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Abstract

Streamline tracing on irregular grids requires reliable interpolation of velocity
fields. We propose a new method for direct streamline tracing on polygon and
polytope cells. While some numerical methods provide a basis function that can
be used for interpolation, other methods provide only the fluxes at the faces of
the elements. We introduce the concept of full field and raw field methods. Full
field methods have built-in interpolation, but are often not defined on general grids
such as polygonal and polyhedral grids which we examine here. Also, reliability
issues may arise on non-simplicial meshes in terms of not being able to reproduce
constant velocity fields. We propose an interpolation in H(div) and H(curl) valid on
general grids that is based on barycentric coordinates and that reproduces uniform
flow. The interpolation can be used to compute the streamline directly on the
complex cell geometry. The method generalizes to convex polytopes in 3D, with a
restriction on the polytope topology near corners that is shown to be satisfied by
several popular grid types. Numerical results confirm that the method is applicable
to general grids and preserves uniform flow.

Key words: streamlines, interpolation, H(div), H(curl), raw field and full field meth-
ods, general mesh, polygons, polyhedra, uniform flow, barycentric coordinates.

1 Introduction

Efficiency and accuracy are essential goals in all numerical simulations. In reservoir sim-
ulations, the size of the domain coupled with the necessity to incorporate local geological
effects are core issues which must be tackled. Flexible gridding with a contained number
of elements is therefore sought. In cases with thin layers and complex domains, one shape
regular polygon may replace several shape regular simplexes. On polygonal grids exist-
ing numerical methods offer discrete edge fluxes, but the velocity field inside the cells is
not defined. Obtaining a suitable velocity interpolation, the field may be visualized by
tracing streamlines. Streamlines may also prove useful in solving hyperbolic differential
equations. We look at what numerical methods might be better suited for general grids,
how to interpolate the velocity field and how to trace streamlines.

When considering numerical methods used to obtain a velocity field it is natural to
distinguish between those that provide a field that is defined inside each element and
those that define the field only at the interfaces of the elements. We will name the
former type of method as full field methods and the latter as raw field methods. The
name ’raw field’ is to indicate that the resultant vector field is in need of post-processing
(an interpolation) in order to obtain a field that is everywhere defined. Raw field methods
most commonly calculate either the flux or the circulation of the velocity field, dependent
on the equation given. If the velocity raw field is given as fluxes we want our interpolated
raw field to be in the H(div) space. If the velocity raw field is given as circulations, the
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final interpolated velocity field should be in H(curl). Many numerical methods are based
on the property of giving exact results for linear pressure fields, and it is natural then
that this is reflected in the interpolation of the results. We will give more attention to
the velocity interpolation in the H(div) space since we will use it for streamline tracing.

One possible way to obtain a velocity interpolation on general grids that reproduces
uniform flow is to divide the grid into simplices. The extension of the mixed finite element
method to hexahedra follows this path. However, the finer grid introduces a more lengthy
procedure which we would like to avoid. Also, raw field methods are defined directly on
the grid and we would like to implement our velocity interpolation on this basis. The
key to this approach is the use of generalized barycentric coordinates.

In reservoir simulation streamline tracing may be used to solve the transport equation
for the saturation. Along streamlines the transport equation is one-dimensional which
leads to fast solvers. The resulting saturation is subsequently mapped back to the grid.
It is important that the streamlines are spatially accurate, so that for instance non-
permeable regions are kept as such. As there is more to streamline tracing than just
obtaining the velocity, we will also discuss some of the difficulties involved.

In the following we will, after introducing the mathematical setting, discuss some of
the main differences between introducing a velocity interpolation in the definition of the
numerical method and to see it as a post-processing issue. We will see that this has
particular importance with regards to convergence properties of the numerical methods.
We then introduce the velocity interpolation and show that it has the desired properties.
The section that follows discuss how to use the interpolated velocity to obtain accurate
streamlines. Numerical results show the validity of the velocity interpolation and the
streamline tracing.

2 Preliminaries

Let Ω be a bounded domain inRd, d=2,3 with polygonal boundary ∂Ω. We indicate with
L2(E) the space of functions whose square is Lebesgue-integrable, with inner product
(· , ·)0,E and norm ‖ · ‖E = (· , ·)1/2

0,E . Let H1(E) denote the Sobolev space of first order
differentiable functions in L2(E). Furthermore we define the spaces

H(div;E) = {v ∈ (L2(E))2 : div v ∈ L2(E)},

equipped with the norm ‖v‖div,E = (‖v‖20,E + ‖div(v)‖20,E)1/2, and

H(curl;E) = {v ∈ (L2(E))2 : curlv ∈ L2(E)},

equipped with the norm ‖v‖curl,E = (‖v‖20,E + ‖ curl(v)‖20,E)1/2. The notation H(div)
and H(curl) is used when the domain considered is Ω.

As our focus will mostly be on H(div), we introduce the model equation used to
obtain the Darcy velocity u in reservoir simulation. We seek (u, p) ∈ H(div) × L2(Ω)
such that {

(K−1u,v)0,Ω − (p, div v)0,Ω = 0, ∀v ∈ H(div),
(div u, q)0,Ω = (f, q)0,Ω ∀q ∈ L2(Ω),

(1)

which implies homogeneous Dirichlet boundary conditions for the pressure p equal to
zero. For the well posedness of the system let f ∈ L2(Ω) and let the permeability tensor
K be a symmetric, positive definite field whose smallest eigenvalue is bounded from below
by a positive constant.
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Figure 1: Projection and reconstruction

2.1 Raw field and full field methods

For equations where the velocity field is an unknown, we distinguish between discretiza-
tions that lead to either a raw (velocity) field or a full (velocity) field: by a raw field
method we intend a discretization that specifies the velocity only at the interfaces of the
elements and not inside the elements themselves. Conversely, a full field method will
specify basis functions for the velocity on each element. Typical raw field methods are
finite difference and finite volume methods, while finite element methods are full field
methods.

