure allows marching in time. The main advantages
of the front-tracking method just described are: (1) it
captures discontinuities exactly without introducing any
numerical diffusion; (2) it is grid-independent; (3) it is un-
conditionally stable; and (4) it can be extremely efficient
if an analytical Riemann solver is available.

In this paper, we propose the use of streamlines to per-
form numerical simulation of miscible flooding in higher-
dimensional, heterogeneous media. Streamline methods
are based on a staggered solution of a global pressure
equation and the system of transport equations.21 Solu-
tion of the pressure equation defines the velocity field used
to trace the streamlines. In this way, streamline meth-
ods decouple the three-dimensional equations describing
the transport of individual components into a set of one-

dimensional problems along streamlines. With a proper
parameterization of the streamlines, the numerical solu-
tion is then obtained using the front-tracking method de-
scribed above. Therefore, the method is fundamentally
different from that of Haugse et al.,22 where front-tracking
is applied in conjunction with operator-splitting, and one-
dimensional problems are solved sequentially in each spa-
tial dimension.

An outline of the paper is as follows. We first derive
the mathematical model describing the first-contact mis-
cible system, and introduce the conservation variables em-
ployed in characterizing the solution. We comment on
the mathematical character of the system of equations,
highlighting the fact that it is not strictly hyperbolic. In
Section 3 we describe the different waves that may be
present, and the complete solution to the Riemann prob-
lem. The front-tracking algorithm is given and discussed
in Section 4. In Section 5 we present several representa-
tive one-dimensional simulations that illustrate the excel-
lent behavior of the front-tracking method. In Section 6,
we present an application of the proposed computational
framework to the simulation of miscible flooding in a three-
dimensional, highly heterogeneous formation. We compare
recovery predictions for different injection scenarios, and
conclude that a miscible water-alternating-gas (WAG) in-
jection scheme is more effective than waterflooding or gas
injection alone. In Section 7 we gather the main conclu-
sions and anticipate ongoing and future work.

Mathematical model
Governing equations. We derive briefly the govern-
ing equations for one-dimensional, two-phase, three-
component flow in porous media. The three components
are referred to as water (w), oil (o) and solvent or gas (g).
In what follows, we shall assume that water is immiscible,
and forms an aqueous phase (w). We shall also assume that
the two hydrocarbon components (oil and solvent) are fully
miscible, and form a nonaqueous hydrocarbon phase (h).

The one-dimensional conservation for each of the com-
ponents can be written as:

∂mi

∂t
+

∂Fi

∂x
= 0, i = w, o, g. (1)

where mi is the mass of component i per unit volume of
porous medium, and Fi is the mass flux of that component.
The mass densities are expressed in the following form:

mw = ρwφSw, (2)

mo = ρhφShχo, (3)

mg = ρhφShχg, (4)

where ρα (α = w, h) are the densities of each phase, φ is
the porosity, Sα are the saturations (volume fractions of
each phase), and χj (j = o, g) are the mass fractions of oil
and solvent in the hydrocarbon phase. Equations (2)–(4)
are subject to the following constraints:

Sw + Sh ≡ 1, (5)

χo + χg ≡ 1. (6)
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The mass flux of each component is given by:

Fw = ρwφvw, (7)

Fo = χoρhφvh, (8)

Fg = χgρhφvh, (9)

where vα are the average velocities of each phase. A con-
stitutive model for the phase velocities is given by the mul-
tiphase extension of Darcy’s law. Neglecting the effect of
gravity and capillary forces, they take the form:

vw = −
k

φ

krw

µw
∇p, (10)

vh = −
k

φ

krh

µh
∇p, (11)

where k is the absolute permeability of the medium, p is
the pressure, and krα and µα are the relative permeability
and the dynamic viscosity of the α-phase, respectively. For
the purpose of this paper, we shall assume that relative
permeabilities are functions of the phase saturation only.

Using Equations (2)–(9) in Equation (1), and assum-
ing incompressible fluids which do not experience volume
change in mixing (ρα = const) and rigid medium (φ =
const), the mass conservation equations for all three com-
ponents are written as:

∂Sw

∂t
+

∂vw

∂x
= 0, (12)

∂((1 − Sw)(1 − χg))

∂t
+

∂((1 − χg)vh)

∂x
= 0, (13)

∂((1 − Sw)χg)

∂t
+

∂(χgvh)

∂x
= 0. (14)

Summing Equations (12)–(14), we obtain the pressure

equation:
∂vT

∂x
= 0, (15)

where vT := vw + vh is the total velocity. The pressure
equation is an elliptic equation, which dictates that the
total velocity is at most a function of time. We introduce
the fractional flow functions:

fw :=
λw

λT
, (16)

fh :=
λh

λT
, (17)

where λα = krα/µα is the relative mobility of the α-phase,
and λT := λw + λh is the total mobility. With these def-
initions, a set of two independent conservation equations
is:

∂Sw

∂t
+ vT

∂fw

∂x
= 0, (18)

∂((1 − Sw)χg)

∂t
+ vT

∂((1 − fw)χg)

∂x
= 0. (19)

It proves useful to express the governing equations above
in terms of the following conservation variables:

S ≡ Sw : water saturation, (20)

C ≡ (1 − Sw)χg : solvent concentration. (21)
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Fig. 1— Typical dependence of the hydrocarbon viscosity on
the solvent mass fraction.

