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Abstract. We study the dynamics of two-phase flow with gravity and point

out three different transport mechanisms: irrotational advection, solenoidal

advection, and gravity segregation. Each term has specific mathematical prop-

erties that can be exploited by specialized numerical methods. We argue that

to develop effective operator splitting methods, one needs to understand the

interplay between these three mechanisms for the problem at hand.
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1. Introduction

Numerical approximation of multiphase flow in heterogeneous reservoirs gener-
ally give rise to large systems of nonlinear equations that need to be solved in order
to advance the solution forward in time. To a large extent, the success or failure of
simulation development depend on the robustness and efficiency of the nonlinear
solvers rather than the quality of the discretization. This has led to widespread use
of fully implicit formulations which promise unconditional stability. In practical
simulations, however, robust implementations of fully implicit schemes must limit
the length of the time step, depending on the complexity of the grid, the geology,
fluid physics, discretization scheme etc. With increasingly large and complex reser-
voir descriptions, there is a growing demand for faster yet stable and predictable
simulation technology. To achieve higher efficiency in reservoir simulation technol-
ogy, solvers tend to exploit special features of the flow physics and possibly use
some form of sequential operator splitting.

The key idea of operator splitting for an evolutionary problem is to divide the
model equations into a set of subequations that each model some parts of the
overall dynamics that can be conquered using a simpler or more effective solution
method. An approximation to the evolutionary solution is then constructed by
solving the subequations independently, in sequence or parallel, and piecing the
results together. Formally, we want to solve a Cauchy problem of the form

(1)
dQ

dt
+A(Q) = 0, Q(0) = Q0

where A is an abstract and unspecified operator. The equation has the formal
solution Q(t) = exp(−tA)Q0. Assume now that we can write A = A1 + · · · +Am
in some natural way and that we know how to solve the sub-problems

(2)
dQ

dt
+Aj(Q) = 0, j = 1, . . . ,m
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more effectively that solving (1). Introducing a time step ∆t, and setting tn = n∆t,
the operator splitting can formally be written as

(3) Q(tn+1) = e−tn+1AQ0 ≈
[
e−∆tAm · · · e−∆tA2e−∆tA1

]
Q(tn).

Numerical methods are obtained by replacing the abstract operators e−tAj by
numerical approximations. This way, one can combine numerical methods that
have been developed to solve a particular class of evolutionary problems in a fairly
straightforward manner, reusing specialized, highly efficient, and well-tested solvers.
In particular, operator splitting enables easy replacement of one scheme with an-
other scheme for the same elementary operator. Moreover, the use of operator
splitting may also reduce memory requirements, increase the stability range, and
even provide methods that are unconditionally stable.

One of the first operator splitting methods used within reservoir simulation, was
the alternating direction implicit (ADI) method [29, 9], in which multi-dimensional
flow problems were successfully reduced to repeated one-dimensional problems that
could be effectively solved using the Thomas algorithm. Other examples of operator
splitting include methods like IMPES, IMPSAT, sequential splitting, sequentially
fully implicit, which all focus on splitting the computation of flow and transport
in separate steps. Such a splitting has been an essential assumption for the devel-
opment of specialized and highly efficient methods like streamline methods [8] and
multiscale solvers [11]. In this paper, we will focus on another problem, namely the
use of splitting for transport equations with a strong hyperbolic nature to enable
the use of efficient advective solvers.

In general, there are often several ways to decompose an evolution operator.
A good starting point is to have effective and specialized solvers for parts of the
problem, e.g., an effective pressure solver, an effective solver for advective flow,
etc. Designing an optimal solution strategy, however, will also require a good un-
derstanding of how the different physical effects act together to form the overall
dynamics of the problem so that one can: (i) optimize the operator decomposi-
tion into ’clean’ subproblems that can be solved as effectively as possible, and (ii)
efficiently piece together the resulting sub-solutions without creating undesired ar-
tifacts in the approximate solution. Moreover, operator splitting can be used to
accommodate the intuitive principle that each physical effect should (ideally) be
evolved using its appropriate time constant.

Herein, we consider a common two-level operator-splitting method: first split the
flow and transport equations, and then introduce a further operator splitting for the
transport equation to enable the use of effective hyperbolic solvers for the advective
part. Various splitting methods for the transport equation are analysed, both
numerically and theoretically, by [14, 19], focusing in particular on the interaction of
viscous and capillary forces. In the following, we will disregard capillary forces and
instead focus on operator-splitting methods for problems involving only advective
and gravitational forces.

As an example, consider streamline methods in which the pressure and veloc-
ity are computed on a grid and the transport of phases is computed along one-
dimensional curves. The power of streamline methods is that the streamlines change
slowly with time compared to the dynamics of saturation fronts. For advection-
dominated problems, streamline methods has been proven to be (significantly) more
efficient than conventional methods [2, 30, 8]. A different, but related, approach
is to exploit the underlying direction of flow to construct nonlinear Gauss–Seidel
type iterations for standard finite-volume discretizations [1, 22, 27, 28], which may
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give up to two orders of magnitude reduction in run-time compared to standard
methods.

