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Abstract
Vugs, caves, and fractures can significantly alter the effective permeability of carbonate reservoirs and should be accurately
accounted for in a geomodel. Accurate modeling of the interaction between free-flow and porous regions is essential for flow
simulations and detailed production engineering calculations. However, flow simulation of such reservoirs is very challenging
because of the co-existence of porous and free-flow regions on multiple scales that need to be coupled.

Multiscale methods are conceptually well-suited for this type of modeling as they allow varying resolution and provide
a systematic procedure for coarsening and refinement. However, to date there are hardly no multiscale methods developed
for problems with both free-flow and porous regions. Herein we develop a multiscale mixed finite-element (MsMFE) method
for detailed modeling of vuggy and naturally-fractured reservoirs as a first step towards a uniform multiscale, multiphysics
framework. The MsMFE method uses a standard Darcy model to approximate pressure and fluxes on a coarse grid, whereas
fine-scale effects are captured through basis functions computed numerically by solving local Stokes–Brinkman flow problems
on the underlying fine-scale geocellular grid. The Stokes–Brinkman equations give a unified approach to simulating free-flow
and porous regions using a single system of equations, avoid explicit interface modeling, and reduce to Darcy or Stokes flow in
certain parameter limits.

In the paper, the MsMFE solutions are compared with fine-scale Stokes–Brinkman solutions for test cases including both
short- and long-range fractures. The results demonstrate how fine-scale flow in fracture networks can be represented within
a coarse-scale Darcy flow model by using multiscale elements computed solving the Stokes–Brinkman equations. The results
indicate that the MsMFE method is a promising path toward direct simulation of highly detailed geocellular models of vuggy and
naturally-fractured reservoirs.

Introduction
Naturally fractured and carbonate reservoirs are composed of porous material, but will typically also contain relatively large void
spaces in the form of fractures, small cavities, and caves, which are called vugs in the geological literature. Flow simulation of
such formations is very challenging because of the co-existence of porous and free-flow domains on multiple scales that require
coupling (Wu et al. 2006).

The Darcy–Stokes equations have been used to model industrial infiltration processes and coupled surface and subsurface
flow, for which the porous and the free-flow domains are well separated. The Darcy–Stokes model consists of Darcy’s law
combined with mass conservation in the porous subdomain and the Stokes equations in the free-flow subdomain. To close the
model, one must specify conditions on the interface between the Darcy and Stokes subdomains. All such conditions require
continuity of mass and momentum over the interface, but differ in the way they allow the tangential component to jump across
the interface.

In carbonate reservoirs, the porous and free-flow domains are not well separated: vugs and rock matrix are intertwined
throughout the reservoir, often on multiple scales. This means that the coupled Darcy–Stokes approach is not feasible for several
reasons. First of all, it would require precise information about the location and geometry of the interface between vugs and
the porous matrix and experimentally determined values related to the interface conditions. Whereas this information can be
obtained for an engineered medium or a small rock sample, is generally not possible to obtain for a sector or a full reservoir
model. Second, explicit representation of the medium on a centimeter scale, as required to resolve vugs and fractures, would
make the flow problem computationally intractable. Finally, the free-flow domains may contain loose fill-in material or particle
suspensions in the fluids filling the void space.
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Hence, when the extent of the hydrocarbon reservoir rock is large, it is not reasonable to apply the Darcy–Stokes equations
for the whole domain. Instead, Arbogast and Lehr (2006) predicted, using tools from homogenization theory, that the appropriate
macroscopic model would be of Darcy type, with effective macroscale permeability derived through upscaling by solving the
Darcy–Stokes equations on the microscale within an upscaling block. To treat the block problems, Arbogast and Brunson (2007)
designed a mixed finite-element formulation with a single set of basis functions that apply for the entire Darcy–Stokes system.
(See also Karper et al. (2009) for an alternative unified discretization). Arbogast and Gomez (2009) recently extended this
approach to three spatial dimensions and developed new and efficient multigrid solvers to solve the resulting highly ill-conditioned
saddle-point linear system.

Another upscaling approach was recently presented by Popov et al. (2007, 2009), in which the Stokes–Brinkman equations,
rather than the Darcy–Stokes equations, are used on the fine scale to compute upscaled effective permeabilities. The Stokes–
Brinkman equations can be reduced to either the Stokes or the Darcy equations in appropriate parameter limits and give a some-
what coarser model that does not require a precise description of the interface between free-flow and porous domains. This is
advantageous for applications to real media for which the location of the vug boundaries is uncertain and for which resolving the
Stokes part of the flow is computationally intractable. Moreover, the Stokes–Brinkman model opens up for a seamless transition
between Darcy and Stokes, which may be appropriate in damaged zones, etc. Also, from a numerical point-of-view it is attrac-
tive to use a single model in which the two domains are represented implicitly through the parameters instead of a two-domain
approach involving explicit modeling of the interface between the vuggy and porous domains.

