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Abstract. Geological models are becoming increasingly large and detailed to account for
heterogeneous structures on different spatial scales. To obtain simulation models that are
computationally tractable, it is common to remove spatial detail from the geological descrip-
tion by upscaling. Pressure and transport equations are different in nature and generally
require different strategies for optimal upgridding. To optimize the accuracy of a transport
calculation, the coarsened grid should generally be constructed based on a posteriori error
estimates and adapt to the flow patterns predicted by the pressure equation. However, sharp
and rigorous estimates are generally hard to obtain, and herein we therefore consider vari-
ous ad-hoc methods for generating flow-adapted grids. Common for all, is that they start
by solving a single-phase flow problem once and then continue to form a coarsened grid by
agglomerating cells from an underlying fine-scale grid. We present several variations of the
original method. First, we discuss how to include a priori information in the coarsening
process, e.g., to adapt to special geological features or to obtain less irregular grids in regions
where flow-adaption is not crucial. Second, we discuss the use of bi-directional versus net
fluxes over the coarse blocks, and show how the latter gives systems that better represent
the causality in the flow equations, which can be exploited to develop very efficient nonlinear
solvers. Finally, we demonstrate how to improve simulation accuracy by dynamically adding
local resolution near strong saturation fronts.

1



2 VERA LOUISE HAUGE, KNUT–ANDREAS LIE, AND JOSTEIN R. NATVIG

1. Introduction

The main purpose of reservoir simulation is to provide predictions of the movement of
hydrocarbon phases and water that will help oil and gas companies make better decisions on
how to develop and produce their assets. The complexity of the workflows that lead to deci-
sions is ever increasing, and advances in reservoir characterization, production optimization,
and real-time reservoir management is leading to continued demand for faster and more ad-
vanced flow simulation tools. In particular, optimizing the recovery from mature and brown
field assets will require multi-fidelity simulators that have a lot of flexibility and scalability
to enable reservoir engineers to evaluate many (different) scenarios.

Coming up with a satisfactory solution is a challenging and daunting task and in this
paper, we will only address a small part of the problem: development of multi-fidelity trans-
port solvers to overcome the gap in resolution between geological and simulation models.
Geo-cellular models resulting from structural and petrophysical modelling typically contain
significantly more detail than what the reservoir engineer can afford if the simulation is to
fit in memory and finish within a reasonable time frame of what he/she feels is necessary to
capture the flow dynamics of a particular scenario with sufficient detail.

The traditional approach has been to use upgridding to create a new grid model with
reduced spatial resolution and upscaling to bring petrophysical properties from the high-
resolution geological description down to the new grid. A large number of different strategies
have been developed to minimise the errors introduced in this model-reduction process, see
e.g., [4, 6, 7, 10]. Upgridding and upscaling is generally a manual process and choosing
the ’right’ method and model resolution can be highly problem dependent and very time-
consuming. The problem becomes more complicated as changes are introduced in the reservoir
description to match observed (dynamical) data. Ideally, all changes should be made to the
fine-scale geological model. However, because the turnaround time of traditional up- and
downscaling processes is typically much larger than the man-hours allocated to the modelling
project, one ends up with incompatible models at different spatial resolutions.

Herein, we will consider a multiscale approach to geological modelling. This approach
differs from the traditional upgridding/upscaling approach in the sense that a fine-grid model
is present at all times. Then it is up to the multiscale simulator to (automatically) coarsen
the grid to reduce the number of degrees of freedom to a level that is sufficient to resolve
flow physics and satisfy requirements on computational costs. The first component in such
a simulator is a multiscale flow solver [9, 12, 13] that captures the fluid flow as a linear
combination of a set of numerically computed basis functions. As such, the multiscale flow
solver can be considered either as a robust upscaling method, or as a single-step upscaling-
downscaling method that delivers approximate fine-scale fluxes. The basis functions are
computed by solving localized flow problems, and the main distinction between different
multiscale method is how the local flow problems are constructed. The methods presented
in the following are developed to accompany a particular method [3], but all ideas presented
can readily be combined with any multiscale flow solver that produces conservative fluxes
on coarse, fine, and intermediate grids. Previous research [3] has shown that our particular
multiscale flow solver gives the best performance when the associated coarse grid follows
geological structures. For corner-point grids, this is typically achieved through a regular
partitioning in index space (using the underlying logical ijk numbering). Figure 1 gives a
visual illustration of a multiscale flow solver.
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Figure 1. Illustration of a multiscale flow solver applied to a model from the
SAIGUP study [17]. The coarse grid is generated as a regular partitioning of the
underlying fine grid. Localized flow problems are set up (here, between each pair
of blocks that share a common face) and then solved numerically. Finally, the basis
functions are used to construct a global flow solution.

The second component of a multiscale simulator is an efficient transport solver that uses
the flow field (pressure and total velocity) from the multiscale flow solver to evolve fluid
saturations and compositions. To this end, there are several alternatives, depending upon
which resolution one chooses to use. If the transport is to be computed on the same coarse
grid as used in the multiscale flow solver, the best choice is to use a standard implicit finite-
volume method with the coarse-scale fluxes computed by the multiscale solver. To solve
the transport without upscaling—using the fine-scale, approximate fluxes—the best choice is
probably a streamline method, e.g., as described in [1, 20], or one can use similar operator-
splitting techniques to develop highly-efficient finite-volume solvers [18, 19] that use flow
information to obtain an optimal ordering of the nonlinear discrete transport equations so
that these can be solved in a cell-by-cell or block-by-block fashion. This gives local control
over the (computationally expensive) nonlinear iterations and can significantly reduce the
computational cost compared with standard (implicit) finite-volume methods.