In what follows, we drop the subscript from the solvent
mass fraction, χ ≡ χg. After proper re-scaling of the time
variable to eliminate the total velocity and letting f denote
the water fractional flow function, the final form of the
conservation equations is:

∂S

∂t
+

∂f

∂x
= 0, (22)

∂C

∂t
+

∂

∂x

(

1 − f

1 − S
C

)

= 0. (23)

To close the mathematical model, we must provide con-
stitutive relations for the hydrocarbon viscosity and the
relative permeabilities. The viscosity of the hydrocarbon
phase depends on the viscosities of the oil and gas com-
ponents µo and µg (taken as constants) and the gas mass
fraction χ in the hydrocarbon phase. Since the gas viscos-
ity is lower (usually much lower) than the oil viscosity, the
hydrocarbon viscosity is a decreasing function of the gas
mass fraction (see Fig. 1).

We assume that the hydrocarbon relative permeability
does not depend on the amount of solvent. In particu-
lar, this means that the residual hydrocarbon saturation
is invariant. Thus, relative permeabilities of the aqueous
and hydrocarbon phases are functions of the water satu-
ration only. Typical behavior of these functions is shown
in Fig. 2, where we account for the presence of connate
water and residual oil. As a result, the fractional flow is a
function of both water saturation and solvent concentra-
tion:

f =

krw(S)
µw

krw(S)
µw

+ krh(S)
µh(χ)

= f(S,C). (24)

Since the hydrocarbon viscosity decreases with the solvent
fraction, the overall mobility of the hydrocarbon phase is
enhanced, resulting in lower values of the water fractional
flow. The dependence of the fractional flow function on
the solvent mass fraction is illustrated in Fig. 2.
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Fig. 2— Top: relative permeabilities of the water and hydro-
carbon phases. Bottom: dependence of the fractional flow
function on the solvent mass fraction.

Mathematical character of the equations. We ex-
press the system of conservation laws (22)–(23) in vector
form:

∂t

[

S
C

]

+ ∂x

[

f
1−f
1−S C

]

=

[

0
0

]

. (25)

The solution vector (S,C) is restricted to lie on the unit
triangle:

U ≡ {(S,C) : S ≥ 0, C ≥ 0, S + C ≤ 1} . (26)

For smooth solutions, the system (25) can be written as

∂t

[

S
C

]

+ A(S,C)∂x

[

S
C

]

=

[

0
0

]

. (27)

where A is the Jacobian matrix of the system:

A(S,C) :=

[

∂f
∂S

∂f
∂C(

1−f
1−S − ∂f

∂S

)

C
1−S

1−f
1−S − ∂f

∂C
C

1−S

]

. (28)

The local character of the system is determined by the
eigenvalues and eigenvectors of the Jacobian matrix.23 The
eigenvalues are given by:

νs = νs(S,C) =
∂f

∂S
−

∂f

∂C

C

1 − S
,

νc = νc(S,C) =
1 − f

1 − S
,

(29)

and the corresponding eigenvectors are:

rs =

[

1
− C

1−S

]

,

rc =

[ ∂f
∂C

1−f
1−S − ∂f

∂S

]

.

(30)

The eigenvalues νs and νc (when they are real) are the
characteristic speeds of propagation of waves of the S- and
C-family, respectively. The system is hyperbolic if the
eigenvalues are real, and strictly hyperbolic if the eigen-
values are real and distinct. In the latter case, the matrix
is diagonalizable and there exist two real and linearly inde-
pendent eigenvectors. If the two eigenvalues are complex
conjugates, the system is said to be elliptic.

It is easy to show that the system (25) is hyperbolic,
but not everywhere strictly hyperbolic. Loss of strict hy-
perbolicity occurs at two regions of the composition trian-
gle. First, in the region of residual oil, both eigenvalues
are identically equal to zero. The Jacobian matrix is the
zero matrix, and every direction is characteristic. Second,
there is a curve in phase space at which the eigenvalues
coincide, νs = νc. This curve divides the unit triangle U
into two regions:

L ≡ {(S,C) : νs < νc} ,

R ≡ {(S,C) : νs > νc} .
(31)

We denote this curve as the transition curve T because the
two families of eigenvalues change order as T is crossed.
Since the fractional flow function is monotonic with re-
spect to the solvent mass fraction χ, the transition curve
intersects each line χ = const at exactly one point.

