
Mixed multiscale finite element methods for

stochastic porous media flows

J. E. Aarnes∗ Y. Efendiev†

August 24, 2007

Abstract

In this paper, we propose a stochastic mixed multiscale finite element

method. The proposed method solves the stochastic porous media flow

equation on the coarse grid using a set of pre-computed basis functions.

The pre-computed basis functions are constructed based on selected re-

alizations of the stochastic permeability field, and furthermore the solu-

tion is projected onto the finite dimensional space spanned by these basis

functions. We employ multiscale methods using limited global informa-

tion since the permeability fields do not have apparent scale separation.

The proposed approach does not require any interpolation in stochastic

space, and can easily be coupled with interpolation based approaches to

predict the solution on the coarse grid. Numerical results are presented

for permeability fields with Gaussian and exponential variograms.

1 Introduction

It is often difficult to solve multiscale stochastic porous media equations because
of the presence of uncertainties and multiple scales. For this reason, some type
of upscaling or coarsening is performed to solve these equations on the coarse
grid. However, most of upscaling methods studied in the literature are realiza-
tion based, i.e., upscaling is performed for an individual realization of stochastic
permeability field. Because of large uncertainties that are often present in sub-
surface properties, the use of realization based coarse-scale models may not be
sufficient for fast simulation purposes and uncertainty quantification. In this
paper, we propose multiscale approaches which resolve both uncertainties and
subgrid scales. These approaches are inexpensive and can be used to perform
uncertainty quantification in subsurface applications.

In this paper we employ a mixed multiscale finite element method (MsFEM)
for resolving the spatial scales. The main idea of MsFEMs is to incorporate
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the small scale information into finite element basis functions and couple them
through a global formulation of the problem (see [22]). The multiscale method
in [22] shares some similarities with a number of multiscale numerical methods,
such as residual free bubbles [10], variational multiscale method [23], two-scale
conservative subgrid approaches [6], and multiscale mortar methods [7]. We
remark that special basis functions in finite element methods have been used
earlier in [9, 8]. The multiscale finite element methodology has been modified
and successfully applied to two-phase flow simulations in [24, 13, 1] and extended
to nonlinear partial differential equations [19].

The main idea of the proposed approach is to construct multiscale basis
functions that, in addition to capturing the small scale information, resolves
the spatial variability across realizations in stochastic porous media. This is
done by selecting a small family of realizations that are sufficiently scattered in
stochastic space, and then compute a set of multiscale basis functions for each
realization. Once the basis functions are constructed, the solution of the equa-
tion for the Darcy velocity is projected onto the finite dimensional space spanned
by the multiscale basis functions. The resulting method can be regarded as an
extension of the mixed MsFEM to stochastic porous media equations.

The permeability fields under consideration do not have scale separation.
We therefore employ multiscale methods using limited global information in our
simulations. These approaches extract information (that is difficult to capture
with local approaches) from some precomputed fields that contain non-local
information. The use of global information in coarsening is not new and has been
employed in upscaling (e.g., [12]) as well as multiscale methods (e.g., [1, 18]).

We note that our approach can also use basis functions computed from local
problems without involving any global information. This is especially important
when there is scale separation. Moreover, the proposed approach can be applied
to simulations on unstructured grids [4, 5], and does not, unlike upscaling based
approaches, require any interpolation in stochastic space. But, if desirable, the
method can employ, or be combined with, interpolation based approaches, e.g.
by interpolating in stochastic space to construct basis functions.

We present numerical results for two types of permeability fields. The first
type is Gaussian permeability field where the uncertainties can be represented by
a small number of parameters obtained from Karhunen-Loève expansion [25, 31].
This allows us to select realizations based on sparse interpolation methods and
use these realizations to construct multiscale basis functions. The second type
of permeability fields are described by the exponential variogram [14]. In this
case, we deal with a large uncertainty space and interpolation in uncertainty
space is prohibitively expensive. Since our approaches are independent of in-
terpolation, we suggest using a few independent realizations for approximating
statistical properties of the stochastic solution. Our results show that the pro-
posed approaches work well and can be used in practice to perform uncertainty
quantification, e.g., within the framework introduced in [20].

The paper is organized as follows. In the next section, we present the model
problem. Section 3 is devoted to mixed multiscale finite element methods. In
the following section, we present mixed multiscale methods for stochastic flow
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equations. Finally, Section 5 is devoted to numerical results.

2 Model problem

We consider two-phase flows in a reservoir (denoted by Ω) under the assump-
tion that the displacement is dominated by viscous effects; i.e., we neglect the
effects of gravity, compressibility, and capillary pressure. The two phases will
be referred to as water and oil, designated by subscripts w and o, respectively.
We write Darcy’s law for each phase as follows:

vj = −krj(S)

µj

k · ∇p, (2.1)

where vj is the phase velocity, k is the permeability tensor, krj is the relative
permeability to phase j (j = o, w), S is the water saturation (volume fraction)
and p is pressure. Throughout the paper, we will assume that the permeability
tensor is diagonal k = kI, where k is a scalar and I is the unit tensor. In this
work, a single set of relative permeability curves is used. Combining Darcy’s
law with a statement of conservation of mass allows us to express the governing
equations in terms of the so-called pressure and saturation equations:

∇ · (λ(S)k∇p) = qw + qo, (2.2)

φ
∂S

∂t
+ v · ∇f(S) = qw, (2.3)

where λ is the total mobility, f(S) is the flux function, and v is the total velocity,
which are respectively given by:

λ(S) =
krw(S)

µw

+
kro(S)

µo

, (2.4)

f(S) =
krw(S)

µwλ(S)
, (2.5)

v = vw + vo = −λ(S)k · ∇p. (2.6)

Moreover, qw and qo are volumetric source terms for water and oil, respectively,
and φ is the porosity. The above descriptions are referred to as the fine model of
the two-phase flow problem. For single-phase flow, krw(S) = S, kro(S) = 1−S,
and µw = µo.