In many cases solving saturation equations on the coarse scale may be too inaccurate and
solving it on the fine grid may be too costly, and one would therefore look for a compromise
between accuracy and computational speed. The adaptive multiscale finite-volume method
of Lee et al. [16] and Zhou et al. [21] is one approach in this direction, in which three prolon-
gation operators with different computational complexity were used to construct a multiscale
transport solver. Alternatively, to optimize the accuracy of a transport calculation, the coars-
ened grid should generally adapt to the flow patterns predicted by the flow solver. Ideally,
the flow-adapted grid should be constructed using a posteriori error estimates. Obtaining
sharp and rigorous estimates are generally hard and good ad-hoc methods have been shown
to capture flow and transport in highly heterogeneous reservoirs with good accuracy [2, 8]. In
a flow-based method the grid is aligned to capture high-flow regions and (clearly) distinguish
between regions of high and low flow. By capturing these important characteristics of the
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flow, one is able to generate coarse grids with a high upscaling factor that still deliver good
accuracy.

In this paper, we will combine several of these ideas for speeding up the transport solves
in a multiscale simulator setting. That is, we will make a few algorithmic improvements for
the nonuniform coarsening method of Aarnes et al. [2] and borrow ideas from the reordering
methods of Natvig and Lie [18] and the adaptive multiscale method of Lee et al. [16] and
Zhou et al. [21].

2. Mathematical Model and Numerical Discretization

In general, multi-fidelity simulators need to cover a wide range of enhanced recovery pro-
cesses including biological, chemical, electrical, gas-based, thermal, and water-based methods.
However, in the following we will only consider the simplified setting of an incompressible,
immiscible two-phase flow, described by a set of flow equations for the global pressure p and
the total velocity ~v

(1) ∇ · ~v = hp, ~v = −Kλ(S)∇p,

and a transport equation for the saturation of one of the phases,

(2) φ
∂S

∂t
+ ~v · f(S) = hS .

These equations are defined over a singly-connected domain, represented by a grid that con-
sists of a set of grid cells ci, i = 1, . . . , n. No further assumptions are made on the geometry
and topology of the grid, apart from the requirement of an explicit mapping N (c) between
cell c and its nearest neighbours. Most of the ideas we present in the following will therefore
be applicable to any matching, unstructured, polyhedral grid. To keep the presentation as
simple as possible, our examples will, with two exceptions, focus on 2D Cartesian grids, taken
from individual layers of the widely used SPE 10 benchmark [5]. Likewise, as our interest
is primarily in the transport solver, we make no assumptions about the flow solver except
that it produces mass-conservative fluxes on each cell. In a multiscale setting, our primary
example of such a solver would be the multiscale mixed-finite method of Aarnes et al. [3]. In
the following, vij will denote the flux over fine-cell interface γij between cells ci and cj .

The remains of the paper will focus on transport solvers defined over a coarse grid that
is constructed by grouping sets of cells into blocks B`, ` = 1, . . . , N . The simplest way of
representing such a coarse grid is by a partition vector p with n elements, for which element
pi assumes the value ` if cell ci is member of block B`. Representing the coarse grid by a
partition vector gives us great flexibility in the shape of individual grid blocks and also opens
up for a simple (interactive) manual editing, if deemed necessary. Herein, however, we will
not use any manual editing to improve grid quality. More details of the grid generation will
be given from the next section and onward.

Having created a coarse grid, the next step is to construct a coarse-grid transport solver.
To this end, we assume that the saturations are constant over each grid block, i.e., S` =
|B`|−1

∫
B`
S(x) dx. Then, a conservative coarse-grid discretization is obtained by summing a
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standard single-point upwind discretization for all cells in a block:

(3) Sn+1
` = Sn` +

∆t∫
B`
φdx

∫
B`

hS(Sn+1) dx

− ∆t∫
B`
φdx

[
f(Sn+1

` )
∑

γij⊂∂B`

max(vij , 0)−
∑
k 6=`

(
f(Sn+1

k )
∑

γij⊂Γk`

min(vij , 0)
)]
.

Notice that if there is bi-directional flow across Γk` = ∂Bk∩B`, then the phase-flux across Γk`
is approximated using both S` and Sk. Thus, although (3) stems from a single-point upwind
scheme on the fine grid, we may obtain a two-sided upwind scheme on the coarse grid. Because
the method uses fluxes computed on a finer scale to correctly propagate information over the
faces of the coarse grid, it can be viewed as multiscale solver.

The observant reader will notice that the evaluation of the fractional flow function has been
moved outside the sum over fine-grid faces in (3). Ideally, the saturation should have been
reconstructed in the cells along the block faces Γk` to account for subscale variations in the
fractional flow. Whereas this is straightforward for an explicit scheme on rectangular blocks,
we are not aware of any good method to do so for implicit schemes on arbitrarily shaped
blocks. In the following, we will therefore only compute block-averaged saturations.

The multiscale transport solver in (3) has an upscaling counterpart, which only uses one-
way fluxes over each coarse interface. These net coarse-scale fluxes are derived by integrating
the fine-scale fluxes, giving the following scheme

(4) Sn+1
` = Sn` +

∆t∫
B`
φdx

[∫
B`

hS(Sn+1) dx−
∑
k 6=`

max
(
f(Sn+1

` )
∑

γij⊂Γk`

vij ,−f(Sn+1
k )

∑
γij⊂Γk`

vij

)]
.