Common for both the upscaling approaches discussed above is that they use a computation on a fine scale to predict effective
properties on a coarser scale. Multiscale simulation (Hou and Wu 1997; Arbogast and Bryant 2002; Chen and Hou 2003; Jenny
et al. 2003) is an alternative approach that is conceptually well-suited for this type of modeling, as it enables varying resolution
and provides a systematic procedure for coarsening and refinement. For Darcy flow, multiscale methods have proved to be more
robust than standard upscaling methods (Kippe et al. 2008) and have the advantage that they offer subscale resolution and thus can
be used as highly efficient approximate solvers for direct solution of the full fine-scale problem. Multiscale methods have proved
capable of handling industry-standard complexity both with respect to grid representation (Aarnes et al. 2008) and flow physics
(Lee et al. 2008; Zhou and Tchelepi 2008; Hajibeygi et al. 2008; Krogstad et al. 2009). Natvig et al. (2009) recently demonstrated
how multiscale methods can be used to simulate geological models with fracture corridors modeled as volumetric objects with
high permeability. To date, however, multiscale methods have not been applied to simulate flow in naturally-fractured and vuggy
media using a multiphysics approach with different flow models on the fine and the coarse scale.

This paper presents a multiscale mixed finite-element (MsMFE) method (Chen and Hou 2003; Arbogast and Bryant 2002;
Aarnes 2004) for detailed multiphysics simulation of single-phase flow in naturally-fractured and vuggy reservoirs. The MsMFE
method uses a standard Darcy model to approximate pressure and velocity on a coarse grid. Fine-scale effects are captured
through basis functions that are determined by solving local Stokes–Brinkman flow problems numerically on the underlying fine-
scale geocellular grid. The local flow problems are set up in a way that forces a unit flow across the interface between two coarse
blocks, meaning that the corresponding basis functions reduce to the lowest-order Raviart–Thomas (RT0) basis functions for the
special case of Darcy flow in a homogeneous medium. In the general case, the basis functions account for local variations of
flow velocity caused by subgrid heterogeneities in the porous domains, increased flow velocities resulting from free-flow domains
present on the subgrid scale, and geometrical effects in the case of non-square blocks.

The outline of the paper is as follows: We start by introducing the Darcy–Stokes and Stokes–Brinkman models in more detail
and discuss how to discretize the latter. We then introduce the MsMFE method and assess its utility through a few illustrative
numerical experiments, before we round up the paper with some concluding remarks.

Mathematical Models
Incompressible flow in a porous rock matrix typically obeys Darcy’s law and is described by a first-order elliptic system in which
Darcy’s law is combined with a mass-conservation equation to relate the pressure pD and the total (interstitial) velocity ~uD,

µK−1~uD +∇pD = 0, ∇ · ~uD = f. (1)

Here, µ is the fluid viscosity, K is the permeability of the porous medium, f denotes fluid sources, and we have neglected any body
forces. Eq. 1 may alternatively be manipulated to give a second-order elliptic equation. Incompressible flow in open domains, on
the other hand, obeys the Stokes equations,

−µ∇ ·
(
∇~uS +∇~uT

S

)
+∇pS = 0, ∇ · ~uS = f. (2)

The Stokes–Brinkman equations combine Eqs. 1 and 2 into a single equation,

µK−1~u+∇p− µ̃∆~u = 0, ∇ · ~u = f, (3)

where p is the pressure, ~u is the velocity field, K is a permeability tensor that is equal to the Darcy permeability in the porous
subdomain, µ is the viscosity of the fluid, and µ̃ is an effective viscosity. This model gives a unified approach to model flow in
both the free-flow and the porous subdomains using a single system of equations. In the free-flow (or fluid) domain, we may
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let K tend to infinity and set the effective viscosity equal to the fluid viscosity, µ̃ = µ to observe that Eq. 3 simplifies to the
Stokes equations, Eq. 2. If µ̃ is set to zero in the porous domains, Eq. 3 simplifies to the coupled Darcy–Stokes equations, which
reintroduces the requirement for interface conditions, etc. We therefore set µ̃ equal to the physical fluid viscosity µ. Still assuming
that the body forces are zero, we may rewrite Eq. 3 as

∇p = −µK−1~u+ µ̃∆~u. (4)

A comparison of the magnitude of the two velocity terms on the right-hand side shows that the first term dominates the second by
several orders of magnitude for typical reservoirs. In other words, Eq. 4 can be seen as Darcy’s equation with a small viscosity
perturbation. Other choices of µ̃ are also possible and may provide more accurate modeling; see Popov et al. (2009) for a more
thorough discussion.

In the following we will study Eqs. 1 and 3 as our flow models on the coarse and fine scale, respectively. For both models,
we will assume no-flow or pressure boundary conditions and neglect body forces and wells, so that all flows will be driven by
boundary conditions only.