For the first-contact miscible model considered in this
paper, the Jacobian matrix is not diagonalizable on T ,
that is, A has only one independent eigenvector:

rs

∣

∣

T
= rc

∣

∣

T
=

[

1
− C

1−S

]

. (32)

The system is said to have a parabolic degeneracy on T .
This behavior is qualitatively very different from that of
a model that assumes constant hydrocarbon viscosity. In
such model, because the fractional flow f is a function
of S only, the system is a multiple of the identity along the
transition curve, and every direction is characteristic.

The Riemann problem
The Riemann problem consists in finding the weak solution
to the system of hyperbolic conservation laws:

∂tu + ∂xf = 0, −∞ < x < ∞, t > 0, (33)

with the following initial conditions:

u(x, 0) =

{

ul if x < 0,

ur if x ≥ 0.
(34)

The state ul = (Sl, Cl) is the ‘left’ or ‘injected’ state, and
ur = (Sr, Cr) is the ‘right’ or ‘initial’ state. The system of
equations (33) and the initial condition (34) are invariant
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Fig. 3— Transition curve T (νs = νc) and the regions L (νs <

νc) and R (νs > νc) on the ternary diagram.

under uniform stretching of coordinates (x, t) 7→ (cx, ct).
The solution must consist of centered waves emanating
from the origin (x, t) = (0, 0). Therefore, we seek a self-
similar solution

u(x, t) = U(ζ), (35)

where the similarity variable is ζ = x/t.

Wave types. In this section we describe the types of cen-
tered waves that arise in the solution of the Riemann prob-
lem of miscible three-component flow.

Integral curves. If the solution U(ζ) is smooth, it must
satisfy

A(U)U ′ = ζU ′, (36)

that is, ζ is an eigenvalue and U ′ is the corresponding
eigenvector. Therefore, smooth waves (rarefactions) must
lie on an integral curve of the right eigenvectors. States U
along an integral curve are defined by the differential equa-
tion

dU

dτ
= ri(U(τ)), i = s, c. (37)

Performing the integration analytically, the two families of
integral curves are given by the equations:

S-family :
C

1 − S
= const,

C-family : νc = const.
(38)

In the context of compositional displacements, integral
curves of the S-family are known as tie-line paths, and
curves of the C-family are termed nontie-line paths.3 The
integral curves of the system of interest are shown in
Fig. 4.

Discontinuous solutions must satisfy an integral version
of the mass conservation equations, known as the Rankine–
Hugoniot conditions. The set of states U that can be joined
to a reference state ul by a discontinuity satisfy:

f(ur) − f(ul) = σ (ur − ul), (39)

where σ is the speed of propagation of the discontinuity.
For the flux vector f of the first-contact miscible problem,
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Fig. 4— Integral curves of the S-family (blue) and C-family
(red) on the ternary diagram. Also shown are the transition
curve, where eigenvalues of different families coincide, and the
inflection locus of the S-family.

Equation (39) admits two families of solutions, which de-
fine the Hugoniot locus of the S- and C-family. In general,
integral curves and Hugoniot loci do not coincide, but they
have second order tangency (same slope and curvature) at
any given state, so they are locally very similar.

The integral curves of the miscible system have the fol-
lowing special features: (1) integral curves of the S-family
are straight lines, which means that they they have zero
curvature; (2) the eigenvalue νc is constant along integral
curves of the C-family, which means that these curves cor-
respond to contact discontinuities. The immediate conse-
quence of these properties is that, for the solvent system,
Hugoniot loci and integral curves coincide.

Waves of the S-family (Tie-line waves). Waves of
the S-family are solutions of the classical Buckley–Leverett
equation. The wave curves are straight lines on composi-
tion space, corresponding to lines of constant solvent mass
fraction

χ = const. (40)

The characteristic velocity νs is not constant along integral
curves of the S-family. Let us define

Vs(u) := ∇νs(u) · rs(u). (41)

Since the convexity function Vs changes sign, the S-field is
a nongenuinely nonlinear field in the sense of Lax.24 The
inflection locus is the set of states where Vs = 0, which
separates regions of different convexity (see Fig. 4). In
our model, the fractional flow function is S-shaped, so the
inflection locus intersects each tie-line at exactly one point,
which corresponds to a maximum of the eigenvalue νs. It
can be shown that, under these conditions, a S-wave can
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only be of three types: rarefaction, shock, and rarefaction-
shock.25 The admissibility of a S-wave is based on the e-
Lax entropy condition (convex-hull construction).26,27 A
robust and efficient algorithm for the determination of the
wave structure in the Buckley–Leverett problem is pre-
sented elsewhere.28