Like the fine-scale discretization, this is a single-point upwind scheme, but now on the coarse
scale. Using net fluxes will simplify the coupling in the resulting nonlinear discrete system.
Notice also that the net fluxes used in (4) only coincide with the coarse-grid fluxes computed
by the multiscale flow solver when the two solvers are defined over the same coarse grid.

Based on (3) and (4), one can easily develop an adaptive scheme that uses net fluxes across
all grid faces where the flux is predominantly unidirectional and fine-scale fluxes across the
other faces.

3. Flow-Based Nonuniform Coarsening

We will use the nonuniform coarsening method by Aarnes et al. [2] as our starting point for
developing efficient transport solvers on flow-adapted coarse grids. This method partitions
the fine grid into coarse blocks according to flow magnitude by separating regions of high and
low flow.

The algorithm follows four steps:
(1) Compute an initial partitioning. To this end, we will use the logarithm of the flow as

our indicator function, g(ci) ∝ log |~v(ci)|, which is segmented into ten uniform bins:
ci ⊂ B̃` if g(ci) ∈ [g`, g`+1). Each bin B̃` may consist of a multiply connected set of
cells and must be postprocessed and split into singly-connected blocks.

(2) Merge small blocks. If a block B′ has too small volume, |B′| < NL
n |Ω|, it is merged with

the neighbouring block B that has the closest g-value defined as g(B)|B| =
∫
B g(c) dx.

(3) Refine blocks with too much flow. If
∫
B g(c) dx > NU

n

∫
Ω g(c) dx, then

(a) Pick an arbitrary cell c0 belonging to ∂B.
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Step 1: 304 blocks Step 2: 29 blocks Step 3: 47 blocks Step 4: 39 blocks

Figure 2. Illustration of Steps 1 to 4 for a quarter five-spot simulation of a 50× 50
excerpt from Layer 68 from Model 2 of the SPE 10 benchmark [5]. The coarsening
parameters are NL = 20 and NU = 100. In the rightmost plot, the colours represent
logarithm of the underlying fine-scale velocity field.

(b) Find the cell c1 ⊂ B that is furthest away from c0, using, e.g., the distance
between the cell centroids as a metric, and define B′ = c1.

(c) Progressively enlarge B′ by adding cells surrounding B′; that is, add c ⊂ N (B′)
if c 6⊂ B′, as long as

∫
B′ g(c) dx ≤ NU

n

∫
Ω g(c) dx.

(d) Define B = B \B′ and continue to refine B if the upper bounds are still violated.
(4) Repeat Step 2.

The four steps are illustrated in Figure 2. Two coarsening parameters determine the coars-
ening level: NL gives a lower bound on the volume of blocks and prevents the algorithm from
generating too small blocks, and NU gives an upper bound on total amount of flow through
each grid block and prevents the algorithm from generating too large blocks. In the original
algorithm, N (c) is defined as the face neighbours: that is, cells c and c̃ are neighbours if they
share a common face. For a Cartesian grid, this corresponds to the usual 5-point neighbour
relation, and gives rise to the characteristic diamond-shaped cells seen in the two rightmost
plots. To get blocks with a more regular shape, we will in the following use a 9-point neighbour
relation. We refer the reader to [11] for a more thorough discussion of neighbour relations in
coarsening algorithms.

4. Imposing A Priori Shapes

The algorithm presented in the previous section is fully automated in the sense that the de-
gree of coarsening is determined by two user-supplied parameters (NL and NU ) and the shape
of the blocks is determined by the neighbourhood definition, so that the algorithm creates
coarse grids with block boundaries that are aligned with distinct features in the permeability
field as reflected in the computed velocity field. For highly heterogeneous reservoirs, and in
particular for strongly channelized reservoirs, this results in grids that capture the dominating
flow patterns very accurately, even for high upscaling factors. This was demonstrated in [2],
for both structured and unstructured grids, and in particular for Model 2 from the 10th SPE
Comparative Solution Project [5], for which flow-based coarsening significantly reduces satu-
ration errors and errors in water cuts compared with a regular Cartesian coarsening for the
fluvial part of the model (the 50 layers of the Upper Ness formation). Moreover, Aarnes et al.
[2] demonstrated that the method is robust with respect to coarsening degree and varying
flow patterns, as long as the flow field is dominated by the underlying heterogeneity.



FLOW-BASED GRID COARSENING FOR TRANSPORT SIMULATIONS 7

Generally, the nonuniform coarsening algorithm is not as robust and efficient as it was
somewhat optimistically reported in [2]. On the upper layers of the SPE10 model (the some-
what smoother Tarbert formation), the flow-based grids do not give better accuracy than
a straightforward Cartesian coarsening. In fact, we have run numerous experiments with
varying coarsening factors for the SPE10 and other models that all indicate that Cartesian
coarsening predominantly gives slightly better accuracy in saturation fields and water cuts
than the flow-based grid for cases with small or moderate heterogeneity. Altogether, our
experiments suggest that the original algorithm, as presented in the previous section, has a
tendency of exaggerating the effect of the underlying velocity pattern and thus creates grids
that are more irregular than what is needed.