Both these methods are based on two important assumptions: (i) that the char-
acteristics of the hyperbolic system are always positive, and (ii) that the vector field
is associated with potential flow. Both assumptions break down when gravity is
included. One will then in general have both positive and negative characteristics
and a rotational component in the velocity field. This leads to streamlines forming
closed loops and large irreducible blocks in the nonlinear systems for finite-volume
schemes [28] and can significantly deteriorate the efficiency of streamline and re-
ordering methods, even if the solenoidal velocity component is orders of magnitude
smaller than the advective part in most of the domain. In addition, the solenoidal
part of the velocity field is moving with the fluid since it is governed by the density
difference. In summary, our analysis will show that instead of splitting the trans-
port into advection and gravity segregation, it is natural to consider three different
contributions to the dynamics: irrotational advection, solenoidal advection, and
gravity segregation.

The analysis naturally leads to a family of new splitting methods that isolates
the rotational part of the velocity in a separate splitting step, thereby reducing its
negative impact on the time step and the overall simulation efficiency. The new
methods require an additional pressure solve with a different right-hand side to
compute the solenoidal velocity, but the associated cost is low for many types of
linear solvers since preprocessing, preconditioning, or factorizations of the coeffi-
cient matrix may be reused.

2. Discussion of dynamics

To keep the discussion as simple as possible, we consider incompressible flow of
two immiscible fluids with different densities. The mathematical model is stated
using a fractional flow formulation that separates the evolution into an elliptic
flow equation for pressure and fluid velocity and a transport equation with strong
hyperbolic characteristics for fluid saturations

∇ · ~v = q, ~v + λK
[
∇p− (λwρw + λnρn)~g

]
= 0(4)

φ
∂Sw
∂t

+∇fw(~v + λn(ρw − ρn)K~g) = qw.(5)

Here, p is the fluid pressure, ~v is the total Darcy velocity, S is the saturation of the
wetting phase, K and φ are the absolute permeability and porosity, respectively, ρα
are the phase densities of the wetting (w) and non-wetting (n) phase, λα denote
phase mobilities, and ~g is the acceleration of gravity. The total mobility, fractional
flow, and source terms are defined by λ = λw + λn, f = λw/λ, and q = qw + qn,
respectively. Throughout this paper, we use no-flow boundary conditions for each
of the equations in (4) and (5). In the following, we will assume that the flow
equation (4) can be solved (e.g., by a finite-volume method) to give a flux field
with one scalar value vij associated with each interface between two cells i and j.
If ~g is set to zero in (5), the transport equation has only positive characteristics
and can be discretized using a standard single-point upwind discretization

(6) Φ(Sn+1 − Sn) + ∆tV f(Sn+1) = q.

Here, Φ = diag(φi) where φi is the porosity in cell i, S is the vectors of volume-
average saturations per cell, f the vector of fractional flow values per cell, q the



4 K.-A. LIE, J.R. NATVIG, AND H.M. NILSEN

fluid sources per cell, and V is the so-called upwind flux matrix given by

(7) V ij =

{
min(vij , 0), i 6= j,∑
k max(vik, 0) i = j.

The structure of this matrix will be a key component in our discussion of the
dynamics of the system (4)–(5). To analyse its structure, we introduce the directed
graph formed by considering grid cells as vertices and the fluxes vij as directed
edges.

In general, the dynamics of the incompressible two-phase system is driven by
three different mechanisms. To see this, we first use the fundamental theorem of
vector calculus to introduce a Helmholtz decomposition of the total Darcy velocity;
that is, we write the velocity as a sum of an irrotational (curl-free) vector field
and a solenoidal (divergence-free) vector field, ~v = ~virr + ~vrot. In our model, the
irrotational and the solenoidal velocities satisfy the following pressure equations

∇ · ~virr = q, ~virr + λK∇pirr = 0(8)

∇ · ~vrot = 0, ~vrot + λK∇prot = λK(λwρw + λnρn)~g.(9)

We will later come back to how the two vector fields in the decomposition can be
computed efficiently.

