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Abstract 
An accurate well modeling capability is important for both 
production and reservoir engineering calculations. Ideally, the 
models used for these two applications should be related in a 
logical manner. Multiscale methods allow varying degrees of 
resolution and can therefore provide a natural linkage between 
production and reservoir models. In this work, we present a 
coupled wellbore-reservoir flow model that is based on a 
multiscale mixed finite element formulation for reservoir flow 
linked to a drift-flux wellbore flow representation. The model 
is able to capture efficiently the effects of near-well 
heterogeneity in the reservoir and phase holdup and pressure 
variation in the wellbore. The formulation presented here is for 
oil-water systems. The basic reservoir-wellbore linkage is 
described and validated through comparison to results from an 
existing simulator. The multiscale methodology is then applied 
to a heterogeneous reservoir model. Both vertical and deviated 
wells are considered. Comparisons of the multiscale solution 
to the fully resolved (fine-scale) solution demonstrate the high 
degree of accuracy of the method, for both reservoir and 
wellbore quantities, as well as its efficiency. 

 
Introduction 
The accurate modeling of near-well flow effects is essential 
for large-scale reservoir simulation and detailed production 
engineering calculations. Near-well models should ideally 
include wellbore and reservoir flow effects and should be 
suitable both as standalone well production applications and as 
modules in reservoir simulators. Multiscale finite element 
methods are in concept well-suited for this type of modeling, 
as they allow varying resolution and provide a systematic 
procedure for coarsening and refining. Thus they can provide 
the basis for a modeling framework that maintains consistency 
between reservoir and production engineering models. To our 
knowledge, however, multiscale methods have not yet been 
applied for this problem.  

In this work, we develop a multiscale mixed finite element 
method (MsMFEM) for modeling coupled wellbore and near-
well flow. The MsMFEM solves the pressure equation (in the 
reservoir domain) on a coarse grid, but captures fine-scale 
effects through basis functions determined from numerical 
solutions of local single-phase flow problems on the 
underlying fine-scale geological grid. We fully resolve the 
well trajectory on the fine scale using a flexible grid, which is 
close to radial around the well but logically Cartesian away 
from the well. The flow within the wellbore is represented 
using a drift-flux model. This model captures the slip between 
phases and provides the in-situ phase fractions (holdup), 
which provide a means for computing the pressure profile 
within the wellbore. Pressure variation within the wellbore is 
important in many settings as it impacts the local inflow from 
the reservoir into the well (in the case of a production well). 

Multiscale methods for reservoir simulation have been 
introduced as an alternative to standard upscaling as a tool for 
more fully incorporating fine-scale features at low 
computational cost. Among the relevant approaches are the 
multiscale finite element methods (e.g., Hou and Wu, 1997), 
the multiscale finite volume method (Jenny et al., 2003) and 
the multiscale mixed finite element method (Chen and Hou, 
2003). The variational multiscale approach of Arbogast 
(2000), also formulated within a mixed finite element context, 
represents another related methodology. Here we consider a 
version of the multiscale mixed finite element method 
(MsMFEM) introduced by Aarnes (2004) and extended in 
later publications (Aarnes et al., 2006a, 2006b). Well 
representations have been incorporated into multiscale 
formulations by, for example, Chen and Yue (2003) and 
Wolfsteiner et al. (2006), though these formulations did not 
include wellbore flow effects. As far as we are aware, 
multiscale formulations have not been applied previously to 
detailed near-well models that include both reservoir and 
wellbore flow effects. 

Wellbore flow modeling within the context of reservoir 
simulation is often accomplished using drift-flux (or related) 
models. These models are well suited for use in reservoir 
simulation as they are simple, continuous and differentiable. 
The drift-flux representation (Zuber and Findlay, 1965) 
includes two basic parameters – the profile parameter C0 and 
the drift velocity Vd. These quantities depend on system 
parameters such as phase flow rates, well inclination and fluid 
properties. The general drift-flux model applied here is based 
on the formulation originally introduced by Holmes (1977) 
and Holmes et al. (1998). In recent work (Shi et al., 2005a), 
the model parameters for two-phase flow (gas-liquid and oil-
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water) were optimized based on large-scale experiments 
involving a 15 cm diameter inclinable flow loop (see Oddie et 
al., 2003, for details of the experiments). In the current work, 
we apply the drift-flux model described in Shi et al. (2005a). 
We note that the model was subsequently extended to three-
phase wellbore flow (Shi et al., 2005b), though we do not 
consider flows of this type here. 