The flow-based grids typically have more irregular blocks with more neighbours and coarse-
block interfaces and this tends to increase the coupling in the discrete nonlinear system. The
number of couplings in the nonlinear system will typically affect how costly it is to solve,
and hence it is desirable to increase the regularity of the blocks if it does not significantly
affect their ability to resolve flow patterns; we will come back to this discussion in the next
section. In many cases, the user will have expert knowledge of what has the most influence
on accuracy and may want, e.g., to impose a priori information on the (local) shape of the
coarse blocks. Likewise, there can be other geological features that the user may want to
use to create grids that better adapt to the underlying geology. In the rest of this section,
we will demonstrate how to use such a priori information to create grids that give improved
accuracy.

First of all, we propose an additional step in the original algorithm that consists of inter-
secting the initial flow-based colouring of cells in the first step with an a priori partitioning.
This intersection will then be the basis for the rest of the steps, which remain unchanged
from the original algorithm. We point out that this additional step is applicable to any grid,
for which the user is able to specify an a priori partition vector pa. Second, to reduce the
influence of the underlying heterogeneity on the coarsening, we look at the initial colouring
of cells. Reducing the number of bins means that we increase the size of the blocks resulting
from the flow-based colouring, and hence to a large extent preserve the a priori partition. If
the sizes of the a priori blocks are within the bounds specified by the NL and NU parameters,
a large number of these blocks will be left intact by Steps 2–4.

To illustrate the effect of the extra step and the adaptive number of initial bins, we will
consider an example in which we seek to impose a regular Cartesian partitioning on the
flow-based gridding process.

Example 1 (Layer 1 of SPE10). The leftmost plot in Figure 3 shows the intersection of
a regular 6 × 22 Cartesian coarsening with the initial flow-based colouring. Altogether, this
generates a finer partitioning as the starting point of the merging and refinement steps. The
added interfaces are straight lines that will typically be preserved in low-flow regions, as seen by
comparing Grid 1 with the grid generated by the original algorithm. In the original algorithm
and for Grid 1, we have used 10 bins in the initial colouring. This amounts to approximately
one bin per order of magnitude in the underlying velocity field for the fluvial parts of the
SPE10 model. For the layers in the Tarbert formation, as considered here, the logarithmic
span in the velocities is significantly smaller. For Grid 2, we therefore have chosen the number
of initial bins equal to the logarithmic span in the underlying fine-scale velocity field. As a
result, more blocks from the a priori partitioning remain unchanged throughout Steps 2–4,
and the resulting grid has a much more regular structure than Grid 1. On the other hand,
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Initial intersection Grid 1 Grid 2 Original algorithm
178 blocks 154 blocks 188 blocks

852 interfaces 709 interfaces 930 interfaces

Figure 3. Nonuniformly coarsened grids for Layer 1 of Model 2 from SPE10. The
leftmost plot outlines the intersection of the initial partitioning, where red lines rep-
resent the a priori partitioning and black lines the partitioning into bins. Grid 1 is
generated with 10 initial bins and Grid 2 with the number of bins adapted to the flow,
and for both we used coarsening parameters NL=25, NU=125 and a uniform 6 × 22
a priori partitioning. The rightmost plot shows the grid generated by the original
algorithm with parameters NL = 15, NU = 75 and a 9-point neighbourhood relation.
All three grids are outlined on top of the logarithm of the fine-scale velocity field,
computed by solving a quarter five-spot problem.

for both Grid 1 and Grid 2, we observe that the high-flow channels are distinctly outlined and
corresponds to the ones detected by the original algorithm. In regions of low flow, we also
observe that the original grid has a much more complex grid structure, with a larger number
of neighbouring connections.

We have run a large number of different studies using the original and our improved algo-
rithm (a few quantitative results will be reported in the next section). Choosing the number
of bins according to the logarithm span in velocity (or possibly permeability) seems to be
a good choice. The other parameters, however, must be chosen with some care and possi-
bly be fine-tuned to give optimal results. For small and moderate heterogeneities, it seems
particularly important to balance the choice of the two partitioning mechanisms. Choosing
a coarse a priori partitioning and small partitioning parameters (NL, NU ), means that the
flow-based partitioning will dominate and any advantages from the a priori partitioning dis-
appears. Likewise, choosing a fine a priori partitioning and large values for NL and NU ,
implies that most cells are merged into large blocks in Step 2 and then refined in Step 3. The
resulting grid will hence have the characteristics of the original algorithm, and the effects of
the a priori partitioning disappears.

A priori information can also be used to distinguish different geological features that need
to be taken into account and/or preserved during the coarsening. In the next example,
we demonstrate how one can use facies numbers as the initial partitioning to ensure that the
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Facies distribution facies only facies and Cartesian partitioning

38 blocks 41 blocks

PEBI grid and wells facies only facies and METIS partitioning
39 blocks 40 blocks

Figure 4. Coarsening using a priori information of facies distribution. In the upper
row, the underling fine grid is a regular 50× 50 Cartesian grid. In the lower row, the
fine grid is a fully unstructured PEBI grid with 1697 cells.

coarse blocks do not cross facies boundaries. This can be very useful if the facies have different
relative permeabilities or capillary pressure curves. By making sure that each coarse block
consists of only one facies, one can avoid cumbersome upscaling of relative permeabilities and
capillary pressure functions to the coarse grid.