3 Mixed multiscale finite element methods

In this section, we discuss mixed multiscale finite element methods (MsFEM)
which will be used in the paper. We rewrite the two-phase flow equation as

(λk)−1u −∇p = 0 in Ω

div(u) = h in Ω

λ(x)k(x)∇p · n = g(x) on ∂Ω.

(3.1)
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For simplicity of the presentation, we assume Neumann boundary conditions.
Let Vh ⊂ H(div, Ω) and Qh ⊂ L2(Ω)/R be finite dimensional spaces and

V 0
h = Vh ∩H0(div, Ω), where H0(div, Ω) is H(div, Ω) with homogeneous bound-

ary conditions. The numerical approximation of (3.1) on the fine grid is to find
(uh, ph) ∈ Vh × Qh such that uh · n = gh on ∂Ω and

((λk)−1uh, vh) + (divvh, ph) = 0 ∀vh ∈ V 0
h

(divuh, qh) = (h, qh) ∀qh ∈ Qh,
(3.2)

where (·, ·) is the usual L2 inner product.
In a mixed FEM discretization we replace the pressure and velocity solutions

by finite dimensional subspaces that typically consists of low order piecewise
polynomials. In a mixed MsFEM one attempts to design the approximation
space for velocity in such a way that it embodies the impact of subgrid variations
in K. In a mixed MsFEM, multiscale basis functions are used for the velocity
field, while the pressure field is approximated using piecewise constant functions.
In particular, one constructs multiscale basis functions for the velocity field for
each edge (face in 3 dimensions) of every block. Throughout we denote by eK

i

an edge or a face i of the block K, i.e., a subset of ∂K that has positive length
in 2 dimensional space and positive area in 3 dimensional space.

Given a permeability field k, the corresponding multiscale basis function for
eK

i is defined as follows. First we compute an auxiliary function wK
i by solving

the following equation in K:

div(k(x)∇wK
i ) =

1

|K| in K

k(x)∇wK
i nK =

{

gK
i on eK

i

0 else,

(3.3)

where the choice of gK
i will be discussed later. To each auxiliary function wK

i we
associate the multiscale basis function ΨK

i = k(x)∇wK
i . When basis functions

have been computed for each edge we define the corresponding finite dimensional
velocity approximation space for the mixed MsFEM by

Vh(k) =
⊕

K

{ΨK
i },

V 0
h (k) = Vh(k) ∩ H0(div, Ω).

Here we have emphasized that the velocity approximation space depends on k,
since k appears in the equations that determine the multiscale basis functions.
Hence, for each permeability field k we associate a velocity approximation space
Vh(k) that is spanned by the set of basis functions consisting of one multiscale
basis function for each edge of every grid block in the coarse grid. In this paper
we employ an approximation space that is defined for multiple k, i.e., we use

Vh =
⊕

i

Vh(ki),

where ki(x) are permeability fields. This approach, which is useful when there
are uncertainties in the permeability data, will be discussed in Section 4.
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3.1 Boundary conditions for the multiscale basis functions

The choice of boundary conditions gK
i in (3.3) can greatly influences the accu-

racy of a mixed MsFEM. In [13], the authors use piecewise constant coarse-scale
fluxes on the boundary of the coarse elements, i.e., gK

i = 1
|eK

i
|
. To obtain ac-

curate approximations of the fluxes, the velocity should contain the fine-scale
features similar to the solution of the original problem on the boundary. Piece-
wise constant boundary conditions can introduce a strong mismatch along grid
block boundaries between the mixed MsFEM solution and the solution of the
original problem. To alleviate this problem, oversampling method is introduced
in [13] (see also [22, 21]). The main idea of the oversampling methods is to use
larger regions for local problem computations, i.e., the local problems are solved
in larger regions and then the basis functions are computed using only the inte-
rior information. These approaches tend to be conservative on the coarse grid
only. For our purposes, we would like approaches that are conservative also on
the fine grid.

Although the mixed MsFEM is generally robust (see e.g., [4]), it is known
that for problems without scale separation and strong non-local effects (e.g.,
highly heterogeneous fields with long correlation length structures) one can im-
prove accuracy substantially by invoking some type of limited global information
[1, 2]. Global information allows us to take into account strong non-local effects
and obtain accurate approximation on the coarse grid. For global approaches
to be effective, one needs to know that the solution smoothly depends on these
global fields, for example, there exist N global fields p1,..., pN , such that

|p − G(p1, ..., pN )|1,Ω ≤ Cδ, (3.4)

where δ is sufficiently small, G is sufficiently smooth function (e.g., G ∈ C2),
and p1,.., pN are solutions of div(k(x)∇p) = 0 with some prescribed boundary
conditions. Next, we briefly discuss the assumptions such as (3.4) and then
state mixed MsFEM which use limited global information. The latter will be
used in our simulations.