For full field methods, we have a full field Vh ⊂ H(D), D = div or curl, represented
by the finite basis {φi} on each element. We define the representation operator µh :
Vh → R#dofs by

v =
∑
i

(µhv)iφi,

representing the degrees of freedom of the discrete methods. We denote the collection of
edges for F . Since we are concerned with the discrete values associated with the edges,
we also define a projection operator

Πh : Vh → VF,h

mapping from the (everywhere defined) velocity field Vh into the raw field VF,h, specified
only at edges. Where fluxes are concerned, note that µh and Πh may not necessary map
to the same set of discrete values. The ABF-elements (see following section) for instance
have more degrees of freedom than we have edges, so here Πh(Vh) ⊂ µh(Vh).

Starting with the raw field, obtained either by a raw field method or from projection
from a full field method, we define a reconstruction operator

Rh : VE,h →Wh.

Note that by this definition RhΠh is not necessarily equal to the identity operator, as Vh
and Wh may be different, see Figure 1. Examining the mixed finite element method, we
shall see in the next section that Wh = Vh may indeed not be the optimal choice where
convergence of the method is concerned.

2.2 Convergence issues

Full field methods are mainly defined on simplicial grids and quadrilateral/hexahedral
grids, due to the construction based on a mapping from a unit reference cell. In this
section we discuss methods for the diffusion problem (1) defined on quadrilateral grids,
which illustrates some difficulties that become even more evident on more complicated
grids including 3D. We summarize some convergence results to illustrate the weaknesses
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Figure 2: Mapping of quadrilateral cell from the unit square and uniform refinement

of some of the full field interpolations, and to motivate the definitions given in the next
section.

The raw field methods we are considering are the mimetic finite difference (MFD)
method, eg. [6], and the multi point flux approximation control volume (MPFA) methods.
In particular we look at the MPFA O-method eg. [1] and its symmetric version eg.
[2]. Amongst full field methods we examine the following mixed finite element (MFE)
methods: the first order Raviart-Thomas (RT0) [5], the Arnold-Boffi-Falk (ABF) [3] and
the Barycentric Coordinate Interpolation (BCI) [16].

Let {Th} denote a family of partitions of Ω into convex quadrilateral elements with
vertices ci, i = 1, . . . , 4, and h is the maximum element edge. Each cell may be mapped
from a unit square by

F (x̂, ŷ) = (1− x̂)(1− ŷ)c1 + x̂(1− ŷ)c2 + x̂ŷ c3 + (1− x̂)ŷ c4 =
4∑
i=1

λi(x̂, ŷ) ci (2)

for (x̂, ŷ) ∈ (0, 1)×(0, 1), cf. Fig 2. It is possible to refine the mesh uniformly by dividing
each cell edge in its midpoint at each refinement level. This will result in quadrilaterals
that asymptotically approach parallelograms as h tends to zero. Such a family of meshes
will be indicated by uniformly refined meshes or smooth meshes, cf. Fig 2. General
quadrilateral grids without any asymptotic refinement condition on Th are referred to as
rough grids.

Another way of referring to uniformly refined meshes is to say that they are h2–
meshes, meaning that there exists a σ such that |Fx̂ŷ| ≤ σh2. The Piola transformation
uses the mapping F and has the property that H(div) functions are preserved as such.
If we denote the Jacobian matrix of F by D and the Jacobian determinant of F by J ,
we can define the Piola transform P by

v(x) = Pv̂(x) =
1
J
Dv̂ ◦ F−1(x). (3)

Here v̂ is the vector function v defined on the unit reference cell. Note that the Piola
mapping is a rational function. If the Jacobian is constant, then linear functions are
mapped into linear functions. However, general quadrilaterals do not have a constant
Jacobian, thus leading to grid convergence problems. Lack of rough grid convergence
can therefore manifest itself for methods that make use of the Piola mapping. The full
field methods RT and ABF, but also the symmetric MPFA method [2, 17] (a raw field
method), use the Piola mapping in their definition.

From Table 1 we see however that the Piola mapping does not immediately indicate
if the method is going to converge on rough grids or not. The BCI MFE method does not
converge on rough grids even though it is defined directly on the physical grid. The BCI
MFE method does not in fact satisfy the inf-sup condition on general grids. However,
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Method Velocity field Piola mapping Convergence
Smooth grids Rough grids

MPFA symmetric Raw Yes Yes No
MPFA standard Raw No Yes Yes

MFD Raw No Yes Yes
RT0 MFE Full Yes Yes Norm-dependent
ABF MFE Full Yes Yes Yes
BCI MFE Full No Yes No

Table 1: Some numerical methods for the diffusion problem and their characteristics

Th,rough Th,rough Th2

uh ∈ ‖u− uh‖L2 ‖ div(u− uh)‖L2 ‖u− uh‖H(div)

RabfΠhuh,abf h h h
Rrt0Πhuh,rt0 h NO h
RφΠhuh,rt0 h h h
RbciΠhuh,bci NO NO h
RbciΠhuh,rt0 h h h

Table 2: Order of convergence of differently interpolated velocity fields of the MFE
methods on a family of rough grids Th,rough and uniformly refined grids Th2 in H(div)
norms

on parallelogram grids the BCI MFE method coincides with the lowest order Raviart-
Thomas, RT0 MFE method, and this is why the convergence on smooth grids is obtained.
We also note that though the ABF MFE method is defined using the Piola mapping, the
rough grid convergence is obtained due to a careful choice of degrees of freedom. The
definition of the element is however limited to 2D.

The entry ’Norm-dependent’ in Table 1 needs to be further explained. It is in fact
known that while the velocity field (as well as the pressure) of the RT0 method converges
in the L2 norm, this is not so for the divergence of the velocity field. As the velocity
space is in H(div) this is problematic. The choice of degrees of freedom for the ABF
element is made exactly to overcome this difficulty. It is however possible to obtain the
same result by operating a postprocessing procedure, as is further explained below in
conjunction with Table 2.