Waves of the C-family (Nontie-line waves). The
characteristic speed νc is constant along wave curves of the
C-family. The C-field is a linearly degenerate field in the
sense of Lax,24 and the waves of this family are contact
discontinuities. The immediate computational benefit of
this property is that evaluation of nontie-line paths does
not require numerical integration of an ordinary differential
equation: the C-waves are completely determined by the
algebraic relation

νc = const. (42)

Application of the e-Lax entropy condition27 precludes the
possibility that a C-wave joins constant states on opposite
sides of the transition curve.11

Admissible wave sequences. In general, the solution to
the Riemann problem consists of a sequence of the centered
waves described in the previous section. For 2 × 2 strictly
hyperbolic systems, whose fields satisfy certain nondegen-
eracy conditions, the solution will comprise at most two
waves, which are strictly separated:27

ul
W1−→ um

W2−→ ur (43)

For nonstrictly hyperbolic systems, however, the solution
may involve more than two waves. In addition to the slow
and fast waves characteristic of a strictly hyperbolic sys-
tem, transitional waves may be necessary in the construc-
tion of a solution.29,30 The system describing miscible
flooding is a good example of this behavior.

Before describing the complete solution, we give the ad-
missible pairs of waves that may be present.

The case ul
C

−→ um
S

−→ ur. Adapting the analysis of
Isaacson11 to our model problem, it can be shown that the

sequence of waves ul
C

−→ um
S

−→ ur, that is, the combina-
tion of a slower C-wave with a faster S-wave, is admissible
only in the following three cases:

(a) If um ∈ T and ur ∈ R.

(b) If um ∈ R and ur ∈ R.

(c) If um ∈ R and ur ∈ L such that νc(ur) ≥ νc(um).

Examples of each of these wave sequences are given in
Fig. 5. The top row of figures show admissible sequences
of wave curves in composition space. The bottom row of
figures show the fractional flow curve corresponding to the
tie-line passing through the intermediate state um. In all
three cases, the characteristic speed of the C-wave (slope
of the red line) is less than the characteristic speed of the
S-wave (slope of the blue line), indicating admissibility of
the wave sequence.

The case ul
S

−→ um
C

−→ ur. Similarly, it can be shown

that the sequence of waves ul
S

−→ um
C

−→ ur, that is, the
combination of a slower S-wave with a faster C-wave, is
admissible only in the following three cases:

(a) If um ∈ T and ul ∈ L.

(b) If um ∈ L and ul ∈ L.

(c) If um ∈ L and ul ∈ R such that νc(ul) ≥ νc(um).

In Fig. 6 we show examples of each of these wave pairs,
illustrating the sequence of wave curves on the composition
diagram and the fractional flow curve of the tie-line passing
through um.

Solution of the Riemann problem. The global solu-
tion of the Riemann problem is obtained by joining waves
that form a compatible sequence. Motivated by the admis-
sible wave structure of Cases 1 and 2 above, and following
Isaacson,11 we define several regions in the composition di-
agram that will allow a straightforward characterization of
the wave structure of the solution.

• The case ul ∈ L (Fig. 7(a)): One must first identify
the tie-line χ = χ(ul) associated with the left state,
and the intersection ut of this tie-line and the tran-
sition curve T . Then, we define the following three
nonoverlapping regions that cover the entire ternary
diagram U :

1. Region L1: It contains the set of states u sat-
isfying that νs(u) < νc(u) and νc(u) < νc(ut).
Therefore, it is bounded from the right by
the transition curve T and the left branch of
the nontie-line passing through the intersection
point ut.

2. Region L2: It contains the set of states u satis-
fying that νs(u) > νc(ut) and χ(u) > χ(ut). It is
bounded from the left by the left branch of the
nontie-line passing through ut and from below by
the tie-line passing through ut.

3. Region L3: It contains the set of states u sat-
isfying that νs(u) > νc(u) and χ(u) < χ(ut).
It is bounded from the left by the transition
curve T and from above by the tie-line passing
through ut.