In [18], it was shown for channelized permeability fields that p is a smooth
function of single-phase flow pressure (i.e., N = 1), where single-phase pressure
equation is described by div(k(x)∇p) = f . In more general setting, it was
shown in [28] for arbitrary smooth λ(x) that the solution is a smooth function
of two linearly independent solutions of single-phase flow equations (N = 2).
When considering random permeability fields, the permeability field is typically
parameterized with a parameter that represents the uncertainties and in this
case the global fields are the solutions of single-phase flow equation for different
realizations. This will be discussed in next section.

In the above assumption, pi are solutions of flow equations. We denote the
corresponding velocity field by ui, i.e., ui = k∇pi. Then, the above assumption
can be written in the following way. There exist sufficiently smooth scalar
functions A1(x), ..., AN (x) (see [3] for details), such that the velocity can be
written as

‖u − A1(x)u1 − ... − AN (x)uN‖0,Ω ≤ Cδ. (3.5)
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We note that in the case of homogenization problems ui = k(x)∇pi, where pi

are solutions of local periodic problems such that pi−xi is periodic (i = 1, ..., d).
The idea of using global information to define boundary conditions for the

multiscale basis functions for the mixed MsFEM was first introduced in [1] (for
N = 1). Here we define a mixed MsFEM capable of using information from
multiple global fields. This approach is therefore a generalization of the mixed
MsFEM proposed in [1].

4 Mixed MsFEM for stochastic equations

In this section, we present a multiscale approach for solving stochastic flow
equations. The main idea is to use selected realizations of the permeability field
to build a low dimensional approximation space for velocity that embodies both
small scale (sub coarse-grid) spatial variability in the permeability data and
stochastic variability due to uncertainties in the data. This space can then be
utilized to compute velocity solutions for other realizations from the stochastic
permeability distribution. For clarity we summarize the basic steps below.

1. Generation of coarse grid.

• Let the reservoir Ω be partitioned into a fine grid. The coarse grid is
a partitioning of the fine grid where each cell in the fine grid belongs
to a unique block in the coarse grid and each coarse grid block is
connected. In principle, any grid satisfying these requirements may
be used, but a proper coarse grid should obey certain guidelines, see
[5].

2. Construction of multiscale approximation space Vh:

• Select N realizations from the stochastic permeability distribution
that are scattered in stochastic space.

• For each realization i;

– Solve (3.1) on the fine grid using a suitable mass conservative
numerical method to obtain a ”global” velocity solution ui.

– Compute multiscale basis functions: For each edge eK
l , set

gK
l (ki) =

ui · nK
el

∫

el

ui · nK
el

ds
,

where nK
el

is the unit normal on el pointing out of K, and solve

(3.3) to obtain wK
l and subsequently Ψk

l .

– Define Vh(ki) =
⊕

l,K ΨK
l .

• Define Vh =
⊕N

i=1 Vh(ki).
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3. Rapid multiscale computation of velocity solutions for stochastic porous
media flow with precomputed basis functions (from Step 2) for each indi-
vidual realization, e.g., for uncertainty quantification, history matching,
etc.

• Select a family of realizations.

• For each realization, solve (3.2) with V 0
h = Vh ∩ H0(div, Ω).

We see that using the above procedure we get N basis functions for each
edge in the coarse grid. Once the basis functions are constructed, the mixed
MsFEM computes the orthogonal projection of the corresponding ”global” ve-
locity solution onto V h with respect to the inner-product (·(λk)−1, ·). Hence,
the mixed MsFEM projects the ”true” solution of the flow equation for any
realization onto the approximation space Vh that was built a priori.

We note that the mixed MsFEM finds a proper solution for each realization
without using interpolation formulas. However, for the mixed MsFEM solution
to be well defined it is necessary that all basis functions for all of the initial N
realizations are linearly independent. This is the case if each family of boundary
conditions {gK

l (ki) : all i, K} is a linear independent set. If this is not the case,
then one must remove superfluous boundary conditions and let Vh be spanned by
the basis functions that correspond to the reduced set of boundary conditions.
In practice this is usually not necessary as long as the number of realizations
used in constructing multiscale basis functions is not too high.

4.1 Analysis and discussion

Next, we present a formal analysis of the method under the assumption that
the chosen realizations can be used to interpolate an arbitrary realization. To
show this, we assume that the uncertainties of the permeability field can be
parameterized. As a result of this parameterization, the permeability is ex-
pressed as k = k(x, θ) where θ ∈ RL. One such example is the Karhunen-
Loève expansion (KLE) used in representing the permeability fields given via
a two-point correlation function. In the KLE, the permeability is expressed
as k(x, θ) = exp (Y (x, θ)) with Y (x, θ) =

∑L

i=1 ΘiΦi(x). Here Φi(x) are pre-
determined functions and θ = (Θ1, ..., ΘL). The KLE is further described in the
section on numerical implementation.