This paper proceeds as follows. After introducing the 
model equations, we briefly present three mixed finite element 
approximation techniques relevant for this paper: the standard 
Raviart-Thomas approach, mimetic finite differences, and the 
MsMFEM. The drift-flux model for computation of wellbore 
in-situ phase fractions and pressure drop is then presented, 
followed by a description of its coupling to the MsMFEM. 
Next, we validate the mimetic finite difference and MsMFEM 
implementations through comparison to an existing simulator. 
MsMFEM solutions are then compared to reference solutions 
for a heterogeneous model computed directly on the fine grid 
and close agreement is observed. We present results involving 
vertical and inclined wells, where slip between phases and 
pressure drop due to wellbore friction occur.  
 
Numerical Procedures 
Governing Equations. We consider model equations for two-
phase immiscible flow in porous media. Although included in 
the numerical experiments of this paper, we here neglect 
compressibility and gravity for ease of exposition. Letting Ω  
denote the domain of interest, the pressure equation reads: 

. in            
, in  

Ω=⋅∇
Ω∇−=

q
p

u
ku λ

. ………………………………….(1) 

Here u is the Darcy velocity, p is the pressure, λ  is the total 
mobility (which depends on water saturation S), k is the 
permeability tensor and q is the source term. We henceforth 
assume no-flow boundary conditions, Ω∂=⋅ on   0nu , where 
n is the outward pointing unit normal. Letting the two phases 
be oil and water, the conservation of water is expressed via the 
saturation equation: 
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Here φ  is the rock porosity, f is the Buckley-Leverett 
fractional flow function, and wq  is the water source term. 
 
Mixed Methods. The starting point for mixed finite element 
methods (MFEM) (Brezzi and Fortin, 1991) is the weak 
formulation of Eq. (1): Find )()(),( 2div

0 Ω×Ω∈ LHpu such 
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for all )()()ˆ,ˆ( 2div
0 Ω×Ω∈ LHpu . Here )(2 ΩL  is the space of 

square integrable functions over Ω  and )(div
0 ΩH is the space 

of square integrable vector functions having square integrable 
divergence and zero flow across the boundary.  

The basic idea in MFEM discretizations is to search for 
solutions of Eq. (3) in finite dimensional subspaces 

)()( 2div
0 Ω×Ω∈× LHVU . That is, find VUp ×∈),(u  such 

that Eq. (3) is satisfied for all VUp ×∈)ˆ,ˆ(u . Letting }{ kψ  
and }{ iϕ be bases for U and V, one obtains approximations 
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The coefficients of the sub-matrices are given by 

∫
Ω

−⋅= xψkψB dlkkl
1)(λ , ………………………….......(5) 
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Let }{ iT  be a collection of cells constituting a grid. Then, 
using the lowest-order approximation spaces, each basis 
function for pressure iϕ  corresponds to a cell iT , while each 
flux basis function corresponds to an interface (edge in 2D, 
face in 3D) between two neighboring cells. For two 
neighboring cells  iT  and jT , we henceforth denote their 

common interface by ijΓ , and the corresponding flux basis 

function by ijψ . 
Next, we briefly describe three discretization techniques 

for Eq. (3): Raviart-Thomas, mimetic finite differences and 
MsMFEM. For all these methods the approximation space V 
for pressure coincides, and is simply the space of piecewise 
constant functions over }{ iT . So for a cell iT , the 
corresponding pressure basis function iϕ  is given by 
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We now describe the approximation spaces for velocity. 
Raviart-Thomas. The lowest-order classical MFEM 

approximation spaces are the Raviart-Thomas spaces ( 0RT ). 
For triangular/tetrahedral and regular grids, the space U is 
characterized by piecewise linear vector functions over }{ iT , 
having constant normal component across the cell interfaces. 
For more generally shaped grids, one usually needs mappings 
(Piola transforms) to reference elements to enable assembly of 
the linear system (4). For general grids, this is not 
straightforward. 