Example 2 (Facies model). We consider a rectangular domain with a facies distribution as
shown in the upper-left plot of Figure 4. The permeability distribution follows a lognormal
distribution inside each facies with mean values of 400, 20, 35, and 800 mD, respectively.
The permeability distribution is sampled on a regular 50 × 50 Cartesian grid. The reservoir
is produced by an injector-producer pair located near the upper-left and lower-right corners of
the domain, respectively; the wells are shown as red dots in the lower-left plot in Figure 4. For
illustration purposes, we generate two coarse grids: for the first one, we only use the facies
distribution as our a priori partition vector, and for the second one, we impose a regular
Cartesian partitioning, in addition, as discussed for Grid 2 in Example 1. The two grids are
shown in the middle and left plot in the upper row of Figure 4. From the plots, we clearly see
that the coarse blocks are confined inside a single facies. By additionally imposing an a priori
Cartesian partitioning, we increase the number of blocks, but also get more regularity in our
coarsening.

To demonstrate that our method is not restricted to Cartesian grids, we consider the same
facies and permeability distribution (re)sampled on the PEBI grid (unstructured Voronoi grid)
with 1697 cells shown in the lower-left plot of Figure 4. The middle and left plots in the lower
row of Figure 4 show two coarse grids by our algorithm. The difference in the two grids lie in
how we perform the refinement in Step 3 of the algorithm. In the middle plot, we have used
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the refinement method outlined above with the unstructured equivalent of the 9-point neighbour
definition. Also in this case, the blocks are clearly confined to a single facies, as desired.
However, because of the unstructured connections in the fine-scale grid, the coarse blocks are
significantly more irregular than in the Cartesian case. In the left plot, we have instead used
METIS to perform the refinement step, this in an attempt to improve the regularity of the
blocks.

Although the results presented in the previous example are encouraging for PEBI grids,
we believe that more research is needed to come up with a better algorithm for refining large
blocks in Step 3, particularly in 3D, in a way that imposes more regularity on the resulting
blocks. The same problem arises when generating coarse grids to be used in multiscale flow
solvers. Because of the complex connection pattern of the underlying unstructured grid, it is
generally difficult to come up with coarse blocks that do not have irregular boundaries. One
possibility would be to include a smoothing step, but this would need to be carefully designed
to distinguish between irregular faces caused by flow adaption and irregular faces induced by
the unstructured connections.

In the next example, we will study a realistic 3D model represented in the industry-standard
corner-point format, i.e., as a grid that consists of a set of hexahedral cells that are topo-
logically aligned in a Cartesian fashion so that the cells can be numbered using a logical ijk
index. From a coarsening perspective, the underlying ijk index is very useful and can e.g.,
be utilized to impose a regular a priori partitioning as in Example 1. Here, however, we will
use saturation regions as our a priori partitioning.

Example 3 (SAIGUP). We consider one of the faulted models from the SAIGUP study [17],
which we have already used in Figure 1 to illustrate the key steps of a multiscale flow solver.
The petrophysical parameters for the model were generated on a regular 40×120×20 Cartesian
grid and then mapped onto a structural model described using the corner-point grid formate.
The left plot in Figure 5 shows the structural model. The colors represent the six different
saturation regions (Eclipse keyword SATNUM), which may or may not correspond to different
facies or rock types. Because the main purpose of the example is to illustrate the gridding
capabilities on a model with realistic geometry and petrophysical properties, we use a simple
injector–producer pair (see Figure 1) and create a relatively coarse flow-based grid.

The coarse grid was created by imposing the six saturation regions as an a priori partition-
ing. Moreover, in Steps 2 and 4, we restricted the neighbourhood definition to only include
cells that were part of the same saturation region. As we see from Figure 5, the coarse blocks
have complicated shapes but seem to follow the saturation regions; this is particularly evident
in region six. The plot may be slightly deceiving with respect to the connection between blocks:
blocks that appear to be multiply connected are, in fact, singly connected through cells in deeper
layers that are not visible in the plot.

Another example of flow-based gridding on corner-point grids was presented by Krogstad
et al. [15], who used such grids to accelerate forward simulations in a production optimization
workflow. In the next section, we will give a more quantitative study of the gridding methods
introduced in the previous section when applied together with the multiscale transport solver
(3) and the coarse-scale solver (4).
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Figure 5. Flow-based coarsening of a model faulted SAIGUP model. The upper-
left plot shows the structural model. The upper-right plot shows the six saturation
regions. The lower plots show the coarse-grid blocks in saturation regions three and
six, respectively.

5. Multiscale versus Coarse-Scale Solver

First, we start by discussing the computational efficiency. Both discretizations, (3) and (4),
lead to a system of nonlinear equations that will typically be solved by a Newton–Raphson
type method. The computational efficiency of the nonlinear solver will to a large extent
depend on the structure and the condition number of the system. The best we can hope for,
is that the discrete system has an upper (or lower) triangular form, because then we can use
a nonlinear Gauss–Seidel solution procedure and compute the unknown block saturations by
backward (or forward) back-substitution. This is clearly possible for a 1D problem. Likewise,
in the absence of gravity and capillary forces, (2) has an inherent causality principle that is
utilized in streamline methods to transform the multi-dimensional transport equation into a
family of 1D problems along streamlines.