When the uncertainties are parameterized and L is not large, one can employ
sparse interpolation techniques in RL (e.g., [32]), where the solution is computed
for some values of θ = (Θ1, ..., ΘL), denoted by θk, and then interpolated for
an arbitrary θ ∈ RL. Assuming that k(x, θ) smoothly depends on θ (keeping in
mind Karhunen-Loève type expansions), we can approximate the solution for
an arbitrary θ as

p(x, θ) ≈
∑

i

p(x, θi)βi(θ), (4.1)

where βi(θ) are the corresponding weights which are in general difficult to ob-
tain. We note that the interpolation error depends on the choice of interpolation
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points and the smoothness of p(x, θ) with respect to θ. Denoting the velocity
field for two-phase flow by v, we have

v(x, θ) ≈
∑

i

v(x, θi)βi(θ). (4.2)

(4.1) shows that the solution of stochastic flow equation can be approximated if
we provide approximations of p(x, θi) for each θi. Because the solution for each
selected realization can be approximated using corresponding global fields, we
have

v(x, θi) ≈
∑

j

c∗ij(x)uj(x, θi).

We remind that j refers to a number of global fields used for simulations of a
single realization. In our numerical simulations, we will be using single-phase
velocity fields following [1, 2]. One can, in general, use directional flows as it
is proposed in more general setting in [28]. We note that in our multiscale
simulations, the basis functions are constructed using uj(x, θi).

One can show the convergence of the proposed approach following [3]. From
(4.1) and (4.2), we obtain that

v(x, θ) ≈
∑

i

βi(θ)
∑

j

c∗ij(x)uj(x, θi). (4.3)

This shows that the solution can be approximated by uj(x, θi). More precisely,
we have

‖v(x, θ) −
∑

i,j

βi(θ)c
∗
ij(x)uj(x, θi)‖L2(Ω) ≤ δ, (4.4)

where δ is a sufficiently small number and Ω is the spatial domain. δ in (4.4)
depends on θ (realization). Following the proof presented in [3] one can show
that the mixed multiscale finite element methods converge independent of small
scales and, in particular, the convergence rate is C(δ + hγ), where C depends
on θ, h is the coarse mesh size, and 0 < γ < 1 depends on the smoothness of Ai

in (3.5). We will not present this proof here since it is lengthy. For the proof,
one needs first to establish a stability estimate and then obtain the convergence
rate. Because basis functions span uj(x, θi), one can appropriately choose a test
function which will yield the desired convergence rate. Once the convergence
for each θ is obtained, we can show the uniform convergence in a compact set
in RL using Ascoli theorem.

We note that the proposed method can be applied in a local region of the
uncertainty space by selecting realizations which correspond to this region. The
latter is useful when one would like to perform uncertainty quantification in a
subregion of the uncertainty space. One can also use the localization in the un-
certainty space for more accurate probabilistic estimations by partitioning the
uncertainty space. To describe the procedure, we denote by U the uncertainty
space and assume that U is partitioned into Ui. In each region Ui, we choose
realizations θi

j representing these local regions. Then, the basis functions are
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defined as before for these realizations in each Ui. This approach is an implemen-
tation of the earlier proposed technique simply in local regions of uncertainty
space. In particular, the multiscale basis functions are constructed as before
though with local support both in spatial and uncertainty spaces. When per-
forming simulations for a particular realization, the multiscale basis functions
from the local uncertainty region which contains this particular realization will
be used. This will provide high accuracy and reduce the computational cost.
We note that pre-computed multiscale basis functions can be repeatedly used
for different boundary conditions/source terms and for dynamic two-phase flow
and transport simulations.

One can draw a parallel between the proposed approach and a general mul-
tiscale approach where the coefficients strongly vary with respect to spatial
variables and uncertainties. In classical multiscale finite element type methods,
the local spatial heterogeneities are captured via the solution of the local equa-
tion in the spatial space. We would like to construct multiscale basis functions
for permeability fields k(x, θ) over a coarse region defined in the spatial and
uncertainty space (we denote it K × Ui). Analogous to the spatial multiscale
methods, here we attempt to solve the local problem in a coarse region K ×Ui.
More precisely, the basis functions are derived from the solution of

div(k(x, θ)∇wK
i (x, θ)) = 0

defined in K × Ui. To solve this local problem, a discretization in the spatial
and uncertainty space is required. In the proposed stochastic mixed MsFEM,
besides a standard finite element based spatial discretization, we use a number
of realizations to resolve the uncertainty scales (similar to stochastic colloca-
tion methods [32, 26]). Consequently, the proposed approach can be regarded,
conceptually, as an extension of mixed MsFEM to problems with uncertainties.

The main practical advantage of the proposed mixed MsFEM is that one
does not need interpolation formulas. Indeed, when an approximation space
that is spanned by the family of spaces for a set of different permeability re-
alizations is applied to solve (2.2) with an independent realization of the per-
meability field, one is actually projecting the true solution onto this enriched
approximation space. Thus, the velocity solution will be a superposition of ba-
sis functions corresponding to each of the sample fields, but the interpolation
weights are determined automatically from the projection property of the mixed
MsFEM. In particular, the interpolation weights will vary throughout the uncer-
tainty domain. This approach is interpolation free, easy to use, and provides a
computationally cost-efficient methodology for performing multiple simulations,
for instance to quantify uncertainty. We also note that when an interpolation
formula is easily available, one can interpolate the set of pre-computed multi-
scale basis functions to calculate the basis functions for a particular realization.
However, the nature of this interpolation (pointwise or L2 or etc) will be pre-
determined. Our proposed approach chooses the best interpolation both in
spatial and stochastic space.