• The case ul ∈ R (Fig. 7(b)): We first find the nontie-
line νc = νc(ul) associated with the left state, and the
intersection ut of this nontie-line and the transition
curve T . It is important to note that this intersection
point may be outside the ternary diagram. In that
case, some of the regions defined below will be empty:

1. Region R1: It contains the set of states u sat-
isfying that νs(u) < νc(u) and νc(u) < νc(ut).
If the intersection point ut is inside the ternary
diagram, this region is bounded from the right
by the transition curve T and the left branch of
the nontie-line passing through the intersection
point ut. Otherwise, it is bounded from the right
entirely by the left branch of the nontie-line, and
it is empty if νc(ul) < 1.
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Fig. 5— All three types of compatible wave sequences of type ul
C
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2. Region R2: It contains the set of states u sat-
isfying that νs(u) > νc(ut) and χ(u) > χ(ut).
If the intersection point ut is inside the ternary
diagram, this region is bounded from the left
by the left branch of the nontie-line passing
through ut and from below by the tie-line pass-
ing through ut. If ut is outside the composition
triangle, this region is only bounded from the left
by the left branch of the nontie-line νc = νc(ul).
If νc(ul) < 1, this region covers the entire trian-
gle.

3. Region R3: It contains the set of states u sat-
isfying that νs(u) > νc(u) and χ(u) < χ(ut). If
the intersection point ut is inside the ternary dia-
gram, this region is bounded from the left by the
transition curve T and from above by the tie-line
passing through ut; otherwise it is empty.

We are now in position to give the global structure of
the solution to the Riemann problem.11

• The case ul ∈ L (Fig. 8): If the left state ul belongs
to the region L, that is, if νs(ul) < νc(ul), the global
solution to the Riemann problem is of one of the fol-
lowing types:

1. ur ∈ L1 (Fig. 8(a)): ul
S

−→ um
C

−→ ur.

2. ur ∈ L2 (Fig. 8(b)): ul
S

−→ u
(1)
m

C
−→ u

(2)
m

S
−→ ur.

3. ur ∈ L3 (Fig. 8(c)): ul
S

−→ u
(1)
m

C
−→ u

(2)
m

S
−→ ur.

• The case ul ∈ R (Fig. 9): If the left state ul be-
longs to the region R, that is, if νs(ul) > νc(ul), the
global solution to the Riemann problem is of one of
the following types:

1. ur ∈ R1 (Fig. 9(a)): ul
S

−→ um
C

−→ ur.

2. ur ∈ R2 (Fig. 9(b)): ul
C

−→ um
S

−→ ur.

3. ur ∈ R3 (Fig. 9(c)): ul
S

−→ u
(1)
m

C
−→ u

(2)
m

S
−→ ur.

Remarks.

1. Of course, the solution may involve a single wave if the

left and right states are on the same tie-line (ul
S

−→

ur) or on the same nontie-line path (ul
C

−→ ur).

2. Several of the solutions are composed of three waves.
In all these cases, the transitional wave is a contact
discontinuity.

Convergence of finite difference solutions. The pur-
pose of this section is to illustrate the difficulty of stan-
dard numerical methods in producing accurate solutions
to the Riemann problem. The slow convergence of finite
difference solutions to the analytical solution of nonstrictly
hyperbolic conservation laws has been noted by many au-
thors.12,20,31 The main reason is the presence of contact
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Fig. 9— Wave structure of the solution when ul ∈ R.

discontinuities in the solution. Contact discontinuities are
indifferent waves and, unlike genuine shocks, are not self-
sharpening. As a result, some essential features of the
solution may be overwhelmed by numerical diffusion in-
troduced by standard finite difference schemes.

In Fig. 10 we compare the analytical solution to a Rie-
mann problem of type R3 with finite difference solutions
on increasingly refined grids. We used the single-point
upstream finite difference method, and a Crank-Nicolson
scheme for integration in time. The time step was chosen
so that the Courant number Co = σmaxδt/δx was approx-
imately equal to 2. Results of the finite difference calcula-
tions are shown at time t = 0.25.

One of the distinctive features of the solution is the pres-
ence of a contact discontinuity (transitional wave) of large
amplitude, related to the formation of a solvent bank. It is
apparent from the figure that the finite difference solutions
with 100 and 500 gridblocks are unable to resolve this fea-
ture. In this case, an accurate solution requires a grid with
2000 cells.

The front-tracking algorithm
Front tracking is an algorithm for constructing exact or ap-
proximate solutions to hyperbolic systems of conservation
laws with general initial data (Cauchy problem):

∂tu + ∂xf(u) = 0, u(x, 0) = u0(x). (44)

The algorithm starts from a piecewise constant func-
tion u0(x). Each discontinuity defines a local Riemann
problem, where each Riemann problem again is connected
to its nearest neighbors through common constant states.
All Riemann problems produce a similarity solution, called
a Riemann fan, which consists of constant states separated
by simple waves with finite speed of propagation. Neigh-
boring Riemann-fans can therefore be connected through
the common constant state and this way define a global
solution in space, which is well-defined up to the first time
two simple waves interact. If the interacting waves are dis-
continuities, i.e., shocks or contacts, the interaction defines
a new Riemann problem. By solving the Riemann prob-
lem and inserting the corresponding local Riemann fan,
the global solution can be extended in time until the next
interaction and so on (see Fig. 11). If all simple waves
are discontinuities, we can hence have an algorithm for
building the global solution of the Cauchy problem.