The Multiscale Mixed Finite Element Method
In this section we start by describing the mixed formulation underlying both the MsMFE method and the discretization of the
Stokes–Brinkman equations on the fine scale. Then we introduce the MsMFE formulation and describe in some detail the
structure of the associated coarse-scale linear systems.

Fine-Scale Discretization and (Hybrid) Linear System. To solve the Stokes–Brinkman equations (Eq. 3) on the fine scale
and the Darcy equations (Eq. 1) on the coarse scale (and on the fine scale for comparison), we will use a mixed finite-element
formulation. To this end, we start by assuming that the permeability K is given as a piecewise constant tensor defined over a
regular Cartesian grid in 2D; that is, K is a constant 2 × 2 matrix in each cell Ek. Then, for both equations we seek a pair of
functions (~u, p) from suitable discrete approximation spaces defined over Ω =

⋃N
k=1Ek such that the function pair (~u, p) satisfies

the variational formulation

b(~u, ~v)− c(p, ~v) = 0,
c(π, ~u) = (f, π)

(5)

for all test functions (~v, π) from the same discrete approximation spaces. Here, the bilinear forms are defined as (subscript D for
Darcy and SB for Stokes–Brinkman),

bD(~u, ~v) =
∫

Ω

µ~v ·K−1~u dΩ, bSB(~u, ~v) =
∫

Ω

µ~v ·K−1~u dΩ +
∫

Ω

µ̃∇~v · ∇~u dΩ,

c(p, ~v) =
∫

Ω

p∇ · ~v dΩ, (f, π) =
∫

Ω

fπ dΩ.

Next, we describe how the bilinear forms can be used to define discrete systems.
For the Darcy problem (Eq. 1) on the fine grid, we use the lowest-order Raviart–Thomas (RT0) elements, for which the

pressure is in Q0 (i.e., piecewise constant) and the velocity has one degree-of-freedom associated with the normal component on
the interface between each pair of grid cells. (That is, ∇ ·~v is constant in Ei ∪Ej and ~v · ~n is constant on ∂Ei ∩ ∂Ej and zero on
∂(Ei∪Ej)). On the coarse grid, we will use a set of generalized RT0 basis functions that will be defined in the next subsection. In
either case, we end up with an indefinite linear system that has both positive and negative eigenvalues and is generally considered
hard to solve. Fortunately, a symmetric, positive-definite system can be obtained by applying a technique called hybridization
(Brezzi and Fortin 1991), which we for simplicity first will explain for Darcy flow on the fine scale.

The idea behind the hybrid formulation is to first remove the constraint that the normal velocity must be continuous across
cell faces, giving a weak formulation that contains jump terms at the cell boundaries. Continuity of the normal component is
then reintroduced using Lagrange multipliers, that is, by adding an extra set of equations, in which the pressure λ at the cell faces
plays the role of the Lagrange multipliers. This procedure does not change ~u or p, but enables the recovery of pressure values at
element faces, in addition to inducing the desired change in structure of the discrete linear system. The local equations can now
be assembled to form a hybrid system of the form B C D

CT 0 0
DT 0 0

 q
−p
λ

 =

0
f
0

 . (6)

Here q is the vector of the outward fluxes ordered cell-wise (with interior faces appearing twice with opposite sign), p the vector
of cell pressures, and λ the vector of face pressures (without repetitions). The entries in the matrices are

Bij =
∫

Ω

µ~vi K
−1~vj dΩ, Cij =

∫
Ω

δj ∇ · ~vi dΩ, Dij =
∫

∂Ω

|~vi · ~nj | ds,
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where ~vi, ~vj are outward pointing velocity basis functions, δj is equal one inside cell number j and zero elsewhere, and nj is
the normal of cell face j. The matrices B and C are block diagonal. The C matrix has a simple geometrical structure, with one
column per cell and one row per face; each column corresponds to a unique cell and has a unit value in all rows corresponding
to a face in this cell and zeros elsewhere. Similarly, each column of D corresponds to a unique face and has one (for boundary
faces) or two (for interior faces) unit entries corresponding to the index/indices of the face in the cell-wise ordering.

For readers more familiar with finite-volume (or finite-difference) methods, we remark that the hybrid mixed finite-element
method can be recast as assembling a set of local relations of the form

qE = TE(pE − λE),

where qE denotes the vector of outward fluxes on the faces of a cell E, pE the pressure at the cell center, λE the pressures at the
cell faces, and TE is the so-called transmissibility matrix, which here is a full matrix.