The results regarding convergence in H(div) norms are summarized in Table 2 where
the subscript of R indicates the basis functions used for interpolation. The subscript of u
indicates the method used, while the abbreviate Φ refers to a bubble function reconstruc-
tion, cf. [18]. The first line of Table 2 refers to the MFE solution with Arnold-Boffi-Falk
elements, uabf = RabfΠhuh,abf, cf. [3]. The next lines refer to the MFE solution with
Raviart-Thomas elements, urt0 = Rrt0Πhuh,rt0 , cf [5]. Due to the non constant Piola
mapping twisting the character of interpolation, the urt0 does not converge in the full
H(div) norm, cf. [3]. One way to overcome the problem is to add a different interpolation
on the divergence term, as we will now see.

Let R̂T 0 denote Raviart-Thomas space on the reference cell, with RT0 = PR̂T 0.
Define the bubble function vE,φ on each cell as vE,φ = Pv̂E,φ, for all cells E and
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v ∈ RT0, such that

v̂E,φ = v̂ +
div v̂

2(∆1 + ∆3)

[
(∆2 −∆1)x̂(x̂− 1)
(∆4 −∆1)ŷ(ŷ − 1)

]
. (4)

The symbol ∆i indicates the area spanned by the adjacent cell edges of vertex i on cell
E. Define

Vφ = {v ∈ RT0|div v|E = div vE,φ,∀E ∈ Th},
and Rφ : VF,h → Vφ, the bubble interpolation operator. The construction in (4) ensures
that div vE,φ = div(v̂)/Jc ∈ P0(E),∀E ∈ Th and v ∈ RT0. It can also be shown that
the divergence of the reconstruction based on the lowest order Raviart-Thomas elements,
divRh, converges in L2. More details can be found in [18] eq. 12. The problems of H(div)
convergence on rough grids is connected to the RRT0 interpolation, while the RT0 raw
field is fine. Finally we look at two results using the velocity field of the Barycentric
Coordinate Interpolation: ubci = RbciΠhuh,bci. This velocity field does not converge
on rough grids cf. [16] when implemented as a mixed finite element method. However,
using the interpolation as a post-processing of the fluxes calculated with the RT0 method,
convergence is obtained in all norms considered here. For simplicity we just state the
result given in the last line of the Table 2. The proof can be found in Appendix A.

Lemma 1

‖u−RbciΠhuh,RTo
‖H(div) ≤ Ch|u|H2 , for all u ∈ H2.

2.3 Local conservation and pointwise divergence

All the methods presented here are locally conservative, in the sense that

• the sum of the flux over each cell edge (or face in 3D) equals the accumulation,
sink or source in the actual cell, and

• the flux is continuous across the cell edges (or faces in 3D).

It is worth noting that the definition here is for a discrete method, meaning that the
definition of the integration area (the volume for which the conservation law is valid) is
not arbitrary. The methods are in general not designed to be pointwise divergence free
in an area with no sink, source, or accumulation term.

The isoparametric mapping (2) unfortunately does not preserve the local conservation
property when mapping the reference space to the physical space. The Piola mapping, cf.
eq. (3), is instead specifically designed with the local conservation property in mind. If
the velocity field is defined by (3), then for each cell E, the Piola mapping is constructed
such that ∫

E

divu dx =
∫
Ê

div û dx̂. (5)

Furthermore, this gives the pointwise divergence relation

div û(x) = J(x) divu(x).

The Piola mapping also preserves the flux as one (continuous) quantity over each face F ;∫
F

u · n ds =
∫
F̂

û · n̂ dŝ.

In the light of the problem with the Piola mapping presented in the preceding section,
we give an approach for interpolation which does not make use of the mapping and that
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Figure 3: Cartesian vs. barycentric coordinates.

can be extended to simple polytopes. Another aspect that makes us focus on interpolation
directly in the physical space is the wish to reproduce uniform flow. Numerical methods
like the MPFA methods and the MFD method have been developed precisely so as to
give exact fluxes when the pressure field is linear. For a general grid the reproduction of
uniform flow in the reference space and in the physical space are two different things, as
the Piola mapping is not constant anymore. This can be seen for instance in the difference
between the definition of MPFA on the reference space (symmetric) and MPFA on the
physical space (standard, non symmetric). For raw field methods we also note that
the velocity field is defined only in terms of fluxes, which is an integrated quantity and
not a pointwise one. This observation is interesting when considering the construction
of interpolations, which try to fit a pointwise velocity field in accordance with average
velocities (flux divided by length or area) given at the boundary. For uniform flow regimes
however the average and the pointwise velocity coincide, giving a strong incentive to
reproduce these fields exactly when interpolating.

3 Interpolation

3.1 Barycentric coordinates

For simplices, barycentric coordinates are well known, and may be defined as follows: let
the corners of a simplex be denoted by {c1, . . . , cn+1}, ci ∈ Rn. Let Ai(x) be the signed
volume (or area) of the simplex created with the corner ci replaced by x, as shown in
Figure 3. Then the barycentric coordinate functions λ1, . . . , λn are uniquely defined by

λi(x) =
Ai(x)∑n+1
i=1 Ai(x)

.

Figure 3 shows cartesian and barycentric coordinates for a simplex in 2D.
For a convex polytope E ⊂ Rn we will use generalized barycentric coordinates. We

assume that the polytope is bounded by hyperplanes and that no curved boundaries
are present. The latter limitation is due to our focus on reproducing uniform flow while
maintaining only one unknown (flux) per face, cf. [20]. Let the corners of E be denoted by
{c1, . . . , ck}. Then a set of functions {λ1, . . . , λk} are generalized barycentric coordinates
for E if the following holds:

B1
∑k
i=1 λi(x) = 1.