Natvig and Lie [18] recently demonstrated how this causality principle can be used to com-
pute an optimal flow-based ordering that renders the system in a block-triangular form. If
the flow solver is monotone, each diagonal matrix block will correspond to only one grid block
and the solution can be computed block-by-block, moving gradually downstream from wells
or other fluid sources. For non-monotone flow solvers, there will be some circulation in the
discrete fluxes, which will lead to larger matrix blocks that contain grid blocks that are circu-
larly dependent. Still, the system can be solved by an efficient block-wise back-substitution
procedure, in which the circularly dependent grid blocks (henceforth called connected com-
ponents) are solved for simultaneously. Furthermore, if the linearization is performed locally
on each matrix block, we gain local control over the nonlinear (Newton–Raphson) iterations
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Table 1. Comparison of the matrix structure on two layers of SPE10. For each
column, the first number refers to the multiscale solver (3) and the second number
refers to the coarse-scale solver (4).

Layer 1 Layer 37
Grid 2 Original Cartesian Grid 2 Original Cartesian

# grid blocks 154 154 188 188 220 220 169 169 205 205 220 220
# scalar components 1 127 0 138 75 220 1 65 0 100 16 208
# connected components 4 7 1 7 50 0 1 13 2 9 24 3
largest component 89 6 188 26 10 – 168 33 203 26 48 4
# off-diagonal elements 507 342 798 495 503 408 756 439 911 557 574 408

and thereby obtain highly efficient and (near) optimal nonlinear solvers [18, 19]. Finding the
connected components and the optimal ordering are standard and efficient O(N) operations
from graph theory that are easy to implement.

Rather than considering a specific nonlinear solver, we will in the following use the degree
to which the discrete system can be reordered into a triangular form as a measure of the
efficiency of the grid. Our idea is that if such a structure exists, any efficient nonlinear solver
should ideally be able to exploit it.

Example 4 (Layers 1 and 37 of SPE10). Continuing from Example 1, we consider a quarter
five-spot problem on two layers from the SPE10 model: Layer 1 from the Tarbert formation
and Layer 37 from the fluvial Upper Ness formation. For each layer, we will use three different
grids: a 10×22 Cartesian grid, a grid generated by the original algorithm from [2], and Grid 2
from Example 1 and its equivalent on Layer 37. Table 1 reports the corresponding number of
scalar components, number of connected components, number of blocks in the largest connected
component, and number of off-diagonal entries.

Let us first look in detail on a few of the grids. We start by the Cartesian grid for Layer 1.
Using bi-directional fluxes, there are 50 connected components that contain at most ten grid
blocks and 75 scalar components. If we instead use net fluxes, there are only scalar components
in the system, which can therefore be solved one grid block at the time. Next we consider Grid 2
on Layer 37. Figure 6 shows the concept of the matrix reordering for the case with net fluxes:
Out of the 169 blocks in the grid, 104 blocks have some circular dependence and are part
of thirteen connected components: two large, one intermediate, and ten small. The largest
component contains 33 blocks, in which the saturations must be computed simultaneously
by solving a 33 × 33 nonlinear system. Similar block systems must be solved for the other
twelve connected components. The remaining 65 scalar components are only connected to
their upwind neighbours and here the saturation can be computed by solving a scalar nonlinear
problem once the upwind neighours have been computed.

Overall, we see that the use of net fluxes, as in (4), rather than bi-directional fluxes across
the block interfaces, as in (3), reduces the number of off-diagonal elements, the number of
connected components, and the size of these components on all six grids and hence leads to
a nonlinear system that generally will be less expensive to solve. This conclusion should also
be true in the general case: replacing bi-directional fluxes with net fluxes will decrease the
number of couplings in the nonlinear discrete system and hence decrease the computational
cost.

Let us now briefly look at the accuracy of the two schemes, (3) and (4). In Figure 7, we
compare the corresponding coarse-scale saturations with the fine-scale reference saturation for
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Figure 6. Matrix structure of the flux vector for Grid 2 on Layer 37 with the
coarse-grid solver (4). The left plot shows the matrix with the ordering coming from
the coarsening algorithm, whereas the right plot shows the matrix structure after
we have performed a flow-based reordering. Altogether, 65 of the saturation values
depend only on their upwind neighbours, whereas the remaining 104 have some cir-
cular dependence and are part of one of the thirteen connected components. The
corresponding matrix blocks are marked in red: two large, one intermediate, and ten
small.
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Figure 7. Comparison of saturations at dimensionless time 0.8 PVI for the coarse
grid generated by the original algorithm on Layer 37.
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the original flow-based grid on Layer 37. In the visual norm, the coarse-grid solver appears to
resolve the saturation field more accurately than the multiscale solver: the solver exhibits less
numerical diffusion in low-flow regions and has been able to capture pockets of bypassed oil. We
believe that the difference in the two solvers can be explained as follows: the multiscale solver
effectively uses central differences and hence spreads small saturations induced by numerical
diffusion into large(er) areas. The coarse-scale solver is effectively an upwind solver and hence
has less coarse-scale numerical diffusion.

In a multiscale setting, the results above are interesting for the following reason. Krogstad
et al. [15] have previously demonstrated that the combination of a multiscale flow solver and a
flow-adapted grid can be very efficient if one can avoid communication through the underlying
fine grid and only store fine-scale fluxes at the coarse interfaces and use precomputed mappings
to move saturations from the transport grid to the multiscale flow solver. Replacing fine-scale
fluxes on each coarse-grid interface by net fluxes will decrease the communication need even
further and hence increase the efficiency of the overall solver.