For the Stokes–Brinkman problem (Eq. 3) we use the Taylor–Hood elements Q2/Q1 (i.e., bilinear elements in pressure space
and biquadratic elements in velocity space), which are a standard set of stable elements for the Stokes equations. The degrees-
of-freedom for the two-dimensional Q2/Q1 elements are located at the vertices in the grid for pressure and for velocity they are
located at the vertices, at the midpoint of each cell face, and at the cell centers. For completeness, we will take a closer look
at the corresponding discrete system. Assuming that the permeability tensor K is diagonal, we split the velocity ~u into its two
spatial components u1 and u2. Letting {vi} and {πi} be the scalar Taylor-Hood basis functions, we can set uk =

∑
Ωi
uikvi and

p =
∑

Ωi
piπi. The mixed system can then be assembled in the formB1 0 C1

0 B2 C2

CT
1 CT

2 0

u1

u2

−p

 =

0
0
f

 , (7)

where u1 and u2 are vectors of the two velocity components ui1 and ui2, respectively, and p is the vector of pressure values pi.
Once again assuming no-flow boundary conditions, the entries in the matrices are

Bij,k =
∫

Ω

µ viK
−1
c,kkvj dΩ +

∫
Ω

µ̃

(
∂vi

∂x1

∂vj

∂x1
+
∂vi

∂x2

∂vj

∂x2

)
dΩ, Cij,k =

∫
Ω

∂vi

∂xk
πj dΩ,

where k = 1, 2 denotes the spatial dimension and c denotes the respective cell.

The MsMFE Formulation. To define the MsMFE discretization, we start by defining the coarse grid. Each block in this grid is
defined as a connected collection of cells from the fine grid; that is, block number i is given as Ωi =

⋃Ni

k=1Ek for some constant
Ni. In the simplest case, the coarse grid is formed as a uniform partition of the fine Cartesian grid so that each block Ωi becomes
rectangular. Over this coarse grid, we define a discrete approximation space that generalizes RT0: the pressure is approximated
by a constant in each block, and for the velocity we use a set of basis functions that are computed numerically and contain subcell
resolution. Each basis function represents a unit flow over the interface between two coarse blocks, and hence there is one basis
function associated with each pair of blocks in the coarse grid (Aarnes et al. 2006). Let Ωij be a neighborhood containing two
neighboring blocks Ωi and Ωj . The basis function associated with the interface ∂Ωi∩∂Ωj is constructed by solving the following
flow problem over Ωij

µK−1 ~ψij +∇ϕij − µ̃∆~ψij = 0, ∇ · ~ψij =


wi(~x), if ~x ∈ Ωi,

−wj(~x), if ~x ∈ Ωj ,

0, otherwise.
, ~ψij · ~n = 0 on ∂Ωij (8)

Here wi(~x) is a weight function that is normalized over Ωi and whose purpose is to produce a flow with unit average velocity
over the interface ∂Ωi ∩ ∂Ωj . To get a conservative method, we must choose wi proportional to q in blocks containing nonzero
source terms. In all other blocks, wi may be chosen more freely; the simplest choice is wi(~x) = 1/|Ωi|. (We will return to wi

below.) The no-flow boundary condition is imposed to localize the basis functions.
To motivate this construction of basis functions, let us first consider the case of pure Darcy flow in a 1-D homogeneous domain

(µ̃ = 0 and K ≡ I). We define wi ≡ 1, and set Ωi = [−1, 0] and Ωj = [0, 1]. Then by solving Eq. 8, we obtain ψij = 1 − |x|,
which coincides with the RT0 velocity basis. When K has subscale variation, solving Eq. 8 gives generalized RT0 basis functions
that account for the subscale variations in velocity, given a unit velocity over the corresponding block interface. The construction
defined in Eq. 8 is general and can be performed for arbitrary connected collections of cells from the fine grid. If Ωi and Ωj are
allowed to be polyhedral rather than rectangular, we compute the generalization of the RT0 basis functions to polyhedral blocks
(Aarnes et al. 2006). The underlying fine grid can also be fully unstructured as discussed in more detail by Aarnes et al. (2008),
who also suggest a set of simple guidelines for how to automatically define good coarse grids.

When the coarse blocks contain free-flow regions, the only change is that we use Stokes–Brinkman equations rather than the
Darcy equations to compute the basis functions. Using normalized weight functions that scale with trace(K), we produce basis



SPE 119104 5

Fig. 1— The x-component of two basis functions for an interface between two rectangular grid blocks for a homogeneous
domain with no sources or or sinks (left) and with two high-permeable vugs (right).

functions that correspond to a unit flow over the interface ∂Ωi∩∂Ωj and account for the increased flow induced by the presence of
free-flow regions within the coarse blocks. In the porous subdomains, this choice ofwi also means that we avoid unnaturally large
velocities in low-permeable parts of the coarse blocks; see Aarnes et al. (2006) for more details. Notice, however, that setting
µ̃ = µ in Eq. 8 and using Taylor–Hood elements to solve the local flow problem means that we introduce errors in the basis
functions for the case of pure Darcy flow. In particular, for homogeneous permeability and rectangular support, we are no longer
able to reproduce the RT0 basis functions exactly. Fig. 1 displays basis functions for both a homogeneous and a vugular domain
at an interface away from sources/sinks. The left figure shows that the basis function is almost identical to the corresponding RT0
velocity basis, also when solving Stokes–Brinkman equations using Q2/Q1 elements.