Introducing the irrotational and the solenoidal velocities in the transport equa-
tion, we obtain the following equation

(10) φ∂tSw +∇
[
fw(S)~virr + fw(S)~vrot + fw(S)λn(S)(ρw − ρn)K~g

]
= qw,

from which we see that there are three different contributions to the flux: The first
term, fw(s)~virr, represents pure viscous forces driven by the gradient of a poten-
tial. If this is the only flux contribution, the transport equation (10) will have a
unidirectional flow property (or causality principle) which ensures that perturba-
tions travel along irrotational streamlines from fluid sources or inflow boundaries
to fluid sinks or outflow boundaries. If the fluxes are computed from (8) using a
monotone method, no streamlines will reenter a grid cell they have passed through
earlier. Likewise, the directed flux graph will be acyclic and can be flattened by a
topological sort. Using this reordering, the upwind flux matrix can be rearranged
to a lower triangular form by a symmetric permutation of the rows and columns
using Tarjan’s algorithm [10]. Hence, the nonlinear system (6) can be computed
using a highly efficient by nonlinear Gauss–Seidel approach, in which the solution
is computed cell-by-cell using e.g., Ridder’s method, see [27] for more details.

The second term, fw(S)~vrot, represents the gravity-induced advection, which has
a circular behavior similar to convection in heat conduction. When ~vrot is nonzero,
the total velocity will no longer be irrotational, which, in the worst case, means that
streamlines may reenter a cell they have passed through earlier and hence increase
the implementational complexity of a streamline method. Likewise, the directed
flux graph will generally not be acyclic and may contain cycles that contain cells that
have a circular dependence in (6). The cycles are easy to detect using a topological
sort of the reverse flux graph and once they are detected, the nonlinear system can
be rearranged into a block-triangular form with circularly dependent cells appearing
as matrix blocks on the diagonal. Also in this case, it may be advantageous to solve
(6) using a nonlinear Gauss–Seidel algorithm, but the efficiency of the approach will
will now depend on the size and the number of matrix blocks that must be solved
using a Newton–Raphson type method. The rotational (solenoidal) contribution
to the total velocity depends upon the saturation distribution, and the larger this
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saturation total velocity ~v irrotational ~virr rotational ~vrot

Figure 1. Buoyancy dominated flow in a homogeneous domain
with a light fluid injected into a heavy fluid from the upper-right
corner. The upper plots show the solution after one day and the
lower plots the solution after twenty days.

contribution is, the tighter the coupling will be between the flow and the transport
equation.

The third flux term in (10) represents gravity segregation that acts along one-
dimensional lines parallel to the gravity vector ~g. Along each such gravity line, the
characteristics will generally point in both directions corresponding to the lighter
fluid moving upwards and the heavier fluid moving downwards. In streamline and
other related methods, the gravity step is therefore typically accounted for in a
separate step [17, 16, 6, 3]. We will come back to such operator splittings in the
next section. First, however, we consider an example that illustrate the irrotational
and rotational parts of the dynamics.

Example 1. We consider the evolution of two fluids with density 100 and 1000
Kg/m3, linear relative permeability curves, and viscosity 1 cP for both fluids. The
domain is homogeneous with permeability 100 mD covering the unit square. In the
upper-right corner, a fluid source injects the lighter fluid at a rate of 0.01m3/day,
whereas fluid is produced at the same rate from a sink in the lower-left corner.
Initially, the saturation of the light fluid is zero in the whole domain. The injection
of fluid result in a flow that is driven by a linear combination of buoyancy forces
and a pressure gradient, but with a strong buoyancy dominance. Figure 1 shows the
saturation field and the Helmholtz decomposition of the total Darcy velocity. We
observe that the strength of the solenoidal component increases as more light fluid
enters the domain.

Let us now reverse the flow and inject the light fluid in the lower-left corner and
produce fluids from the upper-right corner. Moreover, to increase the influence of
gravity we reduce the injection rate to 0.001m3/day. Figure 2 shows the saturation
field, the total velocity, the solenoidal velocities, and the cells that are part of a cycle
in the directed graph and hence mutually dependent after twenty, one hundred, and
three hundred days. (The irrotational velocity is identical to the one shown in
Figure 1 and is therefore not plotted.) Here, the advective flow that is imposed
by the source-sink pair is so weak that the flow is almost fully segregated. A sharp
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saturation total velocity ~v rotational ~vrot cells in cycles

Figure 2. Buoyancy dominated flow in a homogeneous domain
with a light fluid injected into a heavy fluid from the lower-left
corner. The plots show the solution after twenty, one hundred,
and three hundred days (from top to bottom). In the left column,
cells involved in a cycle are colored red whereas cells that can be
computed independently in sequence are colored yellow.

interface forms between the fluids with a corresponding jump in density that yields a
strong solenoidal contribution to the total velocity field. As a result, we observe that
large irreducible blocks form when the light fluid accumulates at the top boundary.
After 100 days, 89 of 400 grid cells are connected in one irreducible diagonal block.
This will significantly reduce the efficiency of a nonlinear Gauss–Seidel method.
After 300 days, there are two irreducible blocks with 341 grid cells in one and 4 in
the other.