Mimetic Finite Differences. Mimetic finite difference 
methods applied within the context of subsurface flow 
modeling were presented by Hyman et al. (1997, 2002). 
Although motivated by finite differences, recent versions by 
Brezzi et al. (2005a, 2005b) can be seen as a generalization of 
the 0RT -based method that eases treatment of more general 
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geometries. In particular, for two neighboring cells iT  and jT  

with interface ijΓ , one can define the corresponding flux basis 

function ijψ  as the solution of the problem 
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with 0=⋅ nψ ij  on the boundary )( ji TT U∂ , and 

ijijij Γ=⋅ /1nψ   on ijΓ , where ijn  is the unit normal vector to 

ijΓ  pointing from iT  to jT . For triangular/tetrahedral and 
regular grids, these basis functions will coincide with those in 

0RT , while for general grids Eq. (8) cannot be computed 
exactly. However, as shown by Brezzi et al. (2005b), one can 
approximate the resulting integrals (5)-(6) solely by using 
boundary integrals, so there is no need to have an explicit form 
of the velocity inside the cells. For further details on the 
construction of these methods and for convergence and 
stability results, see Brezzi et al. (2005a, 2005b). 

Multiscale MFEM. In the current MsMFEM (Aarnes et 
al., 2006b) we consider two grids as in Figure 1, where the 
coarse grid consists of blocks containing a connected set of 
cells from the underlying fine grid. We let a flux basis 
function ijψ  be a numerical solution of the following local 
problem: 
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with 0=⋅nψ ij on )( ji TT U∂ , computed on the fine grid. In 

(9), iw  is a weight function of unit integral over iT . In 
particular, we choose  
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The above choice for cells with nonzero source q over iT  
ensures a conservative approximation on both the fine and 
coarse scales. In the case when q is zero over iT , the weight 
function to some extent reflects the permeability in the block. 
We remark that this choice improves the overall accuracy of 
the method compared to using just a constant weight, even for 
anisotropic tensors (Aarnes et al., 2006a). In principle, any 
conservative solver can be used for the local fine-grid 
problems (9), but the 0RT -MFEM and mimetic finite 
differences are especially well suited because they enable 
direct and exact evaluation of the coefficients (5)-(6) for the 
coarse system. In the numerical examples presented in this 
paper, we apply a mimetic discretization which reduces to 

0RT  for regular grids and scalar permeability.  
 

 
 

Figure 1: A fine rectangular grid partitioned into coarse blocks 
constituting the coarse grid. 

 
MsMFEM for Two-phase Flow Simulations. In two-phase 
flow simulations, where the pressure and saturation equations 
(1)-(2) are solved sequentially, the MsMFEM provides 
computational efficiency because the computed basis 
functions (9) can be reused through several timesteps. As has 
also been noted for the multiscale finite volume method 
(Jenny et al., 2004), at most the updating of basis functions 
near the front is necessary (this assumes the basis functions are 
computed locally as in (9) rather than globally). For moderate 
mobility ratios, the updating of basis functions is generally not 
required. It follows that the computational cost of using the 
MsMFEM is comparable to that of a flow-based upscaling 
method. Thus, the use of MsMFEM for two-phase flow 
simulation can be described by the following steps:   

 
Initially compute basis functions corresponding to coarse 
interfaces. 
for 1=n  to N 

• If desired, update basis functions in blocks having steep 
saturation gradients 

• Solve coarse system based on current saturation 
• Assemble fine-scale fluxes 
• Advance fine-scale saturation by timestep 

 end 
 
We note that in the current implementation we use the hybrid 
formulation (Brezzi and Fortin, 1991) which, though 
equivalent to the mixed formulation, results in a symmetric 
positive definite linear system of size equal to the number of 
grid interfaces. The system (4), by contrast, is symmetric but 
indefinite.  
 