Finally, we mention a few improvements that can be used to increase the accuracy of the multiscale approximation. If Ωij is
chosen to be larger than Ωi ∪ Ωj , we say that the basis function is computed using overlap or oversampling, which is introduced
to lessen the impact of the no-flow boundary condition that localizes the basis function. Similarly, it has been shown that it is
advantageous to let the coarse blocks adapt to low-permeable objects like shales (Aarnes et al. 2006) or to long-range high-flow
regions like fracture corridors (Natvig et al. 2009). Finally, if a better approximation is required for the pressure, one may also
utilize the pressures ϕij from the local flow problems, Eq. 8, as additional basis functions; see Krogstad et al. (2009) for more
details. Herein, however, our focus is on extending the MsMFE method to a multiphysics setting and we will therefore not use
any of these more advanced constructions.

Coarse-Scale Hybrid System. Having constructed the multiscale basis functions, we are now in a position to assemble the
global coarse-scale hybrid system. How to do this is thoroughly described by Krogstad et al. (2009) and Skaflestad and Krogstad
(2008) for Darcy flow. Here, we will go briefly through the structure of the hybrid system and comment on a few issues that arise
because of the fine-scale Stokes–Brinkman model and the use of Taylor–Hood elements.

First, in previous formulations of the MsMFE method, the basis functions have been represented as a vector of fluxes defined
on the set of cell-wise ordered faces in the fine grid representing Ωij (Krogstad et al. 2009). Using Taylor–Hood to compute basis
functions, however, means that the basis functions are given as velocities in nodal points and must therefore be represented as a
vector of cell-wise ordered nodal points in the fine grid. A nodal point will typically belong to more than one coarse block and
will introduce one new entry for each block it belongs to. In other words, basis functions are represented usinglocal, and not
global, nodes, which means that a given nodal point may appear multiple times in the vector of basis functions, each time with a
value defined by a unique basis function.

Second, to be able to introduce coarse-grid Lagrange multipliers (interface pressures in the coarse-grid), we need to split the
basis functions resulting from solving Eq. 8 in two parts,

ψij = ψH
ij −ψ

H
ji , ψH

ij (E) =

{
ψij(E), if E ∈ Ωij \ Ωj

0, otherwise
ψH

ji(E) =

{
−ψij(E), if E ∈ Ωj

0, otherwise

Next, we arrange all the hybrid basis functions ψH
ij as columns in a matrix Ψ. To account for the fact that the basis functions are

velocities and not fluxes, we must multiply Ψ with the inverse of the area matrixA−1. Then the hybrid multiscale system reads,Ψ̂
T
BTHΨ̂ Ψ̂

T
CI Ψ̂

T
DJ

ITCTΨ̂ 0 0
J TDTΨ̂ 0 0


 qc

−pc

λc

 =

 0
f c

0

 . (9)
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Fig. 2— Discrepancy between the RT0 and Q2/Q1 solutions measured in a relative L2 norm for the 85 layers of the SPE
10 model. For each layer, the discrepancy is measured for the original 60 × 220 grid, as well as for 2 × 2, 4 × 4, and 8 × 8
refinements thereof.

Here, Ψ̂ = ΨA−1, the vectors qc, pc, and λc contain the coarse-scale degrees-of-freedom, I is the prolongation from blocks to
cells, and J the prolongation from block faces to cell faces.

The “C sub-matrix” of the coarse system (see Eq. 6) has one column per coarse grid block and one row per coarse face. Each
column is associated with a unique coarse block Ωij and has a unit entry in all rows corresponding to a coarse face in Ωij and
zeros elsewhere. Similarly, each column of the “D sub-matrix” is associated with a unique face and has a unit entry in the rows
corresponding to the indices of the face in the block-wise ordering. In practice, it is more efficient to construct the C and D
sub-matrices geometrically than using the algebraical representation in Eq. 9.

The matrix BTH is the fine-scale analogue of Eq. 6 defined with Taylor–Hood elements rather than RT0, and is a block
diagonal matrix of 9 × 9 blocks for 2D Cartesian grids. If we use no overlap, the B-part of Eq. 9 is block diagonal with respect
to the coarse blocks and can be reduced to a symmetric positive-definite system for λc. When overlap is used, one is in general
better off using a mixed formulation of the system.

Once the solution of Eq. 9 is computed, the fine-scale velocities can be computed as u = Ψ̂qc, where one must remember that
each nodal point may have contributions from more than one basis function on the coarse grid. To account for this, we average
the velocities from all local nodes that coincide with one global node.

Numerical Experiments
Darcy Flow. Our first test of the multiscale Darcy/Stokes–Brinkman method is on a sandstone reservoir for which the Darcy
flow model is applicable. To this end, we will use Model 2 from the 10th SPE Comparative Solution Project (Christie and Blunt
2001). The purpose of this test is threefold:

• calculate the influence of the Stokes part of the Stokes–Brinkman equation for pure Darcy flow;

• compare the Taylor–Hood and Raviart–Thomas elements for pure Darcy flow;

• asses the accuracy of Darcy/Stokes–Brinkman multiscale simulations versus Stokes–Brinkman fine-scale simulations in
the porous (matrix) part of a vugular medium.