To our best knowledge, one can not avoid interpolation techniques if an up-
scaled model for an arbitrary realization is sought. Indeed, to derive coarse
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grid models with prescribed grid block porosities and permeability tensors for
multiple realizations, one must either upscale each individual realization sepa-
rately, or upscale a selected subset of the realizations and employ interpolation
formulas to extrapolate coarse grid models for the un-upscaled realizations (see
[15]). The former approach is time demanding because the upscaling part is
often time-consuming relative to the time it takes to perform a coarse grid sim-
ulation. The latter approach, on the other hand, is limited to problems where
interpolation formulas are readily available. We should remark, however, that
approaches proposed in [11] can be used to derive an ensemble level information
for upscaled permeabilities without employing interpolation.

5 Numerical results

For our numerical tests, we use the Karhunen-Loève expansion (KLE) [25, 31]
to obtain the permeability field in terms of an optimal L2 basis. By truncating
the expansion, we can represent the permeability matrix by a small number of
random parameters. To impose the hard constraints (the values of the perme-
ability at prescribed locations), one can find a linear subspace of our parameter
space (a hyperplane) which yields the corresponding values of the permeability
field. First, we briefly recall the facts of the KLE. Denote Y (x, ω) = log[k(x, ω)],
where the random element ω is included to remind us that k is a random field.
For simplicity, we assume that E[Y (x, ω)] = 0. Suppose Y (x, ω) is a second
order stochastic process with E

∫

Ω Y 2(x, ω)dx < ∞, where E is the expectation
operator. Given an orthonormal basis {φk} in L2(Ω), we can expand Y (x, ω) as

Y (x, ω) =

∞
∑

k=1

Yk(ω)φk(x), Yk(ω) =

∫

Ω

Y (x, ω)φk(x)dx.

We are interested in the special L2 basis {φk} which makes the random variables
Yk uncorrelated. That is, E(YiYj) = 0 for all i 6= j. Denote the covariance
function of Y as R(x, y) = E [Y (x)Y (y)]. Then such basis functions {φk} satisfy

E[YiYj ] =

∫

Ω

φi(x)dx

∫

Ω

R(x, y)φj(y)dy = 0, i 6= j.

Since {φk} is a complete basis in L2(Ω), it follows that φk(x) are eigenfunctions
of R(x, y):

∫

Ω

R(x, y)φk(y)dy = λkφk(x), k = 1, 2, . . . , (5.1)

where λk = E[Y 2
k ] > 0. Furthermore, we have

R(x, y) =
∞
∑

k=1

λkφk(x)φk(y). (5.2)
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Denote θk = Yk/
√

λk, then θk satisfy E(θk) = 0 and E(θiθj) = δij . It follows
that

Y (x, ω) =

∞
∑

k=1

√

λkθk(ω)φk(x), (5.3)

where φk and λk satisfy (5.1). We assume that the eigenvalues λk are ordered
as λ1 ≥ λ2 ≥ . . .. The expansion (5.3) is called the Karhunen-Loève expansion.
In the KLE (5.3), the L2 basis functions φk(x) are deterministic and resolve the
spatial dependence of the permeability field. The randomness is represented by
the scalar random variables θk. After we discretize the domain Ω by a rectan-
gular mesh, the continuous KLE (5.3) is reduced to finite terms. Generally, we
only need to keep the leading order terms (quantified by the magnitude of λk)
and still capture most of the energy of the stochastic process Y (x, ω). For an

N -term KLE approximation YN =
∑N

k=1

√
λkθkφk, define the energy ratio of

the approximation as

e(N) :=
E‖YN‖2

E‖Y ‖2
=

∑N

k=1 λk
∑∞

k=1 λk

.

If λk, k = 1, 2, . . . , decay very fast, then the truncated KLE would be a good
approximation of the stochastic process in the L2 sense.

Suppose the permeability field k(x, ω) is a log-normal homogeneous stochas-
tic process, then Y (x, ω) is a Gaussian process, and θk are independent standard
Gaussian random variables. In this case, the covariance function of Y (x, ω) has
the form

R(x, y) = σ2 exp
(

−|x1 − y1|2
2l21

− |x2 − y2|2
2l22

)

. (5.4)

In the above formula, l1 and l2 are the correlation lengths in each dimension,
and σ2 = E(Y 2) is a constant. We first solve the eigenvalue problem (5.1) nu-
merically on the rectangular mesh and obtain the eigenpairs {λk, φk}. Since the
eigenvalues decay fast, the truncated KLE approximates the stochastic process
Y (x, ω) fairly well in the L2 sense. Therefore, we can sample Y (x, ω) from the
truncated KLE (5.3) by generating Gaussian random variables θk.

5.1 Experimental setup

In our simulations below, we take krw(S) = S2, µw = 0.1, kro(S) = (1 − S)2,
and µo = 1. The permeability field Y (x) is given on 100 × 100 fine Cartesian
grid. This grid is then coarsened to form a uniform 5 × 5 Cartesian grid so
that each block in the coarse grid contains a 20 × 20 cell partition from the
fine grid. We solve the pressure equation on the coarse grid using the mixed
MsFEM and then reconstruct the fine-scale velocity field as a superposition
of the multiscale basis functions. The reconstructed field is used to solve the
saturation equation. The saturation equation will be solved using an implicit
upstream finite volume (discontinuous Galerkin) method. For emphasis, we note
that the multiscale basis functions are constructed at time zero, i.e., they are
not recomputed during the simulations.