In the next example, we will study the accuracy of the multiscale and the coarse-scale
solvers on the SPE10 model. To this end, we will need some notation. Let Sf and Sc denote
the saturation field computed on the fine and coarse grids, respectively, and let wf and wc
denote the respective water cuts. Moreover, we define R to be the restriction from the fine
to the coarse grid and P to be the prolongation from the coarse to the fine grid. Finally, we
define two different error norms

Es(q, p) =
1
T

∫ T

0

‖[q(·, t)− p(·, t)]φ(·)‖1
‖p(·, t)φ(·)‖1

dt, Ew(w1, w2) =
‖w1(·)− w2(·)‖2
‖w2(·)‖2

.

Example 5 (All layers of SPE10). For each layer of the SPE10 model, we conduct a quarter
five-spot simulation using a uniform 12× 22 Cartesian coarsening as well as the three coars-
ening choices discussed in Example 1. The Cartesian grid corresponds to an upscaling factor
of 50 and the parameters in the flow-based algorithm were hence chosen to produce a similar
(or slightly larger) upscaling factor. Table 2 shows a comparison of water-cut and saturation
errors, where the saturation errors have been split in three parts: error measured on the fine
grid, error measured on the coarse grid, and projection error. All simulations used 20 equally-
spaced pressure steps with 15 equally-spaced substeps in the transport solvers. To minimize
the errors introduced, the pressure updates were performed on the underlying fine-grid.

We start by considering the original multiscale transport solver (3) from [2]. Here, the
results in the upper part of the table clearly show that the water-cut and projection errors are
significantly reduced on the fluvial layers by using the flow-based coarsening methods, whereas
there is no significant change in the water-cut error and slightly larger projection errors on
the smooth Tarbert layers. On the other hand, comparing with the Cartesian grid, we see that
the coarse-scale evolution error is significantly increased on the Tarbert layers, and slightly
reduced on the fluvial layers. Finally, we notice that both Grid 1 and Grid 2 consistently
produce lower errors and fewer blocks and faces than the original coarsening algorithm.

Looking at the coarse-scale scheme (4), we see that this solver consistently gives lower
errors than the multiscale solver for all four grids, in particular for the water-cut error. As
discussed in Example 4, we think this can be attributed to a significantly lower coarse-scale
diffusion. Moreover, on the Tarbert layers, the errors for Grid 1 and Grid 2 are lower than
for the regular Cartesian grid.
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Table 2. Comparison of saturation and water-cut errors up to dimensionless time
T = 1.0 PVI for quarter five-spot simulations on the individual layers of the SPE10
model. The upper part of the table shows errors for the multiscale solver (3), the
middle part shows errors for the coarse-scale solver (4), and the lower part gives
statistics for the grids.

Tarbert formation Upper Ness formation
Grid 1 Grid 2 Original Cartesian Grid 1 Grid 2 Original Cartesian

Es(PRSf , Sf ) 0.0920 0.0941 0.1042 0.0911 0.1394 0.1371 0.1355 0.1772

Es(PSc, Sf ) 0.2071 0.1910 0.2426 0.1687 0.2180 0.2124 0.2243 0.2305
Es(Sc,RSf ) 0.1784 0.1599 0.2100 0.1381 0.1572 0.1522 0.1683 0.1604
Ew(wc, wf ) 0.0649 0.0695 0.0773 0.0701 0.0613 0.0609 0.0668 0.0982

Es(PSc, Sf ) 0.1591 0.1607 0.1875 0.1619 0.1827 0.1795 0.1862 0.2191
Es(Sc,RSf ) 0.1220 0.1237 0.1459 0.1302 0.1155 0.1135 0.1225 0.1486
Ew(wc, wf ) 0.0349 0.0473 0.0444 0.0647 0.0232 0.0237 0.0325 0.0844

# blocks: span 232–268 217–261 233–312 264 202–234 205–241 220–303 264
# blocks: mean 249 236 275 264 216 222 264 264
# faces: mean 1175 1069 1363 1090 1049 1070 1309 1090

Having presented the results in the previous example, we must concede that the results are
slightly volatile. Based on a large number of experiments using the multiscale transport solver,
we see that using a different upscaling factor can in many cases produce more favourable
results for the flow-based coarsening methods (on the Tarbert layers), but may also in certain
cases produce slightly worse results. The coarse-scale solver is more recent, and we have
not yet conducted an equally extensive study. Still, we believe that this solver will prove to
be more accurate because the single-point flux approximation generally has less coarse-scale
diffusion than the bi-directional flux.

6. Dynamically Adaptive Grid

For displacements with strong displacement fronts, the majority of the projection error,
which was briefly discussed in Example 5, is associated with inaccurate representation of the
fluid front. Think of a typical Buckley–Leverett profile: in the unswept area ahead of the
displacement front, the solution is constant and can be accurately represented on a relatively
coarse grid. Likewise, behind the displacement front, the solution is smooth and slowly varying
and can hence be evolved on a coarse grid. In the absence of capillary forces, or other second-
order terms in the transport equation (2), the displacement front is a discontinuity that needs
high grid resolution to be accurately approximated. Motivated by these observations, we will
in this section demonstrate how the simulation accuracy can be significantly improved by
dynamically adding local resolution near strong saturation fronts. Somewhat similar ideas
were used by Lee et al. [16] and Zhou et al. [21] in their adaptive multiscale finite-volume
method.