For systems admitting continuous simple waves (rarefac-
tions), one can similarly construct an approximate solution
to the Cauchy problem by the above algorithm. To do so,
one simply approximates each rarefaction fan by a set of
constant states separated by space-time rays of disconti-
nuity. This can be done by sampling states along the inte-
gral curve and assigning each discontinuity an appropriate
wave-speed; e.g., the Rankine–Hugoniot velocity, or the
eigenvalue at the left or right state. Alternatively, one can
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first interaction second interaction

Fig. 11— Construction of a global solution by connecting local
Riemann fans depicted in the (x, t)-plane.

discretize the wave speeds in the Riemann fan and then
obtain the corresponding constant states.

It is also common to perform some kind of data-
reduction to reduce the number of tracked discontinuities.
In the current implementation, we do data-reduction on
two levels. If the difference in left and right states in a Rie-
mann problem is below a certain threshold, the Riemann
fan is approximated by a single discontinuity traveling with
a wave speed equal the average of the two eigenvalues of
the left state. If the difference in states is even smaller, the
Riemann problem is simply neglected. This data-reduction

introduces a (small) error in the mass conservation that
can be controlled by picking appropriate threshold values.

To sum up, the front-tracking algorithm consists of the
following three key points: solution of Riemann problems,
approximation of Riemann fans in terms of step functions,
and tracing of discontinuities (fronts). The algorithm is
usually realized in the form of a spatially-ordered list of
front objects representing each discontinuity and the asso-
ciated constant states and some priority queue for keeping
track of colliding fronts.

Algorithm 1 The front-tracking algorithm

Construct a piecewise constant initial function u0(x) = ui

Set F = {∅}, C = {∅}, and t = 0
For i = 0 : n

{fL, . . . , fR} = RiemannSolver(ui, ui+1, xi+1/2, t)
c = ComputeCollision(F, fL)
C = Sort({C, c})
F = InsertFronts({F, {fL, . . . , fR})

While (t ≤ T ) and C 6= {∅} do
(c, xc, tc) = ExtractNextCollision(C)
{fL, . . . , fR} = ExtractCollidingFronts(F,c)
{fL, . . . , fR} = RiemannSolver(fL→uL, fR→uR, xc, tc)
{cL, cR} = ComputeCollision(F, {fL, . . . , fR})
C = Sort({C, cL, cR})
F = InsertFronts(F, {fL, . . . , fR})

endwhile
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Fig. 12— (Example 1) Approximate solutions for δu = 0.001 (upper left) and δu = 0.01 (upper right), fronts in (x, t)-space (lower
left), and solution in saturation triangle (lower right).

One-dimensional simulations
In this section we present several simple examples to
demonstrate the behavior of the front-tracking algorithm.
To this end, we have chosen a simple model with quadratic
relative permeabilities:

krw(S) =







0 if S < Swc = 0.2,
(

S − Swc

1 − Swc

)2

otherwise,
(45)

krh(S) =







0 if 1 − S < Shc = 0.2,

0.1

(

1 − S − Shc

1 − Shc

)

+ 0.9

(

1 − S − Shc

1 − Shc

)2

,

(46)

and viscosities given by the quarter-power rule:

µh(χ) =

[

1 − χ

µ
1/4
o

+
χ

µ
1/4
g

]−4

, (47)

with
µw = 1.0, µo = 4.0, µg = 0.4.

Example 1. The first example is a simple Riemann prob-
lem at x = 0.1 with left state ul = (0.8, 0) and right state
ur = (0.2, 0.7). The left state lies on the border of the
region of residual oil, where both eigenvalues are zero. In
this case the R2 region covers the whole saturation trian-

gle. The solution is therefore of the form ul
C

−→ um
S

−→ ur

and consists of a composite S-rarefaction-shock followed

by a C-contact. Fig. 12 shows approximate solutions ob-
tained using two different tolerances for sampling the rar-
efactions, δu = 0.01 and δu = 0.001. Whereas the accuracy
of the rarefaction is different, the shock and contact are
represented exactly in both simulations.

Example 2. The second example is a simple Riemann
problem at x = 0.1 with left state ul = (0.2, 0.7) and
right state ul = (0.7, 0.2). The left state lies in the L re-
gion with νs = 0 < νc = 1.25, and the right state lies
in the L3 region. The solution is therefore of the form

ul
S

−→ u
(1)
m

C
−→ u

(2)
m

S
−→ ur and consists of a fast compos-

ite S-rarefaction-shock followed by a C-contact and a slow
S-rarefaction. Fig. 13 shows two approximate solutions
obtained using δu = 0.01 and δu = 0.001.