B2 λi(cj) = δij .
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B3 λi(x) ≥ 0 for all x ∈ E.

B4
∑k
i=1 λi(x)ci = x.

(B5) For a point x on a face Fi of the polytope, we have that λj(x) = 0 when cj is not
a corner of Fi. For convex polytopes this property is not independent, but follows
from B3 and B4.

These properties also characterise the barycentric coordinates of a simplex. The one
property of simplicial barycentric coordinates that is not carried over to polygons is
linearity of λi.

Two important examples of generalized barycentric coordinate functions are Wach-
spress’ coordinates described in [25, 19] and the Mean Value coordinates of [9]. We do
not give any details of the computation of λi(x) here, but refer the reader to the above-
mentioned papers. Both families produce smooth functions on the polytope E. While
being initially described for the 2D case, both have generalizations to 3D. On quadrilat-
erals, one example of barycentric coordinates may be the bilinear coordinates defined by
λi in equation (2). These turn out to coincide with the Wachspress coordinates for the
rectangular case.

3.2 Interpolation of divergence free flow fields on simplices

As mentioned, barycentric coordinates are uniquely defined for simplices. For a diver-
gence free flow the velocity interpolation in H(div) on such elements is also particularly
simple as seen in the following lemma:

Lemma 2 Let S ⊂ Rn be a simplex with corners ci, i = 1, . . . , n + 1 and let Si be the
(codimension 1) subsimplex of S that does not contain the corner ci. For a set of fluxes
f = (fi) defined on the Si aligned with the outward normals and with the property that∑n
i=0 fi = 0, the constant velocity

v = −f/(n|S|) (6)

in barycentric coordinates is consistent with the normal fluxes f . In the above, |S| is the
measure of S and n is the dimension.

Proof. We first note that the corner c1 of the simplex has barycentric coordinates
(1, 0, . . . , 0) and similarly for the other corners. We may therefore also write the ve-
locity as

v = − 1
n|S|

n+1∑
i=1

fici.

Without loss of generality, we show that v̂ is consistent with f1. If f1 is zero, we substitute
f2 = −

∑n+1
i=3 fi and obtain

v = − 1
n|S|

n+1∑
i=3

fi(ci − c2).

Since all the vectors ci − c2 are tangent to S1, clearly the normal component of v̂ and
therefore the normal flux through S1 is zero.

If f1 is nonzero, we write

v = − f1

n|S|
(
c1 +

n+1∑
i=2

fi
f1

ci
)

= − f1

n|S|
(c1 − r) .
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Figure 4: The vertices and edges of a polygonal cell.

Since −
∑n
i=2 fi/f1 = 1, we know that r must lie in the hyperplane tangent to S1.

Therefore the outward pointing normal component of c1− r must equal −d1, where d1 is
the distance from the hyperplane to c1. Since d1|S1| = n|S|, it follows that the normal
flux is equal to −f1(−d1)|S1|/(n|S|) = f1. �

3.3 Interpolation of H(div) raw fields in 2D

In the following we will need the nomeclature as shown in Figure 4. Define the edge vector
ti associated with Fi ∈ ∂E, for i = 1, . . . , n numbered in an anticlockwise direction. The
length of ti is equal to the length of the edge Fi itself. Also define the triangle area
∆i associated with the vertex ci of E, spanned by the edges Fi and Fi+1 and equal to
1
2ti × ti+1. Notation is circular, so that the index i = n+ 1 is to be read as i = 1.

On polygons we need to use generalized barycentric coordinates. We define edge-
based basis functions that we will use to construct a velocity field given the fluxes:

Definition 1 Let {λi} be a set of barycentric functions on a n-polygon. For every edge
Fi ⊂ ∂E define the function

ψi(x) =
ti−1

2∆i−1
λi−1(x)− ti+1

2∆i
λi(x). (7)

Definition 2 Let {fi} be a discrete set of fluxes associated to the faces Fi of an element
E ∈ Th. The interpolated velocity field v on Th is defined as

v(x)|E =
∑
Fi∈∂E

fiψi|E(x). (8)

Theorem 1 Let nj, j = 1, . . . , n, be the outer normal vector to the edge Fj, with length
equal to the length of Fj. Let xFj

∈ Fj. Then

ψi(xFj
) · nj = δij .

Proof. We have ti−1 ·ni = ti−1× ti = 2∆i−1, and similarly ti+1 ·ni = ti+1× ti = −2∆i.
So

ψi(xFi
) · ni = λi−1(xFi

) + λi(xFi
) = 1

by properties B1 and B5 of the λi. Furthermore, the scalar product ti+1 · ni+1 is equal
to zero, so

ψi(xFi+1) · ni+1 =
ti−1 · ni+1

∆i−1
λi−1(xFi+1) = 0,

by property B5. Similarly ψi(xFi+1) · nj = 0 for all j 6= i. �
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Theorem 1 shows that the basis functions form a field that is in H(div). The following
Theorem shows that the basis functions {ψi} reproduce constant vector fields exactly on
each cell E.

Theorem 2 Let ek = (δ1k, δ2k)t, k ∈ {1, 2}, be the unit vector defined for any x ∈ E,
and let ni be the outer normal vector associated with the edge Fi and with length equal
to the edge length. Then

ek =
n∑
i=1

fkiψi, (9)

with flux fki = (ek · ni).

Proof. Substituting the edge basis functions defined in (7), for the right hand side we
have

n∑
i=1

fkiψi =
n∑
i=1

(ek · ni) ti−1

2∆i−1
λi−1 −

n∑
i=1

(ek · ni) ti+1

2∆i
λi

=
n∑
i=1

(ek · ni+1) ti
2∆i

λi −
n∑
i=1

(ek · ni) ti+1

2∆i
λi

=
n∑
i=1

[ (ek · ni+1) ti − (ek · ni) ti+1 ]
λi

2∆i
.