Drift-flux Wellbore Flow Model. The effects of multiphase 
flow in wellbores can have a strong impact on reservoir 
performance. Neglecting slip between phases in the wellbore 
may lead to under-prediction of the pressure drop as the 
holdup of the heavier phase is not included in the model. As 
discussed in the Introduction, the in-situ volume fractions are 
represented here by the drift-flux formulation using the model 
parameters determined by Shi et al. (2005a). In the numerical 
experiments presented in this paper, we consider only oil-
water flow, and thus present details for the oil-water drift-flux 
model. The gas-liquid and three-phase cases are similar; refer 
to Shi et al. (2005a,b) for further details. 

We denote the average oil and water velocities in the 
wellbore by oV  and wV and the in-situ volume fractions of the 
two phases by oα and wα , with 1=+ wo αα . The oil and water 
superficial velocities (Vso and Vsw) are given by Vso=αoVo and 
Vsw=αwVw, respectively. The mixture velocity Vm is then given 
as the sum of the oil and water superficial velocities: 
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.wwooswsom VVVVV αα +=+=  ……………………….(11) 

As in the gas-liquid drift-flux model, the relationship 
between the phase velocities in the oil-water model is given by 
(Hassan and Kabir, 1999)  

,0 dmo VVCV +=  ………………………………………(12) 

where 0C  is a parameter depending on the phase and velocity 
profiles over the pipe cross section and dV  is the drift velocity 
due to buoyancy effects. In general both 0C  and dV  depend 
on oα and other quantities. For flow in inclined pipes, the drift 
velocity in Eq. (12) is scaled by a multiplier )(θm  where θ  is 
the angle of deviation from the vertical, such that 

.)(, dd VmV θθ =  

Based on the large-diameter experiments of Oddie et al. 
(2003), Shi et al. (2005a) suggested the use of 10 =C  and 

)1(53.1 ocd VV α−= . Here cV  is the characteristic velocity of 
an oil droplet rising in stagnant water and is given by 
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where owσ  is the oil/water surface tension, g is the 
gravitational acceleration and oρ , wρ  are the phase densities. 
The corresponding deviation multiplier was determined to be 

).3sin(32.2)2sin(23.3)cos(07.1)( θθθθ −+=m  …….(14)  

Assuming incompressibility, the governing equation for 
oil-water flow in a wellbore can be expressed by writing the 
mass balance for oil 
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Here x is the coordinate along the wellbore and oq  is the 
inflow to the well from the reservoir. This term acts to couple 
the reservoir and wellbore flow equations. The inflow 

oq depends on the reservoir and wellbore pressures and the oil 
mobility in the near-well reservoir region. We next describe 
the determination of the pressure profile in the wellbore. 
 
Pressure Drop Calculations. The pressure drop along the 
wellbore depends on the in-situ phase fractions and can be 
expressed as (Ouyang et al., 1998): 
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Here D and A are the inner cross-sectional diameter and area, 
mρ  is the mixture density, mq is the mixture reservoir inflow 

and tpf  is the Fanning friction suggested by Haaland (1981), 
which depends on the Reynolds number and the absolute 
roughness of the pipe. All mixture quantities are computed as 
the weighted average of the individual phase quantities with 
respect to the in-situ phase fractions as in Eq. (11). The three 

terms in Eq. (16) are due to hydrostatic, friction and 
acceleration effects respectively.  

 
Linkage of Reservoir and Wellbore Flow Models 
Gridding around the Well. Our focus here is on capturing 
near-well heterogeneities down to the scale of the wellbore. 
Therefore, as a starting point we consider a fine grid that 
completely resolves the wellbore trajectory, including the 
wellbore segments which are modeled as cylinders. Based on 
this fine grid we perform a partitioning into a coarse grid. 
Figure 2 shows an example of such a grid, where the coarse 
blocks are indicated by coloring. The special choice here is 
that the well segments are also treated as individual “blocks” 
in the coarse grid. Figure 3 shows a cross section of two 
possible coarse grids around a well. Note that in the coarse 
grid to the right, the well segment (itself being a coarse block) 
is completely encapsulated in the surrounding coarse block, 
and thus the coarse grid here differs considerably from a 
standard simulation grid. There are two motives that justify 
this choice. First, it facilitates an easy coupling with the 
wellbore flow model, and second, it eliminates the need for 
well indices. The well index is, however, in a sense 
incorporated into the basis function corresponding to the 
interface between the segment and the surrounding block.  