Example 3. In this example we demonstrate the effects
of data reduction. To this end, consider the unit interval
x ∈ [0, 1] with periodic boundary conditions and an initial
Riemann problem with ul = (0.1, 0.8) and ur = (0.8, 0.1).
We compute the solution up to time t = 0.75 in two ways
(using δu = 0.005):

• Using no data reduction, the simulator solved 89 full
Riemann problems.

• Using data reduction when |ul−ur| < 0.01, 56 full Rie-
mann problems were solved and 19 Riemann problems
were approximated by a single wave.

Fig. 14 shows the two approximate solutions along with
plots of the fronts in the (x, t) plane. We see that the data
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Fig. 13— (Example 2) Approximate solutions for δu = 0.001 (upper left) and δu = 0.01 (upper right), fronts in (x, t)-space (lower
left), and solution in saturation triangle (lower right).
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Fig. 15— (Example 4) Simulation of water injection. Left column: plot of fluid composition in reservoir at times t = 0 : 0.25 : 2.0
from bottom to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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Fig. 16— (Example 4) Simulation of solvent injection. Left column: plot of fluid composition in reservoir at times t = 0 : 0.25 : 2.0
from bottom to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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Fig. 17— (Example 4) Simulation of alternating water and solvent injection. Left column: plot of fluid composition in reservoir at
times t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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Fig. 18— (Example 4) Simulation of alternating solvent and water injection. Left column: plot of fluid composition in reservoir at
times t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and cumulative production curves.
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reduction has been applied to two different sorts of interac-
tions: interaction of a S-rarefaction and the C-contact em-
anating from (0, 0.3); and interaction of these data-reduced
waves and the secondary waves produced by the interac-
tion of the S-rarefaction emanating from (0, 0) with the
fast S-shock emanating from (0, 0.3). The data reduction
had little effect on the accuracy since the two approximate
solutions are virtually indistinguishable.

Example 4. Consider now a reservoir x ∈ [0, 2] initially
filled with a fluid of composition (0.3, 0). To produce the
reservoir four different strategies were proposed:

1. Continuous water injection.

2. Continuous solvent (gas) injection.

3. Alternating solvent and water, with periods ∆t = 0.2.

4. Alternating water and solvent, with periods ∆t = 0.2.

(The trained reservoir engineer will of course immediately
see that the second strategy is best, but we consider all
four to illustrate the performance of the front-tracking
method).

Simulations of the four strategies are shown in Fig. 15

to Fig. 18. The simulation of each of the two first strate-
gies involved one Riemann solution and wave interactions
only at the outflow boundary, whereas the simulation of
each of the WAG strategies involved about 1700 wave in-
teractions and 450 Riemann solutions.

Streamline Simulations
The front-tracking method can be used as part of a stream-
line solver to simulate multidimensional miscible gas dis-
placements. The streamline solver uses a sequential split-
ting method, in which each saturation step typically in-
volves several thousand streamlines, resulting in a very
large number of calls to the Riemann solver. A key point
in obtaining an efficient solver is therefore to use the data-
reduction algorithm illustrated in Example 3 to reduce the
number of calls to the Riemann solver.

Example. We consider a three-dimensional rectangular
reservoir model consisting of a subsample (30 × 110 × 15
gridblocks) of the highly heterogeneous shallow-marine
Tarbert formation from the 10th SPE comparative solu-
tion project.32 The permeability varies six orders of mag-
nitude in the horizontal and ten orders of magnitude in the
vertical direction, see Fig. 19. The porosity is strongly
correlated to the permeability. The reservoir is initially
filled with 70% oil and 30% water, (S,C) = (0.3, 0), and
for simplicity we neglect gravity and assume incompress-
ible flow.

To produce the reservoir, we introduce a five-spot well
configuration with one vertical injection well in the center
and four vertical producers at the corners, and consider
three different production scenarios: (i) injection of pure
water, i.e., (S,C) = (1, 0); (ii) injection of pure solvent, i.e.,
(S,C) = (0, 1); and (iii) a WAG cycle where the injected
fluid composition is changed between pure water and pure
solvent every 200 days, starting at day 400. Fig. 20 shows

10 10 10 10 10 10 10−2 −1 0 1 2 3 4 

Fig. 19— Logarithm of horizontal permeability and well con-
figuration for the Tarbert formation.

a comparison of production curves for 2000 days of produc-
tion with the three scenarios. From these results, one can
conclude that the recovery efficiency of the WAG scheme is
higher than that of either water injection and gas injection
alone, even though no attempt was made to optimize the
WAG ratio or slug size.