For e1 = (1, 0)t and ni = ((ni)x, (ni)y)t = ((ti)y,−(ti)x)t

(e1 · ni+1) ti − (e1 · ni) ti+1 =
(
t2i+1t

1
i − t2i t1i+1

t2i+1t
2
i − t2i t2i+1

)
= (ti × ti+1) e1 = 2∆ie1.

A similar result is obtained for e2. Summing and using property B1,

n∑
i=1

fkiψi =
n∑
i=1

2∆i ek
λi

2∆i
= ek

n∑
i=1

λi = ek.

�

The Corner Velocity Interpolation (CVI) [12] uses vertex velocities vcvi(cj) that
are interpolated by bi/tri-linear shape functions λj that have been defined on the unit
square/cube:

vcvi(x)|E =
∑
j

vcvi(cj)λj(x). (10)

The functions λj are inverse bi/tri-linear mappings defined by (2) (for the 2D case). As
already noted, these are generalized barycentric coordinates, and a special case of the
Wachspress family of coordinates.

The vertex velocities vcvi(cj) are obtained from the adjacent fluxes fj and fj+1 by
solving a 2 × 2 matrix with v(cj) · nj = fj and v(cj) · nj+1 = fj+1 for each vertex. In
3D this becomes a 3× 3 matrix.

Lemma 3 On a quadrilateral, the interpolated velocity field found from the basis ψ using
equation (8) with λi being the inverse bilinear coordinates of (2), coincides with the CVI
velocity interpolation.
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Proof. Assume we have a quadrilateral with edge fluxes fj for j = 1, . . . , 4. We start
from equation (8) and show that the interpolated velocity has the same form as (10).

v(x) =
4∑
1

fiψi(x) =
4∑
1

fi
ti−1

2∆i−1
λi−1(x)− fi

ti+1

2∆i
λi(x)

=
4∑
1

fi+1ti − fiti+ 1
2∆i

λi(x).

It remains to show that the corner velocities are the same. At the vertex ci the CVI
vertex velocity is the solution of vcvi(ci) · ni = fi and vcvi(ci) · ni+1 = fi+1, which gives

vcvi(ci) = (ni,ni+1)−T
(
fi
fi+1

)
=

1
2∆i

(−ti+1, ti)
(
fi
fi+1

)
=
fi+1ti − fiti+1

2∆i
≡ v(ci).

�

3.4 Interpolation of H(curl) raw fields in 2D

Definition 3 Let {λi} be a set of barycentric functions on a n-polygon. For every edge
Fi ⊂ ∂E, define

ϕi(x) = − ni−1

2∆i−1
λi−1(x) +

ni+1

2∆i
λi(x) (11)

where nj, j = 1, . . . , n, is the outer normal vector to the edge Fj with length equal to the
length of Fj.

Theorem 3 Let tj, j = 1, . . . , n, be the tangential vectors to the edge Fj of an element,
directed from Fj−1 to Fj+1, with length equal to the length of Fj. Let xFj

∈ Fj. Then

ϕi(xFj
) · tj = δij .

Proof. We have ni−1 · ti = −ti−1 × ti = −2∆i−1, while ni+1 · ti = −ti+1 × ti = 2∆i. So

ϕi(xFi) · ti = λi−1(xFi) + λi(xFi),

which equals 1 along edge Fi by properties B1 and B5 of the λ. As ni+1 · ti+1 = 0 we
obtain

ϕi(xFi+1) · ti+1 = −ni−1 · ti+1

2∆i−1
λi−1(xFi+1) = 0,

by property B5. Similarly, ϕi(xFj
) · tj = 0 for all j 6= i. �

Theorem 4 Let ek = (δ1k, δ2,k)t, k ∈ {1, 2}, be the unit vector defined for any x ∈ E.
Then

ek =
n∑
i=1

(ek · ti)ϕi. (12)

11



Proof. For the right hand side, substituting the definition (11), we have

n∑
i=1

(ek · ti)ϕi =
n∑
i=1

− (ek · ti)ni−1

2∆i−1
λi−1 +

n∑
i=1

(ek · ti)ni+1

2∆i
λi

=
n∑
i=1

− (ek · ti+1)ni
2∆i

λi +
n∑
i=1

(ek · ti)ni+1

2∆i
λi

=
n∑
i=1

− [ (ek · ti+1)ni − (ek · ti)ni+1 ]
λi

2∆i
.

For e1 = (1, 0)t and ni = ((ni)x, (ni)y)t = ((ti)y,−(ti)x)t

(e1 · ti+1)ni − (e1 · ti)ni+1 =
(
t1i+1t

2
i − t1i t2i+1

−t1i+1t
1
i + t1i t

1
i+1

)
= −2∆ie1.

A similar result is obtained for e2. Summing and using property B1,

n∑
i=1

(ek · ti)ϕi =
n∑
i=1

2∆i ek
λi

2∆i
= ek

n∑
i=1

λi = ek.

�

4 H(div) interpolation in 3D

In [20] Nordbotten and Hægland prove that for general hexahedra in 3D with bilinear
faces, it is not possible to obtain a velocity interpolation that simultaneously 1) is a local
reconstruction of velocity based on the six face fluxes, 2) reproduces uniform flow and 3)
lies in H(div).

For cells with plane faces this problem does not present itself, and we can satisfy all
three properties simultaneously. With the additional assumption that for each cell and
vertex, no more than three of the cell’s faces meet at the vertex, the H(div) interpolation
generalize straight away from 2D to 3D. Polytopes with this property are called simple
polytopes. As before, {λj(x)} will indicate the (3D) barycentric coordinates of the point
x, and the functions λi satisfy B1-B5.

In our implementation we have used the coordinates described in [26], which also
require simple polytopes.