We start off by determining the influence of the Stokes term in the Stokes–Brinkman equation for a typical Darcy flow. To this
end, prescribe a pressure drop of 1 bar in the y-direction and no-flow conditions at the left and right boundaries, and compare
simulations with µ̃ = 0 and µ̃ = µ for all 85 layers. The results show that the relative discrepancies in velocity are of the order
10−12 in all nodal points. The Stokes term can therefore safely be neglected for the SPE 10 model.

In the second test, we compare the discrepancy in face fluxes computed with RT0 and Q2/Q1 elements. For the Raviart–
Thomas discretization, the fluxes correspond directly to the degrees-of-freedom and will be denoted by qRT

k for cell k. For
the Taylor–Hood discretization, we have to integrate the velocity approximation over the cell faces to derive fluxes qTH

k . The
discrepancies in flux (eq) and pressure (ep) are measured using a relative L2 norm:

(eq)2 =
∑N

k=1 ‖qRT
k − qTH

k ‖2
2∑N

k=1 ‖qRT
k ‖2

2

, (ep)2 =
∑N

k=1 ‖pRT
k − pTH

k ‖2
2∑N

k=1 ‖pRT
k ‖2

2

. (10)
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Fig. 3— Discrepancy in velocities for our multiscale solver on four coarse grids relative to the Stokes–Brinkman fine-scale
solution for all 85 layers of the SPE 10 model.

Fig. 2 shows these discrepancies for all 85 layers of the SPE 10 model, computed for the original 60 × 220 grid, as well as
for a 2 × 2, 4 × 4, and a 8 × 8 refinement of the grid. For the smooth layers of the Tarbert formation, eq oscillates around 0.11
for the original grid and 0.07, 0.04, and 0.03 for the refinements, while for the fluvial bottom layers the discrepancy increases
to a mean of 0.27, 0.21, 0.17, and 0.16, respectively. The discrepancy in pressure is significantly lower, with mean values of
4.5 · 10−4, 1.6 · 10−4, 6.0 · 10−5, and 2.6 · 10−5 for the top 35 layers, and 8.9 · 10−3, 8.3 · 10−3, 7.7 · 10−3, and 7.3 · 10−3 for
the lower 50 layers. The results indicate the size of the error associated with the fine-scale solution, which often mistakenly is
considered as the correct solution. As expected, the discrepancy between the two schemes decreases with increasing refinement
of the grid. However, it is interesting to notice that the pressure does not converge in the same order for the lower fluvial layers
as for the smooth top layers of the Tarbert formation.

In the third test, we assess the accuracy of our multiscale Darcy/Stokes–Brinkman method on four different coarse grids. Fig. 3
reports the relative discrepancies in fine-scale velocity obtained from the multiscale method relative to the fine-scale Stokes–
Brinkman solutions for all 85 layers of the model. The discrepancies in velocity are slightly higher than the flux discrepancies
in Fig. 2 for the top 35 layers, and approximately at the same level for the 50 layers of the less smooth Tarbert formation. We
now select a single layer (Layer 21) from the SPE10 model, and study how the multiscale method performs for different coarse
grids. This time we have refined the reference grid by 2× 2. Fig. 4 shows bar plots of the velocity discrepancies for coarse-grid
resolutions between 2 × 2 coarse blocks (each block consisting of 60 × 220 cells) and 120 × 440 coarse blocks (each block
consisting of 1 cell). It seems that our multiscale methods performs best if the coarse grid blocks have approximately the same
number of cells in each direction. Both Fig. 3 and Fig. 4 show that the medium coarse grids generally give better results than
the much finer or coarser grids. For this particular problem, the flow patterns are highly influenced by long-range correlations.
For coarse grids with few, but large, blocks, the long-range correlations are resolved in the basis functions. For coarse grids with
many small blocks, the long-range correlations must be resolved by the global system.

Vuggy and Fractured Reservoirs. The purpose of introducing the Stokes–Brinkman equation in the multiscale method is to
capture the influence of free flow in vugs and fractures. To assess how well the fine-scale Stokes–Brinkman flow in vugs and
fracture networks is represented within a coarse-scale Darcy flow model using multiscale elements, we consider three simple
models. All models have 200 × 200 grid cells with each grid cell modeling 10 × 10 cm. In the multiscale discretization, each
domain is divided into 5 × 5 coarse grid blocks. The fluid under consideration is water, with µ = 1cP . The flow is driven by a
pressure drop of 1 bar in the x-direction, and on the lower and upper boundaries we have imposed no-flow conditions.