Because all grids considered herein are obtained by coarsening an underlying fine grid,
it is relatively straightforward to add local refinement by manipulating the partition vector
p, giving a local resolution that may be less or equal that of the fine grid. Moreover, this
refinement can be added or removed dynamically provided we have good indicators of when to
do so. Herein, we rely on the simplest approach possible, namely to compute each saturation
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step twice: once with a coarse resolution to estimate the movement of the front and once
(locally) with higher resolution to resolve the movement more accurately. After the first
step, we mark all blocks in which the saturation change from the previous time step exceeds
a prescribe tolerance. These blocks are then refined. Likewise, after the second saturation
step, we go through all refined blocks and mark those where the total fine-scale saturation
changes are below another prescribed tolerance. In each marked block, the saturations are
averaged back onto the original coarse block, and the refinement is removed by manipulating
the partition vector.

Example 6 (Layers 1 and 37 from SPE10). We revisit the two models studied in Example 4.
In the fluid model we use quadratic relative permeabilities with a viscosity of 1 cP for the
displacing fluid (water) and a viscosity of 0.2 cP for the displaced fluid (oil). This favourable
displacement ratio will lead to a sharp fronts, for which local refinement of the grid is needed
to avoid excessive numerical smearing when using a relatively coarse grid.

Figure 8 shows the solution at dimensionless time 0.5 PVI computed on a coarse grid
(Grid 2 from Figure 3), a coarse grid with local adaptive refinement, and on the original
60 × 220 Cartesian grid. For Layer 1, we notice the excessive smearing at the fluid front,
midway through the reservoir, but also that the coarse grid completely fails to capture the
pocket of bypassed oil. The adaptive grid, on the other hand, is in good correspondence with
the fine-scale reference solution. For Layer 37, most of the flow is confined to an intertwined
pattern of narrow high-flow channels. Outside these channels, the static grid has relatively
coarse blocks and once fluid enters these large low-flow blocks, the saturations get spread over
a large area, causing excessive numerical diffusion.

Figure 9 shows the corresponding errors as a function of time. The coarse-scale saturation
error is largest initially and decays toward water breakthrough; the qualitative behaviour of the
fine-scale error is almost identical and the corresponding curves are therefore not reported.
It may come as a surprise how well the static flow-based grid captures the water-cut curve
for Layer 1, given the large initial error, but this result is in correspondence with previous
observations [2, 15] both for Cartesian and corner-point models. The most interesting re-
sult, however, is how much both the coarse-scale and projection errors are reduced by adding
dynamical refinement.

The previous example used a simple refinement approach in which all blocks marked for
refinement were replaced with the underlying fine grid. We have also experimented with more
advanced options, like adding an intermediate resolution and using flow-based coarsening with
finer thresholds NL and NU in the refinement areas. Two examples of such grids are shown
in Figure 10, where we (for illustration purposes) have used a uniform Cartesian coarse grid
and added flow-based refinement dynamically along the sharp displacement fronts. Likewise,
one can relatively easily implement multilevel approaches. However, for the relatively simple
water-flooding scenarios we have considered, these ideas have so far not been worth the (slight)
increase in algorithmic complexity.

In the previous section, we briefly discussed the need for efficient communication between
a multiscale flow solver and a transport solver working on a flow-adapted grid. Introducing
local refinements would potentially reintroduce the need to communicate through the fine-
scale grid to dynamically provide fine-scale fluxes in refined blocks. However, it has previously
been demonstrated by Kippe et al. [14] that to accurately capture the dynamic changes in the
flow field, it is sufficient to update the multiscale basis functions only when a strong saturation
front passes through a coarse block. Basis functions will therefore typically be updated in
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Grid at first time step Grid at 0.5 PVI Grid 2 at 0.5 PVI Fine grid at 0.5 PVI

Grid at 0.1PVI Grid at 0.5 PVI Grid 2 at 0.5 PVI Fine grid at 0.5 PVI

Figure 8. Examples of locally adapted grids for Layer 1 (top row) and Layer 37
(bottom row) of the SPE10 model.

the regions where the transport grid is refined, and hence all the necessary fine-scale fluxes
will be available. After some time steps, the strong fronts will have left the region, the coarse
blocks have been reintroduced, and we can go back to use precomputed saturation mappings
and sparse representation of fine-scale fluxes. For adverse mobility ratios, weak saturation
fronts and smooth changes in the saturation implies that neither a dynamic refinement nor
dynamic updates of basis functions are necessary.

7. Concluding Remarks

In this paper, we have shown that flow-based coarsening is a versatile method to develop
efficient transport solvers that can be used in combination with multiscale flow solvers. In
particular, we have started with a method proposed by Aarnes et al. [2] and shown how the
partitioning computed by this method can be improved by including a priori information
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Figure 9. Water-cut curves and coarse-scale and projection errors as function of
time for Layers 1 and 37 of the SPE10 model.

Grid at 0.1PVI Grid at 0.5 PVI

Figure 10. Uniform Cartesian coarsening with adaptive flow-based refinement for
Layer 37 of SPE10. The figures show the dynamic grid at dimensionless time 0.1 and
0.5 PVI, respectively.
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about block shapes or geology. Moreover, we have shown that using net fluxes rather than
bi-directional fluxes over the coarse-block interfaces leads to both improved accuracy and
computational efficiency. Finally, we have demonstrated how dynamical adaptivity easily can
be included in the method to improve both the evolution and representation errors of strong
saturation fronts. To simplify the presentation, most of the examples have focused in the
widely-used SPE10 model. However, we have also included two examples that demonstrate
that the ideas also apply to corner-point and PEBI grids.
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