Definition 4 Let Fi ⊂ ∂E be a plane polygonal face with normal ni, the length of ni
being equal to the area |Fi|. Let exacly three edges meet in each vertex xj of Fi, where
two edges lie in the plane of Fi and the third edge is indicated by νij. Then we define the
face based basis functions

ψi(x) =
∑
j

νij
νij · ni

λj(x). (13)

The face based basis functions have the same properties as those defined in 2D:

Theorem 5 Let nk be the outer normal vector to the face Fk and with length equal to
the area |Fk|. Let xFk

∈ Fk. Then

ψi(xFk
) · nk = δik.

12



Proof. The proof follows easily by considering three different cases: (i) either the normal
nk is the normal ni (i = k), or (ii) the normal nk is normal to a plane of which νij is an
edge (i 6= k) or (iii) the normal nk 6= ni is the normal to a face which does not contain
νij (i 6= k). If (i) we have that i = k. The multiplication simplifies and we have the
summation of the barycentric coordinates of the point xFk

which gives 1 by B1. If (ii),
the scalar product between νij and nk is zero. If we have (iii) the barycentric coordinate
function λj(xFk

) is equal to zero by B5. This concludes the proof. �

Theorem 6 Let v be a constant vector and let ni be the outer normal vector associated
with the face Fi and with length equal to the area |Fi|. Then

v =
∑
i

(v · ni)ψi. (14)

Proof. Let Ci be the set of corners of face i, and Fj the set of faces of the corner j. By our
assumptions, ]Fj = 3, where ] indicates the number of elements in the set. Examining
the right hand side of (14) we obtain

∑
i

(v · ni)ψi =
∑
i

(v · ni)
∑
j∈Ci

νij
νij · ni

λj(x)

=
∑
j

∑
i∈Fj

v · ni
νij · ni

νij

λj(x) =
∑
j

rjλj .

Now for any corner j, consider the product rj · nk, k ∈ Lj :

rj · nk =
∑
i∈Fj

νij · nk
νij · ni

v · ni.

In the above sum, for i = k we get v · nk. Since the sum is taken over only the set of
faces of the corner j, for i 6= k the vector νij lies in the plane of Fk, and the term is
therefore zero. Since rj · nk = v · nk for three linearly independent nk (by the ]Fj = 3
assumption and convexity) rj = v and the theorem follows. �

In 3D the equation may not always have a solution, even for strictly convex E, since
the ]Fj = 3 assumption (simple polytopes) does not hold in general. However, many
types of grids do have this property. Example cell shapes include hexahedra, simplices,
arbitrary prisms and even dodecahedra. On the other hand pyramids (one corner has
four faces), octahedra (all corners have four) and icosahedra (all corners have five) do
not. Pebi grids in 3D and 2.5D (extruded) will in general work well with the method.
We prove the assertion for 3D Voronoi diagrams under a uniqueness assumption.

Lemma 4 If there are no five cospherical Voronoi sites, corresponding to uniqueness
of the dual Delaunay tetrahedral grid, for any Voronoi cell each of its corners will have
exactly three adjacent faces belonging to that cell.

Proof. Let E be the cell generated by the Voronoi site xE . Assume that there is a corner
with four or more adjacent faces. On each such face, all its points, including the corner
itself, are equidistant between xE and one other site. So the corner must be equidistant
to xE and at least four more sites. Then those (at least) five sites are cospherical, which
contradicts our assumption. �
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5 Streamlines

Streamline methods for reservoir simulation have been studied extensively. For a com-
prehensive overview see the book by Datta-Gupta and King, [8]. Streamline tracing is
a critical part of any such method, and consists of solving the streamline ODE on some
computational grid:

dx
dτ

= v(x), (15)

where x is a point in space and v is the velocity field. The parameter τ is known as the
streamline “time-of-flight”.

For our purposes the velocity field is considered fixed in time. Consequently, the
streamlines will not correspond to path lines if the actual velocity field v evolves in time.
In streamline-based simulation an operator-splitting approach is used, and the velocity
field will be recomputed (relatively) rarely, the underlying assumption being that it
changes only slowly. This gives rise to an operator-splitting error. This error may be
reduced by recomputing the velocity field more often, but that may be computationally
expensive. Also, after each such update all streamlines must be recomputed.

Typically, a flow solver provides a discrete velocity or flux field which is then inter-
polated to obtain an approximation of v in (15).

In Pollock’s method the velocity field interpolation is given on the unit square by linear
interpolation in each component separately. The method leads to a discoupling of the
components of the streamline equation (15) and the solution can be found analytically.
Variants by Cordes and Kinzelbach [7], Prevost et al. [24] and Jimenez et al. [14] are
often used for grids with general hexahedral cells.

In [12], Hægeland etc. describe the Corner Velocity Interpolation (CVI) on quadri-
lateral and hexahedral grids. This is a streamline tracing method aiming to produce
streamlines that are more accurate than those produced by the methods in [23], [7], [24]
and [14]. The CVI tracing can be done both in the referance cell and in the pysical
cell, cf. [13]. Juanes and Matringe [15] examine streamline tracing using the general
order Raviart-Thomas (RTk) and Brezzi-Douglas-Marini (BDMk) velocity fields and the
stream function defined on the corresponding pointwise divergence free subspace. The
stream function is defined on the reference element and is mapped to to the physical
cell according to the Piola mapping. Note that the time of flight have to be adjusted by
the Jacobian to get the same streamlines you would else get on the quadrilateral RTk
or BDMk fullfield. We refer to Section 2.3 for a discussion of the Piola mapping. Zhang
et al. [27] present an extension of streamline tracing to polygonal cells, also with focus
on pointwise divergence free fields in reference cells, and they discuss the Juanes and
Matringe method as well as the CVI method.

We aim at streamline tracing directly on the physical space, where we ensure repro-
duction of uniform flow. We do not involve the Piola mapping. The streamline tracing
presented here is an extension in physical space of the CVI interpolation, and we denote
it epCVI. In our case, we assume that a discrete flux field is given in terms of a flux
on each grid face which is then interpolated using (8). For simplicity, we will assume
homogeneous porosity per grid cell, which simply scales the resulting cell time-of-flight,
and leave it out of the equations. The equations of (15) are here coupled, which means
that we need to solve the system by numerical means.