The purpose of the example above was to show the impact the rotational part
of the velocity field may have on the efficiency of streamline methods and single-
point upwind schemes using reorder techniques to accelerate computations. The
appearance of loops and spirals in the velocity field is inconvenient when tracing
streamlines, e.g., because one often ends up discarding such streamlines. This makes
the solution of transport along such streamlines in regions dominated by gravity
unappealing. Single-point upwind schemes accelerated with a nonlinear Gauss–
Seidel solver based upon optimal ordering is a promising technique to improve the
effectiveness and robustness of implicit transport schemes. However, like for the
streamline methods, the efficiency of this method is reduced when there are large
loops in the velocity field, for which all the corresponding unknowns in (6) must be
solved for simultaneously. In fact, since optimal ordering is based on a reduction
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of the flux matrix V in (6) to (block)-triangular form using a topological sorting
algorithm [27, 28, 10], the algorithm is sensitive to small reverse fluxes that are
caused by gravitational effects.

In the next section, we will use the insight developed above to set up efficient
operator-splitting methods for (4)–(5).

3. Operator-splitting methods

A common approach for solving (4)–(5) is to use a sequential splitting in which
one fixes the saturation in the pressure equation (4) and solves for the unknown
pressure and velocities/fluxes, which are subsequently held fixed when evolving the
saturations a time step ∆t according to (5). If necessary, the two steps can be re-
peated before the method moves on to the next time step. Many numerical methods
involve a further operator splitting of (5). The primary example is streamline sim-
ulation, which splits the equation into an advective and a gravity segregation part
[17, 16, 6, 3]

φ∂tS +∇ ·
(
fw(S)~v

)
= qw,(11)

φ∂tS +∇
[
fw(S)λn(S)(ρw − ρn)K~g

]
= 0,(12)

If we let Aadv and Aseg denote the corresponding operators, approximate solutions
of (5) can be constructed using the following operator splitting:

(13) S(t+ ∆t) ≈
[(
Aseg(∆t/n)

)n(Aadv(∆t/m)
)m]

S(t),

where m and n are two positive numbers (in most cases n ≤ m = 1).
To numerically approximate Aadv and Aseg, we note that each of these two equa-

tions (11) and (12) can be decomposed into a family of one-dimensional transport
equations along curves in three-dimensional space (streamlines and gravity lines,
respectively) given by

(14)
d~x

dτ
=
~v(~x)
φ(~x)

and
d~x

dr
=

~g

|~g|
.

The advection equation (11) has only positive characteristics (also for more com-
plex models with more than two phases and/or components) and can usually be
computed quite efficiently using Lagrangian coordinates: the single-point upwind
method, for instance, gives a nonlinear triangular system with only one nonzero
subdiagonal when applied along streamlines, or one can use a highly efficient and
unconditionally stable front-tracking method [18]. Using streamlines involves a
mapping from Eulerian to Lagrangian coordinates and back again, which may in-
troduce numerical dissipation and lack of mass conservation [21]. To guarantee
mass conservation, one may alternatively work directly in Eulerian coordinates and
exploit the causality of (11) to solve the standard single-point upwind method (6)
using a nonlinear, block-based Gauss–Seidel method, as discussed in the previous
section.

The segregation equation (12) has both positive and negative characteristics
along gravity lines and will in most cases also have a spatially discontinuous flux
function. In reservoir simulation, the standard approach is to use a so-called
mobility-weighted upwind flux approximation, in which the upwind direction is
determined independently for the two phase mobilities. This discretization is not
always correct for discontinuous K; fortunately, the correct Godunov method is
only slightly more complicated [26]. Alternatively, one can use an unconditionally
stable front-tracking method for problems with spatially discontinuous flux [15].
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In the previous section, we argued how the presence of rotational components in
the total velocity will reduce the efficiency of the nonlinear Gauss–Seidel method for
the advective part. Likewise, loops or spirals will complicate tracing of streamlines
as well as setting appropriate boundary conditions for the one-dimensional trans-
port equations along each streamline. To remedy these problems, and to accom-
modate that the gravity segregation and the irrotational and solenoidal advection
may occur on different time scales, we split the advection into two sub-equations

φ∂tS +∇ ·
(
fw(S)~virr

)
= qw,(15)

φ∂tS +∇ ·
(
fw(S)~vrot

)
= 0,(16)

If we let Airr and Arot denote the corresponding operators, approximate solutions
of (5) can be constructed using the following three-step operator splitting:

(17) S(t+ ∆t) ≈
[(
Aseg(∆t/n)

)n(Arot(∆t/m)
)m(Airr(∆t/`))`]S(t),

where m, n, and ` are three positive numbers. The main points of (17) are that:
(i) each subequation is solved using an optimal scheme with an optimal time step,
and (ii) the rotational part of the velocity is removed from the advective velocity
to enable the use of highly efficient schemes available for irrotational flows. There
are, of course, many other ways to sequence the operators to better preserve the
interaction of the three physical mechanisms. For instance, the order of Aseg and
Arot can be interchanged or the operators can be combined if one does not want to
exploit the one-dimensional structure of (12).