Conclusions
In this paper we have presented an efficient computa-
tional framework for the simulation of first-contact mis-
cible gas injection processes. The framework is based on
three key technologies: (1) a streamline method that de-
couples the three-dimensional transport equations into a
set of one-dimensional problems along streamlines; (2) a
front-tracking algorithm for the accurate (or even exact)
solution of general one-dimensional initial and boundary-
value problems; and (3) an analytical Riemann solver for
the first-contact miscible system, used as a building block
in the front-tracking method.

Under certain simplifying assumptions, the system de-
scribing two-phase, three-component, first-contact misci-
ble flow is a 2 × 2 hyperbolic system. It is not, how-
ever, strictly hyperbolic. Using an analogy with the sys-
tem of equations governing polymer flooding,11,12 we give
the complete solution to the Riemann problem. We show
that the solution may involve more than two waves, one of
which is always a contact discontinuity.

The computational efficiency of the front-tracking
method relies heavily on the availability of an analytical
Riemann solver, and the use of a proper data-reduction al-
gorithm to approximate (or even discard) Riemann prob-
lems of small amplitude. The solvent system studied
here has two features that make the front-tracking scheme
particularly attractive: (1) rarefaction curves and shock
curves coincide in composition space, so there is no need
to perform (an expensive) numerical integration to char-
acterize rarefaction waves; (2) some waves are contact dis-
continuities, which are not self-sharpening. Such waves are
very sensitive to numerical diffusion introduced by classi-
cal finite difference schemes, but they are resolved exactly

in a front-tracking solution.
The integration of analytical Riemann solvers, the front-

tracking method, and streamline tracing, offers the poten-
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Fig. 20— Rates and cumulative production curves for water, solvent and WAG injection for a subsample of the SPE10 reservoir
model.
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tial for fast and accurate prediction of miscible gas and
WAG injection in real reservoirs. In the paper, several
representative examples are used to illustrate the excellent
behavior of the front-tracking method. In particular, we
present an application of this computational framework for
the simulation of miscible flooding in a three-dimensional,
highly heterogeneous formation, and demonstrate that a
miscible water-alternating-gas injection scheme is more ef-
ficient than waterflooding or gas injection alone. Although
this was not pursued here, this fast computational tool
could have been used in an optimization loop for designing
optimal WAG schemes (e.g., WAG ratio and slug size).

The work presented here can be extended in a number
of ways. An important extension is to account for vis-
cous fingering. Empirical models have been devised that
replace the effective solvent flux in such a way that the
dispersive effect of viscous fingering is captured.33,34 Ana-
lytical solutions to particular cases have been developed by
Blunt and Christie.35 A miscible model that accounts for
trapped and dendritic oil has been analyzed by O’Steen
and Huang.36 An interesting but challenging extension
would be to consider multicontact miscible problems, in
which the hydrocarbon components do not mix in all pro-
portions. Analytical solutions for particular initial and
injection states have been presented recently by LaForce
and Johns.37 Other physical processes, such as gravity,
capillarity, and compressibility, may also be incorporated
into the streamline simulator.

Nomenclature

Roman letters

A Jacobian matrix of the system, dimensionless
C solvent concentration, dimensionless
C Wave of the C-family
f flux vector, dimensionless
f water fractional flow, dimensionless
fα fractional flow of the α-phase, dimensionless
Fi mass flux of the i-component, m/L2t
k absolute permeability, L2

krα relative permeability of the α-phase,
dimensionless

L left region of ternary diagram with νs < νc

mi mass of the i-component p.u. bulk volume, m/L3

p global pressure, m/Lt2

ri eigenvector of the i-family, dimensionless
R right region of ternary diagram with νs > νc

S water saturation, dimensionless
Sα saturation of the α-phase, dimensionless
Sαc immobile saturation of the α-phase, dimensionless
S Wave of the S-family
t time, t
T transition curve
u solution vector, dimensionless
U self-similar solution vector, dimensionless
U unit triangle or ternary diagram
vT total velocity, L/t
vα velocity of the α-phase, L/t
Vs convexity function of the S-family
Wi wave of the i-family
x space coordinate, L

Greek letters

δu tolerance for rarefaction sampling, dimensionless
ζ self-similarity variable, dimensionless
λT total mobility, Lt/m
λα relative mobility of the α-phase, Lt/m
µα dynamic viscosity of the α-phase, m/Lt
νi eigenvalue of the i-family, dimensionless
ρα density of the α-phase, m/L3

σ speed of a traveling shock, dimensionless
φ porosity, dimensionless
χ solvent mass fraction, dimensionless
χi mass fraction of the i-component, dimensionless

Subscripts

c C-characteristic family
g gas component
h hydrocarbon phase
l left state
m intermediate constant state
o oil component
r right state
s S-characteristic family
w water component or aqueous phase
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