5.1 Streamline tracing on simplicial grids

For the special case of incompressible flow on simplicial grids, that is, triangulations in
2D and tetrahedral grids in 3D, there exists a cell-wise constant velocity field that is
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consistent with the face fluxes. In n dimensions a constant velocity has n degrees of
freedom, and on a simplex we have n + 1 faces at which we need to satisfy consistency.
However, incompressibility implies that the sum of the fluxes is equal to zero (away from
wells), which reduces the number of independent consistency equations by one. The
constant velocity field for a cell is given by equation (6).

Tracing a streamline through the element E may now be done by following this
procedure:

1. Find the barycentric coordinates x0 = x(τ0) of the entry point with respect to
E. If the entry point is given in barycentric coordinates for the intercell boundary
subsimplex (a triangle in 3D, a line in 2D), this step consists of a simple shuffling
of coordinates.

2. Compute the velocity v in barycentric coordinates using equation (6).

3. Equation (15) has the solution x(τ) = x0 + (τ − τ0) · v. Here τ0 is the entry
time-of-flight. Find the exit point and time-of-flight as follows:

(a) For all i such that vi < 0, compute the intersection times τi = −xi(τ0)/vi.
For all other i, set τi = −∞.

(b) The minimum non-negative intersection time τm is the time-of-flight through
E. The index m at which this minimum is attained indicates the boundary
subsimplex that was hit. If there are multiple candidates, choose the one for
which the corresponding subsimplex outward flux is greatest.

(c) The exit point is given in barycentric coordinates with respect to E by x(τm) =
x0 + τm · v.

4. Transform x(τm) to barycentric coordinates on the intercell boundary subsimplex
by removing the coordinate for which τm = τi (which must be zero).

5. E now becomes the neighboring simplex that is adjacent through subsimplex m.
Repeat the procedure.

The above procedure is robust. It cannot be trapped on an edge or vertex, and will
always exit the element E through an outflow face. However when using floating point
numerics, it is prudent to add a rescaling of the coordinates after step 4, to ensure that
they sum to one. This is because the result of the computation x(τm) = x0 +τm ·v above
may not sum exactly to one when using floating point.

5.2 Streamline tracing on arbitrary convex polytopes

The procedure is as follows:

1. For each cell E, pre-compute the barycentric basis functions.

2. Upon a streamline reaching a cell boundary entry point, integrate it with the in-
terpolated velocity function given by (8) until reaching the cell boundary again.
That is the exit point, which will be the entry point for the next segment of the
streamline, traced through the neighbouring cell.

In order to actually trace a streamline through E, we must use some numerical ODE
solver, and this is the primary drawback of the epCVI method, compared to semi-analytic
methods.
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Assuming that tracing starts at a point x0 on some inflow boundary face of the cell,
we must trace forwards by solving (15) numerically. A simple scheme like Euler’s method
may or may not be sufficient, depending on accuracy requirements and the application.
We have used the second-order Heun’s method, which is an explicit second-order method
also known as the Euler-Trapezoidal predictor-corrector method. The scheme is given by

xpn+1 = xn + hv(xn)

xn+1 = xn +
h

2
(
v(xn) + v(xpn+1)

)
Choosing the step-size h can be challenging. An initial step-size may be chosen pro-
portional to some characteristic length divided by a characteristic velocity. One can for
instance use the square root (cubic root in 3D) of the cell volume divided by a cell average
velocity, although this is insufficient for anisotropic cell shapes.

The difference between xpn+1 and xn+1 may be used to control the error, exploiting the
fact that Heun’s method is a second-order method with an embedded first-order method.
Similar embedded method pairs of higher degree such as the Runge-Kutta-Fehlberg 4(5)
pair or the Dormand-Prince 5(4) pair may be used for increased accuracy.

Another difficulty may be to detect the point at which the streamline exits the cell.
Given the generalized barycentric coordinates {λi} for a position it is easy to check
this, since a point lies inside the cell if and only if all coordinates are nonnegative. We
need to compute these coordinates for the purpose of calculating v, so there is no extra
computational cost.

Once we know that the integration has passed outside the cell, we need to find the
point of intersection with the cell boundary. A simple approach is to use a function
φ that is defined on the line between xn and xn+1. The indicator function φ should
be negative on the outside and positive on the inside of E. For example one may use
φ(x) = mini λi(x). Then one can use a nonlinear equation solver for bracketed zeros to
find the intersection, for example one of the modified regula falsi solvers described by
[10] or the method of [4]. The regula falsi variants are easier to implement correctly, but
Brent’s method may give faster convergence. The latter approach only gives first order
accuracy at the intersection point, however. If higher accuracy is needed one should use
a continuous Runge-Kutta method to define the curve between xn and xn+1 along which
the zero of φ is sought, see for example [21]. For order up to three, Hermite interpolation
of the solution curve will yield sufficient accuracy.

6 Numerical examples

In the following numerical tests we show that the velocity interpolation proposed leads
to smooth streamlines, comparable to a higher order method as seen in for instance
in article [15]. In particular, our first test case shows a homogeneous quarter-five-spot
case which was also used for the tests used to compare streamline tracing with RT0 and
BDM1 in [15]. The streamlines obtained with the extended physical space CVI (epCVI)
are smooth, as those obtained with BDM1, as can be seen in Figure 5. As the grid is
Cartesian, and we have employed Wacshpress Coordinates, the epCVI method reduces
to the regular CVI method. We also note the smoothness in the variation of time of
flight as can be seen to the right in Figure 5. When tracing from a source to a sink, we
choose to terminate the streamlines on the source/sink cell boundaries. This is a simple
approach, but may not yield sufficiently accurate time-of-flight, especially on coarse grids
with many wells. For such cases a more accurate model of the near-well region is needed.
We do not consider this issue within the scope of this paper.
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Figure 5: Streamlines for homogenous quarter-five-spot case with 20 × 20 cells. Left: Sparse
streamlines. Right: Dense streamlines that have been coloured according to logarithmic time-
of-flight with a discrete set of colours to show isocontours.