11



In the numerical examples that are reported below we consider a traditional
quarter-of-a-five-spot. That is, Ω is taken to be a square domain, we inject water
at the upper left corner, and produce whatever reaches the producer at the lower
right corner. To assess the quality of the respective saturation solutions obtained
using the mixed MsFEM, we compute for each realization a reference solution
Sref obtained by solving the time-dependent pressure equation on the fine grid
with the given permeability field (using the lowest order Raviart-Thomas mixed
finite element method for Cartesian grids [29]). Then, in addition to measuring
the relative saturation error in the L1-norm:

‖S − Sref‖L1/‖Sref‖L1 ,

we compare various production characteristics. To this end we use the water-cut
curve defining the fraction of water in the produced fluid as a function of time
measured in pore volumes injected (PVI). Thus,

w(t) =
qw(t)

qw(t) + qo(t)
,

where qo and qw are flow rates of oil and water at the producer at time t. When
time is measured in PVI we have that t = 1

R

Ω
φ dx

∫ t

0
(qw(τ) + qo(τ)) dτ .

Having defined the water-cut, we monitor the following quantities:

• The relative water-cut error in the L2-norm:

‖w − wref‖L2/‖wref‖L2 .

• The breakthrough time (defined as w−1(0.05)) at the producer.

• The cumulative oil production at 0.6 PVI:

Qo = − 1
∫

Ω
φdx

∫ 0.6PV I

0

(
∫

Ω

min(qo(x, τ), 0) dx

)

dτ.

Before we embark on the numerical experiments, we note that the Raviart-
Thomas mixed finite element discretization of the pressure equation results in a
linear system with 1002 +2×99×100 = 29800 unknowns. In comparison, when
using a sample of N permeability fields to generate the mixed MsFEM basis
functions, the stochastic multiscale method gives rise to a linear system with
52 + 2 × 4 × 5 × N = 25 + 40N unknowns. Hence, when using a sample size of
25, for instance, the number of the unknowns in the fine grid system is roughly
30 times larger than the number of unknowns in the mixed MsFEM system. In
this paper we will employ samples of 10–50 permeability fields. In other words,
we compute 10–50 velocity basis functions for each interface in the coarse grid.

We note that the dimension of the multiscale approximation space may be
reduced. For instance, as mentioned earlier, the proposed approach can be used
locally in the uncertainty space. This requires partitioning of the uncertainty

12



space and for each realization determining the partition it belongs to. Also,
when basis functions that correspond to the same interface in the coarse grid
are nearly linear dependent, then the number of basis functions may be reduced,
e.g., by removing the basis functions that are at a very small angle (with respect
to (·(λk)−1, ·)) to the space spanned by the remaining basis functions associated
with the same interface. These techniques reduce the computation cost without
losing essential information.

5.2 Gaussian fields

For Gaussian fields, one can reduce the dimension of the uncertainty space
dramatically due to the fast decay of eigenvalues. To sample the realizations that
are used to generate the multiscale basis functions, we use the 1st order Smolyak
collocation points θk in [−3, 3]L (see e.g., [32]). That is, θ0 = 0, θ2i−1 = 3δij ,
and θ2i = −3δij, i = 1, ..., L. We note that the choice of interpolation points
does not affect the implementation of our approach.

Our first results are for isotropic case with l1 = l2 = 0.2 and σ2 = 2. In this
case we can reduce the dimension of the stochastic permeability to 10. From
this stochastic model for the permeability we randomly draw 100 realizations
and perform simulations on the corresponding permeability fields.

In Figure 1 we compare breakthrough times and cumulative oil production
at 0.6 PVI. We see that there is nearly a perfect match between the results
obtained with mixed MsFEM and the corresponding results derived from the
reference solutions. Next, in Figure 2, we plot L2 errors in the saturation field
for these realizations as well as the water-cut errors. It can be observed from
this figure that the saturation errors are mostly below 3%. Finally, we plot in
Figure 3 a histogram of the breakthrough times and cumulative oil production
values depicted in Figure 1 to demonstrate that the mixed MsFEM essentially
provides the same statistics as one obtains from the set of reference solutions.
These results suggest that with a few pre-computed basis functions in each
coarse grid block we can solve two-phase flow equations on the coarse grid for
an arbitrary realization and obtain nearly the same results, and hence nearly the
same statistics, as one obtains by doing fine grid simulations for each realization.

In our next numerical example, we consider an anisotropic Gaussian field
with l1 = 0.5, l2 = 0.1 and σ2 = 2. Due to anisotropy, it requires 12 terms in
KLE. Again we sample the realizations that are used to generate the multiscale
basis functions using the 1st order Smolyak collocation points θk in [−3, 3]L. For
illustration purposes, we plot in Figure 4 one randomly chosen realization and
corresponding saturation profiles at 0.6 PVI obtained by solving the pressure
equation on the fine grid, and on the 5× 5 coarse grid with the mixed MsFEM,
respectively. We note that the depicted saturation profiles are approximately
the same, even though the multiscale method solves the pressure equation on a
grid that is coarsened 20 times in each direction.