 
Figure 2:  Cutaway view of the fine and coarse grids. Fine grid is 

radial around the well. Coarse blocks indicated by 
coloring. 

 
 
 
 

  
 
Figure 3: Cross sections of two coarse grids over the same fine 

grid. Including the well segment the grid on the left 
contains nine coarse blocks and the grid on the right 
contains two blocks. 
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Sequential Splitting of the Equations. Using the MsMFEM 
requires solving the reservoir equations (1)-(2) sequentially. 
Thus, we need a similar splitting for the wellbore flow (drift-
flux) model.  

Pressure Equations. The pressure drop relations of Eq. 
(16) are discretized and coupled to the system (4) holding the 
current phase fractions fixed. The non-linearity in (16) is here 
treated by a simple linearization such that a fixed-point 
iteration is required to obtain an initial pressure profile. This 
approach leads to fast convergence for the numerical examples 
included in this paper, but we expect that Newton iterations 
would be more appropriate for pressure boundary conditions, 
for which the current method converges quite slowly. 

We also remark that we treat compressibility and gravity in 
the MsMFEM only at the coarse level. This compressibility 
treatment is justified by the fact that we here consider nearly 
incompressible flow. For highly compressible systems special 
care must be taken; see Lunati and Jenny (2006) for the 
treatment of such cases within the multiscale finite volume 
context. We note further that gravitational effects are often 
important (if not dominant) in the wellbore for vertical or 
deviated wells. This can be the case even if gravitational 
effects in the reservoir are of secondary impact. Through 
treating the well segments as individual coarse blocks, these 
effects are taken into account. 

Saturation/Holdup Equations. Because the MsMFEM 
provides a fine-scale velocity field, the saturation equation (2) 
requires a fast solver. However, an explicit solver is not 
appropriate in this setting due to the strong timestep 
restrictions caused by the small grid cells around the wellbore. 
Here we use an implicit upstream finite volume method 
(Natvig and Lie, 2006) followed by an explicit step to account 
for gravitational effects. The implicit method is based on an 
optimal ordering of the cells such that the Newton iteration 
can be done in sequence for each individual cell (or small 
clusters of cells), rather than on the whole system. 

For calculation of holdup, we employ the following 
implicit finite difference approximation to Eq. (15): 
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where t∆  is the timestep, L is the segment length, and 1
,
+n
insoV , 

1
,
+n
outsoV  are the inflow and outflow superficial velocities along 

the segment. Using an upstream weighting (with respect to oil 
velocity), and assuming oil can flow only from the reservoir 
into the segment (and not the other way around), we first 
advance the reservoir saturation to obtain oq , and then solve 
(17) to obtain oα . 

We note here that the formulation outlined above 
represents in some sense a prototype implementation. Several 
enhancements will be required in order to develop a model 
that is applicable and robust for more general flow scenarios 
such as three-phase flow. These include a more general 
treatment of compressibility, the handling of dissolved gas, 
and increased implicitness in the formulation.  
 

Numerical Results 
Homogenous Model with a Vertical Well. The purpose of 
this example is to validate the current implementation against 
GPRS, a general purpose research simulator developed in the 
Department of Energy Resources Engineering, Stanford 
University (the initial GPRS implementation was by Cao, 
2002). We compare both the mimetic method on the fine grid 
and the MsMFEM on the coarse grid to the GPRS results. The 
model is a ft 600ft 4200ft 4200 ××  homogenous reservoir 
(k=200 md, φ =0.3) with a vertical well situated in the center. 
The wellbore has an inner diameter of 1/6 ft and the roughness 
is set to 0.001 ft. The well penetrates the entire reservoir and is 
modeled with 12 segments (see Figure 4). The reservoir has an 
initial water saturation of 0.5 everywhere. We set water and oil 
relative permeabilities as krw= S2 and kro= (1-S)2, viscosities as 
µw=µo=1, and densities as ρw=64.8 lbm/ft3 and ρo=49.2 lbm/ft3. 
The oil and water compressibilities are both set to 3×10-6 psi-1. 
The reservoir is sealed on all boundaries. 