The operator splitting (17) assumes that the pressure equation is solved twice
with different right-hand sides (see (8) and (9)). Fortunately, this is not twice as
expensive as solving (4). First of all, we only have to generate the system matrix
once. Furthermore, any preconditioning or factorization of the system matrix may
be reused for the second pressure solve. It is also worth noting that the coupling
between the pressure equation and the saturation equation through saturation-
dependent mobilities can be quite severe in regions where the flow is dominated
by gravitational effects. In these regions, the velocity field changes as fast as the
saturation fronts move. By splitting the velocity field in an irrotational part and
a rotational part, we can quantify the degree with which the gravitational effects
induce tighter coupling in the operator splitting.

4. Numerical experiments

In this section, we will present numerical experiments that illustrate the use of
operator splitting, as well as the importance of understanding the dynamics of the
problem when applying operator splitting.

The emphasis of our first example is to illustrate how the timescales of the
different physical effects that contribute to the overall flow dynamics are affected
by heterogeneous and anisotropic permeability fields.

Example 2. We consider a vertical cross-section of a reservoir described by a
220 × 85 Cartesian grid with petrophysical parameters sampled from the first x-
z slice of Model 2 from the SPE 10 benchmark [? ]. Using this model, we will
show that the relative importance of different parts of the flow dynamics depend
on the heterogeneity of the permeability field in a manner that is hard to predict
by inspection. The reservoir is initially filled with a heavy fluid with density 1000
Kg/m3 into which a light fluid with density 100 Kg/m3 is injected at a constant rate
of one pore volume per 20 000 days from a source evenly distributed in the grid cells
at the left boundary. On purpose, the density difference is large and the injection
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Table 1. The maximal time step in hours for an explicit method
for different parts of the dynamics of the transport equations for
the two models of Example ??.

Model Time (years) Irrotational Rotational Segregation

isotropic 5 000 5.0 89 0.23
10 000 5.0 95 0.48

anisotropic 5 000 24 7 700 0.75
10 000 31 7 000 0.75

rate is small to exaggerate the effects of gravity. Reservoir fluids are produced by
a sink evenly distributed in the cells along the right boundary. The fluid mobilities
are specified using Corey-type relative permeabilities with exponent 2 and a viscosity
of 1 centi Poise for both fluids. For simplicity, we set gravity to 10 m/s2. For the
porosity, we use a lower cut-off value of 10−3.

We present two simulations: the first is isotropic and uses only the x-permeability
from the original model, whereas the second uses the original, anisotropic perme-
ability field from [? ]. Figure ?? shows the saturation field for the isotropic model
after 5 000 and 10 000 days, as well as a streamline plot of the total velocity field
and a plot of cells that belong to strongly connected components (or loops) in the
corresponding directed flux graph. We can see that the velocity field is quite irreg-
ular and that the local direction of flow changes with time. This is reflected in the
plot of loops in which the locations of the strongly coupled cells seem to follow the
saturation fronts. It is worth noting that for a loop to appear in the total velocity,
the strength (or timescale) of the irrotational advection and the solenoidal advection
must be of the same magnitude, locally. For high injection rates, however, we ex-
pect that the irrotational advection will have a shorter timescale than the solenoidal
advection for the domain as a whole. The timescales for the different parts of the
dynamics are reported in upper part of Table ??.

In Figure ??, we show the same simulation results for the anisotropic model.
In this case, the vertical permeability is significantly smaller than the horizontal
permeability; more than half of the cells have a large Kx-to-Kz anisotropy ratio
(in the range of 104), which presumably models shale layers. This is reflected in
a total velocity less affected by gravity, with fewer and smaller loops. In the lower
part of Table ??, we report the timescales of this simulation. We see that the
timescale of segregation is only slightly increased by the reduced vertical communi-
cation; this timescale is determined roughly by the density difference, fluid viscosity,
and the largest z-permeability. The timescale for the solenoidal advection, on the
other hand, is significantly increased because of the shale layers that dramatically
decreases the effective permeability along any closed streamline. As a consequence,
the number of loops in the total velocity field is reduced; it is unlikely that the local
timescales for irrotational advection and solenoidal advection are of the same mag-
nitude. However, we remark that in a three-dimensional model, where the pressure
gradient and velocity will decrease with distance from the wells, these timescales
will likely be of the same magnitude even in the presence of small z-permeability.