The first model has 26 randomly distributed vugs with sizes of 1.8–10.4 m2 (diameters of 70 – 220 cm), see Fig. 5. The
homogeneous matrix permeability equals 1 Darcy, while the permeability in the vugs is set to be 107 times higher. The second
model contains fourteen long-range fractures that are straight lines in the vertical and horizontal directions, with apertures of 10
cm and lengths of 300–900 cm (see Fig. 6). The third model combines the first two models, getting a vugular medium in which
some of the vugs are connected by long-range fractures (see Fig. 7).

Fig. 5 shows the velocities obtained by solving the Stokes–Brinkman directly on the fine-scale model compared with the
fine-scale velocities computed by our Darcy/Stokes–Brinkman multiscale method. Streamlines are drawn on top of the velocity
plots to better visualize the flow. The model can be characterized as having short correlation lengths in the sense that the each
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Fig. 4— Multiscale simulations of Layer 21 of the SPE 10 model. The figure compares fine-scale velocities computed
directly on a 2 × 2 refinement of the original 60 × 220 grid with multiscale simulations for various different coarse grids.
The numbers on the x- and y-axes correspond to the numbers of coarse blocks in the respective directions.

free-flow vug is confined to a single coarse block. Numerous simulations of similar type have shown that the multiscale method
is able to reproduce flow of this type with good accuracy. For the model in Fig. 5, the velocity discrepancy is only 0.07 in the
relative L2 norm.

The second model has somewhat longer correlation lengths in the form of vertical and horizontal fractures that typically
penetrate a few consecutive blocks. (The longest fracture penetrates blocks (1,2) to (4,2), where block (1,1) is in the lower left
corner.) The multiscale method is still able to deliver reasonable accuracy, with velocity discrepancies 0.07 in the relative L2

norm, although the streamline plots reveal some qualitative differences. In the third model, some of the vugs are connected by
fractures and this gives longer correlations in the form of free-flow regions that extend in both coordinate directions; an example is
the continuous free-flow region that extends from block (3,3) to block (5,1). Although the velocity discrepancy only has increased
to 0.09 for this model, the qualitative differences are now much easier to spot.

In an effort to explain the larger qualitative discrepancies observed when free-flow regions extend beyond a single block, we
focus on coarse block number (5,3), which is the rightmost block in the middle row of Fig. 7 and has the largest discrepancy
between the fine-scale and the multiscale solutions. The upper part of Fig. 8 shows the x- and y-components of the basis function
defined by blocks (4,3) and (5,3) and the lower part of Fig. 8 shows similar plots for the basis function defined by block (5,3)
only (with pressure boundary conditions on the right boundary). Since the weight function wi scales with trace(K), the cells in
the fracture and the vug will be assigned a weight that is 107 time higher than in the surrounding cells, meaning that the sources
and sinks in the non-fractured cells in the two-block system are effectively set to zero. In the one-block system, the vug and
fracture will also be assigned a weight that is 107 time higher than in the surrounding cells, but in addition we have an open
boundary at the right hand side. As a result, the flow in block (4,3) is driven through the fracture, and when it enters block (5,3),
it continues into the vug and then spreads out towards the open boundary at the right edge. Some of the flow continues down the
vertical fracture and is driven towards the right edge from there. In effect, this means that the background flow in the matrix is
not represented by this basis function in large parts of the local domain, which leads to the white no-flow region seen in block
(5,3) of the multiscale solution in Fig. 7. A similar behavior has been seen in a wide variety of models run by the authors.

For fractures extending beyond a single block in the diagonal direction, numerous experiments demonstrate the opposite
effect, namely that the multiscale method introduces large flow in the porous region surrounding the fracture. This can be
explained as follows: suppose a fracture connects blocks (i, j) and (i + 1, j + 1). Since the MsMFE method only represents
coarse-scale flow between coarse blocks sharing a common face, the flow from block (i, j) to block (i + 1, j + 1) must make a
detour in blocks (i+ 1, j) and/or (i, j + 1). The same effect has been observed previously for pure Darcy flow and is discussed
in more detail by Kippe et al. (2008).

To overcome the problem of fractures (and other high-flow regions) extending beyond a single block, one can introduce extra
coarse blocks that represent the long-range fractures. In Fig. 8 this amounts to splitting block (4,3) into three blocks that all are
coupled with block (5,3) and together take care of the flow in the fracture and in the porous region above and below the horizontal
fracture. The efficiency of this approach has been demonstrated by Natvig et al. (2009), but has so far not been implemented in
our simple Darcy/Stokes–Brinkman multiscale solver.
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Fig. 5— Simulations of a vuggy reservoir with a homogeneous matrix on a 200× 200 grid. The left and middle plots show
the logarithm of the velocity for the fine-scale (FS) and the multiscale (MS) solutions, respectively, overlaid by streamlines.
The right plot shows the permeability with high-permeable vugs in black, overlaid by the coarse-grid partitioning.