The fine grid (Figure 4) for this case consists of 7056 cells, 
while the coarse grid contains 284 blocks. In addition, the 12 
segments are included in both the fine and coarse grid. Each 
coarse block either consists of 233 ××  Cartesian cells or, if it 
encapsulates a well segment, 21213 ××  radial cells. The 
GPRS grid contains 588 blocks. We run one simulation with 
prescribed total rate of 1600 STB/d and one with total rate 
20000 STB/d. For both the mimetic method and the 
MsMFEM, the prescribed rate is incorporated as a flux 
boundary condition on the top face of the top segment.  

 
Figure 4: Fine grid with radial resolution around the well in the 

center of the model. 
 
We first consider the case with a production rate of 1600 

STB/d. Results for wellbore pressure after one day of 
production are shown in Figure 5, while those for in-situ oil 
fraction (αo) are shown in Figure 6. For both sets of results, it 
is apparent that the fine-grid mimetic method and the coarse-
grid MsMFEM solutions are in close agreement with the 
reference GPRS results. The wellbore pressure in this case is 
almost linear, which is due to the fact that hydrostatic effects 
dominate. The low velocity, however, results in considerable 
holdup of water as seen in Figure 6. For the high flow rate 
case, the pressure drop is considerably larger (Figure 7) due to 
friction (and to some extent acceleration). Here water and oil 
flow at close to equal rates as seen in Figure 8. For these 
simulations we again observe close agreement between 
MsMFEM, the fine-scale mimetic method, and GPRS. The 



6 S. Krogstad and L.J. Durlofsky SPE 106179 

agreement evident in Figures 5-8 suggests that both the 
mimetic and MsMFEM implementations (including the 
linkage of the reservoir to the wellbore) are correct. 
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Figure 5: Wellbore pressure profiles for low flow rate case  

(1600 STB/d). 
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Figure 6: Wellbore in-situ oil fraction for low flow rate case 

(1600 STB/d). 
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Figure 7: Wellbore pressure profiles for high flow rate case 

(20000 STB/d). 
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Figure 8: Wellbore in-situ oil fraction for high flow rate case 

(20000 STB/d). 
 
Heterogeneous Model with an Inclined Well. In this 
example we consider a larger heterogeneous model with 
permeability sampled from the tenth SPE comparative solution 
project (Christie and Blunt, 2001), with additional variability 
introduced in the near-well region. The model depicted in 
Figure 9 has a thickness of about 600 ft and extends 

ft 3500ft 5000 ×  in the horizontal directions. The well 
configuration (Figure 10) consists of one vertical injection 
well and one long production well with angle of inclination θ  
varying from 70o to 80o. The wellbore is modeled using 62 
segments. The inner wellbore diameter is 1/3 ft and the 
roughness is again 0.001 ft. The fine grid has about 85000 
cells and the coarse grid consists of 72417 ××  (for a total of 
2856) blocks plus the 62 segments. We consider 
incompressible flow, quadratic relative permeabilities (as 
above) and viscosities µw= 0.3 cp and µo= 3 cp. Densities are 
as in the previous example. The reservoir is initially filled with 
oil and water is injected at a constant rate. Two flow rates 
(with balanced injection and total production) are again 
considered: 4000 STB/d and 60000 STB/d. Results are 
presented at 0.12 pore volume injected.  
 
 

 
 
Figure 9: Heterogeneous permeability field (logarithm of 

permeability displayed). 
 
 
 
 
 



SPE 106179 MsMFEM for Coupled Wellbore/Near-well Flow 7 

 
Figure 10: Vertical injection well and inclined production well. 
 