The emphasis of our next example is to demonstrate that the new gravity split-
ting we proposed in the previous section is applicable to realistic reservoir models
with complex, twisted, and deformed grid cells; sealing and partially sealing faults;
thin and eroded layers; barriers, etc.
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Figure 3. Constant rate injection in all layers of a vertical cross-
section with isotropic permeability. The plots show the saturation
of the injected fluid (top), streamlines of the total velocity (mid-
dle), and the strongly connected grid cells in red (bottom) at 5 000
days (left) and 10 000 days (right).

Figure 4. Constant rate injection in all layers of a vertical cross-
section with anisotropic permeability. The plots show the satu-
ration of the injected fluid (top), streamlines of the total velocity
(middle), and the strongly connected grid cells in red (bottom) at
5 000 days (left) and 10 000 days (right).

Example 3. The model in this example is based on a real-field model from off-
shore of Norway. We use the original geology and reservoir geometry, described
as a corner-point grid with approximately 44 000 active cells, but have modified the
fluids and wells. We have filled the original gas cap with oil to make the model more
suitable for an incompressible formulation. Initially, the reservoir is in near hydro-
static equilibrium with the original oil-water contact preserved. We inject water in
some of the original wells. Furthermore, we use Corey relative permeability curves
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Figure 5. Realistic reservoir model from offshore Norway. The
plot shows the saturation field after ten years of water injection,
computed using equally-spaced pressure steps of length 2.5 years.

Table 2. Estimated time step restrictions for each of the splitting
steps (15), (16), and (12) for the model shown in Figure 3.

Time (years) 0.25 0.5 0.75 1.0 1.25 2.5 5.0 7.5
Airr (days) 1 1 1 1 1 1 1 1
Arot (days) 46 79 82 85 87 120 200 213
Aseg (days) 6 6 6 6 6 6 6 6

with Corey exponent 4 and viscosities 0.318 cP and 1 cP for oil and water, respec-
tively. The density difference used is 174 kg. Figure 3 shows the water saturation
after ten years of injection.

Our first object of interest is the timescales associated with gravity segregation
and irrotational and rotational advection. Table 1 reports the maximum time step
fulfilling a CFL restrictions for the three substeps. We see that the irrotational
advection step has the most severe time-step restriction, whereas the maximal time
steps for the gravity segregation and rotational advection are one and two orders of
magnitude higher, respectively. The time restriction for the rotational step increases
with time, but seemed to stabilize around 200 days for longer times. The table also
shows that with a maximum time step of six days, an explicit method would be
feasible for the segregation step. Likewise, a value of one day for the advection
step is, at least in our opinion, close to acceptable for the (irrotational) advective
step. The model resolution is quite coarse, in particular near the wells, and a
further lateral refinement in the near-well regions would worsen the restriction on
the advective step, but not affect the gravity step significantly.

Next, we consider the possibility of accelerating implicit temporal discretizations
using a nonlinear Gauss–Seidel method. As a measure of the complexity of the
nonlinear problem, we report some statistics on the cycles that appear in the flux
graph, or more precisely, the number and size of the irreducible diagonal blocks
in the upwind flux matrix V from (7). The irreducible blocks are identified by
permuting V to a block-diagonal form using Tarjan’s algorithm [10]. Table 2 reports
the number of cycles, the number of cells in the largest cycle, and the total number
of cells involved in cycles observed for two different sizes of the pressure step. These
quantities give give a good picture of the difficulties of the nonlinear problem which
would ultimately limit the efficiency of implicit methods for long time steps. If the
flux is computed using a monotone two-point flux-approximation scheme, there are
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Table 3. Number of cycles (N), number of cells in the largest
cycle (max), and the total number of cells involved in cycles for
the model in Figure 3 for fluxes computed with a two-point method
with pressure steps ∆t equal 2.5 and 0.25 years.

∆t Time ~vrot ~v = ~virr + ~vrot
years years N max #cells N max #cells
2.5 2.5 26 37835 38133 18 188 410

5 27 38912 39390 10 178 356
7.5 13 39913 40820 15 186 404

0.25 0.25 9 31709 32489 34 443 728
1.0 8 36763 36920 22 202 594
2.0 9 37856 38002 19 195 563
2.25 9 38092 38246 20 193 570

Table 4. Number of cycles (N), number of cells in the largest
cycle (max), and the total number of cells involved in cycles for
the model in Figure 3 for fluxes computed with a mimetic method
with pressure step of 0.25 years.

Time ~virr ~vrot ~v = ~virr + ~vrot
years N max #cells N max #cells N max #cells
0.25 424 3314 9038 98 33451 35314 453 2245 8697
0.50 433 3268 9514 76 36277 37720 423 3274 10272

no cycles in the flux field corresponding to ~virr, whereas the total velocity has 400–
500 cells involved in cycles. The solenoidal velocity, on the other hand, has cycles
covering almost the complete domain.