The numerical results obtained for the anisotropic Gaussian fields are qual-
itatively the same as the results shown in Figure 1 – Figure 3. We therefore
include only the anisotropic equivalent of Figure 3. Histograms of breakthrough
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Figure 1: Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from a Gaussian field with l1 = l2 = 0.2 and σ2 = 2.
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Figure 2: L2 errors of the saturation field and water-cut errors for 100 randomly
chosen realizations. Gaussian field with l1 = l2 = 0.2, σ2 = 2.
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Figure 3: Histograms of the breakthrough times and cumulative oil production
values shown in Figure 1.
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time and cumulative oil production at 0.6 PVI for 100 randomly chosen real-
izations are depicted in Figure 5. The histograms confirm that the multiscale
method essentially provides the same breakthrough time and cumulative oil
production statistics as one obtains from the set of reference solutions.

5.3 Exponential variogram fields

For our second set of results, we consider permeability fields with exponential
covariance matrix

R(x, y) = σ2 exp
(

−|x1 − y1|
l1

− |x2 − y2|
l2

)

. (5.5)

Because of slow decay of eigenvalues, one usually needs to keep many terms in
the KLE and deal with a large uncertainty space. For instance, for approximat-
ing permeability fields, KLE may require 300 to 400 eigenvectors depending on
correlation lengths and variance. The KLE therefore gives a stochastic distri-
bution in which it is very difficult to derive and employ interpolation formulas.
Thus, for this problem our approach based on the mixed MsFEM offers a major
advantage relative to interpolation based approaches. In fact, in our approach
we can simply select a few independent realizations and use these realizations
to build the approximation space Vh, and then perform statistical studies on
a much larger set of realizations. We note that for independent realizations,
we do not have interpolation formula easily available. Moreover, the use of in-
dependent realizations is quite easy and one can use this technique for more
general permeability fields since it only requires independent samples of the
permeability field.

To demonstrate the performance of the stochastic multiscale method for
these fields, we present results for a case where the permeability fields are drawn
from an anisotropic exponential variogram distribution with l1 = 0.5, l2 = 0.1,
and σ2 = 2 (the results for the isotropic case are similar, and not reported here).
The KLE requires 350 eigenvectors to represent this stochastic permeability dis-
tribution. From this distribution we sample 20 independent realizations and use
these realizations to generate the multiscale basis functions. Figure 6 displays
one randomly chosen realization and corresponding saturation profiles at 0.6
PVI obtained by solving the pressure equation on the fine grid, and on the 5×5
coarse grid with the mixed MsFEM, respectively.

Figures 7, 8, and 9, show; breakthrough time at producer and cumulative
oil production at 0.6 PVI for 100 randomly chosen realizations for both the
reference solution and the multiscale solution; relative overall saturation error
and water-cut error; histograms of the breakthrough times and cumulative oil
production values depicted in Figure 7. Figure 7 demonstrates that there is
generally a good match between the breakthrough time and cumulative oil pro-
duction curves for the reference and multiscale solutions. However, we now
observe that there is a slight bias in the multiscale results, e.g., there is a small
time-lag in the breakthrough times for the multiscale method. The bias can
also be observed from the histograms in Figure 9, but the magnitude of the bias
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Figure 4: A Gaussian permeability field with l1 = 0.5, l2 = 0.1, σ2 = 2, and a
comparison of the reference saturation field and the saturation profile obtained
with the multiscale method at 0.6 PVI.
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Figure 5: Histograms of breakthrough time and cumulative oil production at
0.6 PVI for 100 random Gaussian fields with l1 = 0.5 and l2 = 0.1 and σ2 = 2.
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Figure 6: An exponential variogram field with l1 = 0.5, l2 = 0.1, and σ2 = 2, and
a comparison of the reference saturation field at 0.6 PVI and the corresponding
saturation field obtained using the stochastic multiscale method.

is small, and the multiscale solutions are generally quite close to the reference
solution, as is illustrated in Figure 6 and Figure 8.

We now demonstrate that the bias in breakthrough time and cumulative
oil production persists, but is efficiently reduced by increasing the number of
realizations used to generate the multiscale basis functions. Figures 10, 11,
and 12 show, respectively, the saturation and water-cut error for each of the
100 realization for the stochastic multiscale method with different sample sizes,
the cumulative probability distribution of breakthrough times and cumulative
oil production, and the corresponding histograms of the breakthrough times
and the cumulative oil production values. The plots show the following; the
saturation and water-cut errors decay with increasing sample size; the time
lag in the breakthrough times (also observed in the cumulative oil production)
decays rapidly with increasing sample size, and that using 50 basis functions
for each coarse grid interface generates statistics that are nearly unbiased, and
generally match the statistics derived from the set of reference solutions very
well. Observe that a sample size of 50 gives rise to a linear system with 2025
unknowns, roughly 1/15 as many as in the fine grid system.

5.4 Uncertainty quantification

We would like to note that the proposed techniques can be effectively used in
uncertainty quantification based on methods proposed in [20]. Our goal in [20]
is to sample the permeability from the distribution

π(k) ∝ exp(− 1

s2

∫ T

0

(qw(t) − qobs(t))2dt),

where qw is the water-cut corresponding to the permeability field k, qobs is
observed water-cut, T is the time of available history and s is the error precision.