In the following two test cases we look at streamline tracing on polygonal grids.
The original CVI method has not been defined for such a grid. To apply the tracing
using RT0 or BDM1 velocity fields, the grid would have to be refined so as to consist of
either quadrilaterals or triangles, which we do not consider here. As our interpolation
is constructed such as to reproduce uniform flow, our first test case on polygonal grids
shows that this is indeed the case. The left hand side of Figure 6 shows streamlines
that are straight lines and parallel, as expected. The right hand side of Figure 6 shows
streamlines for the case where we have injection in a cell in the lower central part of the
domain, while the producer is placed towards the top central part of the domain. We
see that the produced streamlines are smooth and quite robust to grid effects. Near the
source and sink there is some distortion, but that can mostly be attributed to the coarse
spatial resolution and its effect on the accuracy of the flow solver. The injector cell is of
an irregular shape and is not symmetrical, which leads to the non-symmetry also in the
velocity field.

The time-of-fligth contours as well as the effect of grid refinement can be examined in
Figure 7. While the contours are quite smooth even for the coarser grid, the smoothness
and the symmetry are improved on the fine grid as the impact of the shape of the injector
diminishes. If we do a close up of the area around the injection cell, Figure 8, we see
that the contours are distorted into the shape of the injector, but then become smoother
as they advance.

All the tests so far have been on a grid cells that are, though distorted, more or less
isotropic. We have also tested the effect of using a grid with anisotropic cell shapes, as
seen in Figure 9. The grid consists of 18711 hexagonal cells, compressed in the y-direction
to obtain a 10:1 anisotropy ratio. A mimetic pressure solver has been used to obtain the
discrete fluxes (raw field). It can be seen that in spite of the strongly distorted velocity
field near the source, the time-of-flight behaves well on the larger scale.

Finally we test our streamline tracing on a 3D test case, with the results shown in
Figure 10 and Figure 11. The test case is similar to the 2D test case with an injector
and a producer placed on opposite sides of the domain, close to the symmetry axis. The
left hand side of Figure 10 shows a sparse set of streamlines. The grid, shown on the
right in the same Figure, is a 5-layer extrusion of a 2D voronoi cell grid. The 2D grid is
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Figure 6: Sparse streamlines for a homogenous polygonal grid case with 232 cells. Left: uniform
flow. Right: streamlines traced from injector cell to producer cell.

the dual of a triangulation created with DistMesh [22]. To the left in Figure 11 it can
again be seen that the time-of-flight contours become quite smooth as they advance. The
somewhat uneven distribution of the streamlines is an artifact of the very simple seed
point distribution algorithm used, which is generating random barycentric coordinate
tuples for each face of the source cell. To the right in Figure 11 we demonstrate that
uniform flow is also preserved in 3D.

7 Conclusions

A new method has been described for direct streamline tracing on simple polytope cells.
The method extends the CVI method of [12, 13] in the physical space. Numerical testing
shows quite good performance of the method, with smoothness of the streamlines and
time-of-flight contours in addition to robustness with respect to grid effects.

We introduced the differentiation between full field methods, which have element
basis functions, and raw field methods that define a velocity field only at the element
interfaces. We argue that the element basis functions used in full field methods often
have shortcomings that can be overcome by instead using a raw field method and adopt
a suitable interpolation successively. We present new interpolation basis functions for
H(div) and H(curl) which reproduce constant vector fields on general meshes.

Some of the issues that may be investigated in future work include relaxation of
convexity and topological requirements and sensitivity of interpolation with respect to
cell shape.
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Figure 7: Dense streamlines for injection in homogenous polygonal grids. Streamlines have been
coloured according to time-of-flight with a discrete set of colours to show isocontours. Left: 232
cells. Right: 2079 cells.

Figure 8: Closeups near source of the 2079 cell case. Coloured according to logarithmic time-
of-flight.
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Figure 9: Left: closeup of pressure field near source of anisotropic case. Right: dense set of
streamlines from anisotropic case, coloured according to logarithmic time-of-flight
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Figure 10: Left: sparse set of streamlines from 3d case, coloured according to logarithmic
time-of-flight. Right: extruded voronoi grid used for 3d test.
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Figure 11: Left: denser set of streamlines from 3d case, coloured according to logarithmic
time-of-flight. Right: streamlines from 3d case, uniform flow, from above.

A Proof of Lemma 1

In [11], the following error estimate with generalized barycentric coordinates interpolation
I on polyhedra is established for Wachspress and Sibson coordinates, given sufficient
geometric restrictions on the domain E;

‖u− Iu‖H1(E) ≤ Ch|u|H2(E), for all u ∈ H2(E). (16)

If we interpolate Πhuh component-wise with Wachspress coordinates from vertex values
reconstructed from the flux, Lemma 3 shows that this gives the reconstructed barycentric
coordinate field RbciuF,h. From (16) we can also deduce that

‖u−RbciΠhu‖H1(E) ≤ Ch|u|H2(E), for all u ∈ H2(E)

under the assumption of constant values of u · n on ∂E. Since we know that the raw
field, Πhuh,RT0 , will converge in a discrete L2 norm, it follows that also

‖u−RbciΠhuh,RTo
‖H(div) ≤ ‖u−RbciΠhu‖H(div) + ‖RbciΠh(u− uh,RTo

)‖H(div)

≤ ‖u−RbciΠhu‖H(div) + |Rbci|‖Πh(u− uh,RTo
)‖L2,h

≤ Ch|u|H2 , for all u ∈ H2.
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