In general, having as few cycles as possible is highly favorable when using a
streamline method or a reordering, nonlinear Gauss–Seidel method to accelerate
the advective step. So far, we have only considered a two-point scheme for solving
the pressure equation(s). It is well-known that this scheme is inconsistent and
hence ill-suited for rough geometries or strongly anisotropic permeability tensors.
If one, on the other hand, uses a convergent scheme, such a multipoint or mimetic
method, one will inevitably obtain flux field with cycles, even without gravity as for
~virr in (8). There seems to be a close relation between cycles in the velocity field
and monotonicity of the pressure, see e.g., Figure 7 in [23]. Unfortunately, there
exists no (convergent) monotone method with local stencil that guarantees monotone
pressure [20]. On the other hand, our experience is that non-convergent, monotone
methods guarantee loop-free velocity fields. In Table 3 we have report the same
statistics as in Table 2 for the flux computed by a mimetic scheme from (8). In
this case, the number of cycles produced by the mimetic scheme is approximately
the same as the the number of cycles introduced by the solenoidal contribution in
Table 2.

Based on the combined results reported in Tables 1 and 2, a good operator-
splitting approach would be to use (17), solving (15) implicitly to approximate Airr
and (16) explicitly to approximate Arot. In the following, we present a simplified
analysis that indicates that this observation may indeed be valid for many other
cases. We start by considering the segregation step, where the maximal time step
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allowed by the CFL condition is given by

(18) tseg ∼ ∆z/
(
Kz|~g|∆ρ

d

dS

[
λo(S)fw(S)

]
φ
)

Here ∆ρ is the difference in densities and Kz is the vertical permeability. The
solenoidal step depends upon the particular distribution of the fluid which decides
the gravity-driven contribution of the total velocity. A useful estimate of the fluid
distribution can be derived based upon the Dupuit approximation which is com-
monly used in vertical-equilibrium models [4, 25, 7]. Assuming that the light fluid
is confined to a thin layer of height h under a horizontal top surface of the aquifer
gives the following time step due to motion in the x direction,

(19) txrot ∼ ∆x/
(
Kx|~g|

∆ρ
µ

∂h

∂x
φ
)
,

where Kx is the lateral permeability (in the x-direction) and µ is the viscosity of the
light fluid. From the same equation we can find the maximal time step associated
with vertical flow

(20) tzrot ∼ ∆z/
(
Kx|~g|

∆ρ
2µ

∂2h2

∂2x
φ
)
.

The ratio between these two estimates is

(21) txrot/t
z
rot ∼ ∆x

∂2h2

∂2x
/
(

2∆z
∂h

∂x

)
∼ ∆xH

∆zL
.

Here, H denotes a typical vertical length scale while L denotes a horizontal length
scale. For most reservoir models, in which the number of grid cells used to resolve
the lateral variation is larger than the number of cells used in the vertical direction,
this ratio would be grater than one. We also notice that this ratio does not depend
on Kz. The ratio of the segregation step to the rotational step is

(22) tseg/t
x
rot ∼ Kx∆z

∂h

∂x
/
(
Kz∆x

d

dS

[
λofw

]
µ
)
∼ ∆zKxH

∆xKzL
.

If we assume that Kx/Kz ∼ 10, ∆x/∆z is in the range 50–100, and that H/L ∼ 100,
the ratio will be between 0.1 and 0.2. In Table 1 of Example 2, we observed that the
ratio is 0.1, or less, which suggests that the rotational velocity for many models can
be treated explicitly. When this is the case, the convection step will be relatively
inexpensive to compute compared to the advection and segregation steps. (A similar
scaling would be expected also in cases for which the Dupuit approximation is not
valid because the length scale of the lateral variation in most cases are longer than
the vertical scale of a reservoir.)

In the previous example, we considered a real model of a petroleum reservoir
having dynamics dominated by viscous forces (injection and production wells). In
the next example, we will consider another real-life example which is dominated by
gravity segregation.

Example 4. The Johansen formation is a deep saline aquifer in the North Sea
which is evaluated as a potential storage for CO2 in a future pilot project for CCS at
Mongstad, Norway. The model has been studied recently by several authors [13, 5],
and is available online (see Eigestad et al. [12]). We consider the sector model
’NPD5’ consisting of the lower three geological zones of Johansen, which covers an
area of approximately 50×50 km2. This model was used for simulations by Eigestad
et al. [13]; the left plot in Figure 4 shows a height-map of the sector model with an
injection well indicated.
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Figure 6. The Johansen model. The left plot shows a height
map of the top surface, whereas the right plot shows the CO2

distribution 500 years after the injection start.

Table 5. The maximal time step in years for an explicit method
for different parts of the dynamics of the transport equations for
the Johansen formation for the 3D model in (4)–(5) and the vertical
equilibrium (VE) model in (23)–(24).