Figure 11 displays the wellbore pressures for the two flow 
rates. For both cases, the pressure drop given by MsMFEM 
matches the fine-scale solution essentially exactly, but an error 
in absolute pressure, although not excessive, is apparent for 
the high flow rate case. In fact, the error in pressure is close to 
proportional to the total reservoir pressure drop. The 
corresponding curves for in-situ oil fraction agree closely 
(Figure 12). We note that the abrupt behavior of the in-situ oil 
fraction curve towards the toe of the well (for the 4000 STB/d 
case) occurs because this part of the well penetrates a low 
permeability region. As a result the wellbore mixture velocity 
here is very small, and thus small amounts of water may cause 
large holdup. For this case, there is no water breakthrough at 
the last segment, so αo=1 there. A few segments further 
towards the heel, however, the water inflow results in a large 
water holdup (and thus the abrupt drop in αo). For the high 
flow rate case (60000 STB/d) this behavior is not observed. 

To gauge the variation in accuracy of the MsMFEM 
solution with increased coarsening, we now consider four 
different coarse grids for this case. The finest grid is 

212417 ××  with an additional partitioning in the near-well 
region as in Figure 3 (left), giving a total of about 12000 
blocks. The coarser grids contain 72417 ×× , 41210 ×× and 

455 ××  blocks, respectively. In Figure 13, the pressure 
profiles for the 4000 STB/d case are shown. The profiles for 
the three finest grids are fairly close, while the coarsest grid 
shows some discrepancies (although the pressure drop along 
the well continues to match the fine-grid solution). The 
corresponding in-situ oil fraction is depicted in Figure 14, 
where all the grids produce reasonable results, though again 
degradation in accuracy with increased coarsening is observed. 
For the high flow rate case (not shown), trends similar to those 
in Figures 13 and 14 are observed. These results indicate that, 
although the accuracy does degrade with increased coarsening 
(as would be expected), the method continues to provide 
sensible results even with very coarse grids. 
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Figure 11: Wellbore pressure profiles for high (60000 STB/d) and 

low (4000 STB/d) flow rate cases. 
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Figure 12: Wellbore in-situ oil fraction for high and low flow rate 

cases. 
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Figure 13: Wellbore pressure profiles for low flow rate case with 

varying degrees of coarsening. 
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Figure 14: Wellbore in-situ oil fraction for low flow rate case with 

varying degrees of coarsening. 
 
 
Concluding Remarks 
In this paper we have presented a coupled two-phase wellbore-
reservoir flow model that is based on a multiscale mixed finite 
element method for reservoir flow linked to an oil-water drift-
flux model for wellbore flow. By resolving the wellbore 
trajectory in the fine grid, the methodology successfully 
incorporates near-well heterogeneity down to the scale of the 
wellbore and avoids the use of well indices. Through use of 
multiscale resolution the number of coarse blocks can be kept 
relatively low, enhancing the efficiency in solving the coupled 
pressure equations. 

The implementation was validated against an existing 
simulator and we presented numerical simulations involving 
vertical and deviated wells in a heterogeneous reservoir. The 
results demonstrate that we have successfully coupled 
wellbore and reservoir flow models within a multiscale finite 
element context. The MsMFEM model was shown to provide 
accurate results on significantly coarsened models in cases 
with substantial wellbore pressure variation. Future efforts 
should be directed toward increasing the degree of 
implicitness of the formulation and extending the procedure to 
three-phase flow.  
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Nomenclature 
C0   profile parameter in drift-flux model 
g   gravitational acceleration  
k, k   absolute permeability, scalar and tensor 
kr   relative permeability 
m   deviation multiplier 
MFEM   mixed finite element method 
MsMFEM  multiscale mixed finite element method 
n   normal vector to interface or boundary 

p   pressure 
q    source term 
S   water saturation 
t    time 
T   cell or block 
trace   sum of diagonal entries of matrix 
u    Darcy velocity 
V, Vs    velocity and superficial velocity along wellbore 
x, x   coordinate, in reservoir and along wellbore 
α    in-situ wellbore volume fraction 
φ    porosity  
ϕ    pressure basis function 
Γ    interface between cells or blocks 
λ    total mobility 
µ    viscosity 
θ    angle of deviation from vertical 
ρ    density 
ψ    flux basis function 
Ω    computational domain 
 
Subscripts 
d   drift 
m   mixture 
i, j   index to cell or block 
ij   referring to interface between cells/blocks i and j 
o   oil 
w   water  
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