In [20], multi-stage Markov chain Monte Carlo methods are proposed, where
the first stage involves inexpensive simulations. These simulations are used to
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Figure 7: Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from an exponential variogram field with l1 = 0.5, l2 = 0.1,
and σ2 = 2.
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Figure 8: L2 errors of the saturation field and water-cut errors for 100 randomly
chosen exponential variogram fields with l1 = 0.5, l2 = 0.1, and σ2 = 2.
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Figure 9: Histograms of the breakthrough times and cumulative oil production
values shown in Figure 7.
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Figure 10: Saturation and water-cut error for solutions obtained using different
number of permeability realizations to generate the multiscale basis functions.
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Figure 11: Cumulative probability distribution for breakthrough time and cu-
mulative oil production at 0.6 PVI.
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Figure 12: Histograms of the breakthrough times and cumulative oil production.
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Figure 13: Cross plot between π(k) and π∗(k).

screen the fine-scale runs. Our main goal is to provide such inexpensive coarse-
scale runs that are statistically accurate. Our initial numerical results show
that the proposed methods can be efficiently used in these application. One of
the main criteria for these inexpensive simulations is strong correlation between
π(k) and π∗(k), where π∗(k) is approximate distribution. In Figure 13, we plot

the cross plot of
∫ T

0 (qw(t)− qobs(t))2dt for fine-scale and multiscale simulations.
The strong correlation suggests that our approach can be successfully used in
these uncertainty quantification problems. One can also test less expensive
methods where the saturation equation is solved on the coarse grid or fast
streamline techniques are used. These inexpensive computations are observed
to be statistically accurate in [20, 16] when realization based multiscale finite
element type methods are used. In future, we will study the stochastic mixed
MsFEM combined with the upscaled transport equations.

6 Conclusions

In this paper, our goal is to develop mixed multiscale finite element methods
(MsFEM) for solving stochastic flow equations described by second order el-
liptic equations with random coefficients. The proposed approaches compute
multiscale basis functions on the coarse spatial grid. The pre-computed basis
functions are constructed based on selected realizations of the stochastic per-
meability field, and thus span both spatial scales and uncertainties. These basis
functions are used to solve the stochastic equation for an arbitrary realization
on the coarse grid.
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We consider mixed formulation of the flow problem. The solution is projected
onto the finite dimensional space spanned by pre-computed basis functions.
The proposed method can be regarded as an extension of mixed MsFEM to
stochastic porous media flow equations. We employ multiscale methods using
limited global information since the permeability fields do not have apparent
scale separation. The proposed approach does not require any interpolation in
stochastic space and can accurately predict the solution on the coarse grid. In
general, the uncertainty space can be partitioned into coarse regions where our
approach can be used in each coarse patch.

We present numerical results for two-phase immiscible flow in stochastic
porous media. In particular, we consider both Gaussian fields as well as perme-
ability fields with exponential variogram. For the former case, due to smaller
uncertainty space, we use lowest order interpolation points in uncertainty space
for computing the basis functions. For the exponential case, due to large uncer-
tainties, we employ randomly selected realizations for constructing basis func-
tions. Numerical results show that for both cases, one can accurately predict
the solutions with the multiscale method using only a few realizations to gener-
ate basis functions. It is particularly encouraging that the proposed multiscale
methods are capable of predicting the stochastic solution with very few basis
functions in high dimensional uncertainty space. We would like to note that
the proposed approaches are not restricted to Cartesian grids and can be used
for unstructured grids [4]. Finally, we would like to note that the proposed ap-
proaches can be easily combined with interpolation based approaches in order
to achieve greater flexibility.

Although the results presented in this paper are encouraging, there is scope
for further exploration. Our intent here was to demonstrate that one can capture
the spatial and uncertainty variations of the stochastic flow solutions via pre-
computed basis functions. In particular, we would like to show that the method
provides a foundation for fast simulations for a large number of realizations
needed for the calculation of flow and transport statistics. Our initial numerical
results show that the proposed approaches can be efficiently used to speed-up
the uncertainty quantification problems of subsurface flows. Our future aim is
to use the stochastic mixed MsFEM in preconditioning of Markov chain Monte
Carlo simulations. In particular, we will study the statistical accuracy of the
approaches where mixed MsFEM combined with both coarse-scale and fine-scale
saturation solvers.
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[25] M. Loève, Probability Theory, 4th ed., Springer, Berlin, 1977.

23



[26] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochas-
tic collocation method for elliptic partial differential equations with random
input data, MOX Technical Report 85, Dipartimento di Matematica, sub-
mitted to SIAM Journal of Numerical Analysis (2006).

[27] D. Oliver, L. Cunha, and A. Reynolds, Markov chain Monte Carlo
methods for conditioning a permeability field to pressure data, Mathematical
Geology, 29 (1997).

[28] H. Owhadi and L. Zhang, Metric based up-scaling, Comm. Pure Appl.
Math., 2007.

[29] P. Raviart and J. Thomas, A mixed finite element method for second
order elliptic equations, In: I. Galligani and E. Magenes (eds.): Mathemat-
ical Aspects of Finite Element Methods. Berlin – Heidelberg – New York:
Springer–Verlag, pp. 292–315, 1977.

[30] C. Robert and G. Casella, Monte Carlo Statistical Methods, Springer-
Verlag, New-York, 1999.

[31] E. Wong, Stochastic Processes in Information and Dynamical Systems,
MCGraw-Hill, 1971.

[32] D. Xiu and J. Hesthaven, High-Order Collocation Methods for Differ-
ential Equations with Random Inputs, SIAM J. Sci. Comput. Wol. 27, No.
3, pp. 1118-1139.

24