Model Time Advection Rotation Segregation Parabolic

3D injection 0.1 10 0.04 —
post injection — 12 0.04 —

VE injection 1 201 8 6
post injection — 164 8 3

The simulation setup is as follows: 3.5 Mt of CO2 is injected yearly for 110
years, and we study the migration for a post-injection period of 390 years. We
use a fluid model similar to what was used in the previous study on Johansen [13].
The fluid properties are reference values for CO2 and brine taken at 300 bar. At
this pressure, the approximate viscosity and density of supercritical CO2 are 0.057
cP and 686.54 kg/m3, respectively, while for brine the viscosity and density are
0.30860 cP and 975.86 kg/m3. Residual trapping is accounted for by setting the
residual saturation of 0.2 for CO2 and 0.1 for brine. The right plot shows the CO2

distribution 500 years after the start of the injection.
The upper half of Table 4 reports representative maximal time steps for the (ir-

rotational) advection, the rotational advection, and the gravity segregation. During
the injection period, the dynamics of the problem is dominated by the interplay of
irrotational advection and gravity segregation, i.e., as in the upper plots of Figure 2
in Example 1. Because of the large density difference between the injected CO2

and the resident brine, the time constant is lower for the gravity segregation than
for the viscous (irrotational) advection. Still, the operator splittings (13) and (17)
are quite applicable, using either streamlines or a 3D finite-volume method with a
nonlinear Gauss-Seidel solver for the advective part.

When injection is terminated, the viscous advection disappears, leaving the ro-
tational advection and gravity segregation as the main effects. Because of the large
disparity in time constants, it does not make sense to apply an operator split-
ting. Instead, one can as a good approximation assume that the gravity segregation
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reaches vertical equilibrium instantaneously, as in the Dupuit approximation dis-
cussed above. This means that the flow of a layer of CO2 can be approximated in
terms of its thickness to obtain a 2D simulation model.

The vertical-equilibrium (VE) formulation for (4)–(5) can be written in a stan-
dard fractional flow formulation as a system of a pressure equation and a transport
equation as follows:

∇‖ · ~v = qtot, ~v = −λt
[
∇‖pt −

(
fvρco2 + [1− fv]ρw

)
~g‖ +

λw
λt
∇‖gc

]
(23)

∂s

∂t
+∇‖

(
fv(s, x)~v + fg(s, x)

[
~g‖ +∇‖ gc(s, x)

])
= q(x)(24)

Here, s is the ratio between the height of the CO2 column h and the total forma-
tion height H, pt is the pressure along the top surface, and subscripts ‖ and ⊥
denote parallel to and perpendicular to the top surface. Moreover, to illuminate the
similarity with the standard two-phase flow model, we introduce pseudo mobilities,
fractional flows, and ’capillary terms’ given by

(25)

λco2(s, x) =
∫ sH

0

kco2(1)Kx(z, x)dz, λw(s, x) =
∫ H

sH

kw(1)Kx(z, x)dz,

fv(s, x) =
λco2(s, x)

λco2(s, x) + λw(s, x)
, fg(s, x) = λw(s, x)fv(s, x),

gc(s, x) = s(ρco2 − ρw)g⊥.

As in (8) and (9), the pressure equation (23) can be decomposed into irrotational
and solenoidal subequations. Likewise, the flux terms in (24) can be separated into
viscous advection, rotational forces, gravity segregation, and a parabolic ’capillary’
term. The corresponding time constants are reported in the lower half of Table 4.

Comparing the upper and lower parts of Table 4 shows why vertical equilibrium
simulations may be attractive to increase (lateral) resolution while saving compu-
tational cost. Although this approach reduces the dimension of the model, impor-
tant information of the heterogeneities in the underlying 3D medium is preserved.
Indeed, in many cases the errors resulting from the VE assumption may be signif-
icantly smaller than the errors introduced by the overly coarse resolution needed to
make the 3D simulation model computationally tractable. A more thorough discus-
sion of VE simulations of the Johansen formation is given by Ligaarden and Nilsen
[24].

5. Concluding remarks

In this paper we have analysed the dynamics of a simple two-phase model and
shown that it is governed by three different physical mechanisms: (irrotational)
viscous advection, rotational (gravity-induced) advection, and gravity segregation.
All three mechanisms act along curves in three-dimensional space: rotational ad-
vection acts along closed curves whereas viscous advection and gravity segregation
act along curves that start and terminate at fluid sources/sinks or the boundary of
the domain.

Based on our analysis of the dynamics, we have devised a new splitting method
where we separate the rotation-free advective transport from the dynamics due
to gravity. With the proposed method, it may be possibility to improve gravity
splitting schemes that use methods fine-tuned for advective flow, such as streamline
methods or methods employing causality-based reordering. In our experiments, we
have shown that the proposed splitting isolates the dynamics associated with gravity
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in an efficient manner or can be used to analyse the utility of an operator splitting
method that seeks to utilize effective advection solvers.
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