Fig. 6— Simulations of a reservoir with a homogeneous matrix and high permeable fractures on a 200× 200 grid. The left
and middle plots show the logarithm of the velocity for the fine-scale (FS) and the multiscale (MS) solutions, respectively,
overlaid by streamlines. The right plot shows the permeability with high-permeable fractures in black, overlaid by the
coarse-grid partitioning.

Fig. 7— Simulations of a vuggy reservoir with a homogeneous matrix and high-permeable fractures on a 200 × 200 grid.
The left and middle plots show the logarithm of the velocity for the fine-scale (FS) and the multiscale (MS) solutions,
respectively, overlaid by streamlines. The right plot shows the permeability with high-permeable vugs and fractures in
black, overlaid by the coarse-grid partitioning.
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Fig. 8— Basis functions associated with the interface between coarse blocks (4,3) and (5,3) at the top, and basis functions
associated with the right boundary face of (5,3) at the bottom. The figures to the left show the basis functions in the x-
direction (white is flow in the positive direction, black is flow in the negative direction), the figures in the middle show the
basis functions in the y-direction, and to the right we see the permeability overlaid by streamlines.

Concluding Remarks

In this paper we have developed a multiphysics version of the mixed finite-element method in which the Stokes–Brinkman
equations are used to compute basis functions to be used in a Darcy flow model on a coarse scale. The new methodology
was applied to two examples. First, we considered a strongly heterogeneous sandstone reservoir (Model 2 from the SPE 10
benchmark), for which we demonstrated that the effect of the second-order term in the Stokes–Brinkman models is negligible
and that the discrepancies introduced when using the multiscale method are of the same order-of-magnitude as the discrepancy
observed between the Raviart–Thomas and Taylor–Hood discretizations of the fine-scale Darcy equations. In the second example,
we considered three simplified 2-D models of fractured and vugular media that are typical for a large number of experiments run
by the authors.

In both examples, we observed that the multiscale method delivers qualitatively correct solutions with good accuracy when
correlation lengths are small or approximately the size of the coarse blocks (e.g., when free-flow regions are confined to a single
coarse block). For cases with long-range correlations (e.g., in the form of free-flow regions that extend beyond a single coarse
block), the multiscale method is able to reproduce major parts of the flow patterns, but also introduces large local errors. This
is particularly evident for some of the fluvial layers from the SPE 10 benchmark, for which the intertwined high-permeable
channels provide a complex combination of short- and long-range correlations that are hard to capture with high pointwise
accuracy. Hence, we observe higher L2 errors than for the test cases with vugs and fractures. On the other hand, these (local)
errors are not necessarily important when measuring integrated quantities like production curves from wells, etc.

To also get correct small-scale details for cases with complex combinations of short- and long-range correlations, one may
either use global boundary conditions for the local flow problems; use oversampling when constructing the basis functions;
introduce an adaptive coarsening in which free-flow or high-permeable regions are represented as extra coarse blocks as discussed
by Aarnes et al. (2006) for long-correlation shale objects and by Natvig et al. (2009) for fracture corridors; or use an adaptive
multiscale method (Nordbotten 2009). This is a topic of ongoing research.

Although the Stokes–Brinkman model is a promising approach for simulating vugular and naturally-fractured reservoirs, its
discretization using the Taylor–Hood elements is relatively costly because of the high number of degrees of freedom. Hence, flow
problems may fast become computationally intractable with increasing model sizes, in particular in 3-D. The multiscale method
developed herein has a natural parallelism in the computation of basis function and also has a potential for reduced memory
requirements, and may therefore be an efficient approach for attacking high-resolution 3-D models.
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Nomenclature
Physical quantities:
K = absolute permeability
p = pressure
q = flux
~u = velocity
~x = spatial coordinate
f = volumetric rate
µ = viscosity
µ̃ = effective viscosity

Domain and grid:
Ω = entire physical domain
∂D = boundary of domain D
E = cell in the fine grid
Ωi = coarse block number i
Ωij = support for basis function ~ψij

Basis functions, etc:
~v = test function for velocity on fine scale
π = test function for pressure on fine scale
~ψij = basis function on interface of block i and j
~ψH

ij = hybrid split of basis function
φij = pressure associated with ~ψij

wi = weight function associated with coarse block Ωi

Vectors and matrices:
p = vector of cell/block pressures
λ = vector of face pressures
u = vector of outward velocities on cell/block faces
q = vector of outward fluxes on cell/block faces
B = inner product of velocity basis functions
C = integral of divergence of velocity b.f.
D = mapping from local to global faces numbering
TE = transmissibility matrix for cell E
Ψ = matrix of all basis functions
A = matrix of all face areas

Numbers:
N = number of cells in fine grid
Ni = number of cells in coarse block Ωi

Subscripts:
i, j, k = block/cell numbers
D,S = Darcy and Stokes
SB = Stokes–Brinkman

Superscripts:
c = coarse/fine grid
RT = Raviart–Thomas
TH = Taylor–Hood
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