
On efficient implicit upwind schemes

Jostein R. Natvig Knut–Andreas Lie

June 30, 2008

Abstract

Although many advanced methods have been devised for the hyperbolic transport prob-
lems that arise in reservoir simulation, the most widely used method in commercial simu-
lators is still the implicit upwind scheme. The robustness, simplicity and stability of this
scheme makes it preferable to more sophisticated schemes for real reservoir models with
large variations in flow speed and porosity.

However, the efficiency of the implicit upwind scheme depends on the ability to solve
large systems of nonlinear equations effectively. To advance the solution one time-step,
a large nonlinear system needs to be solved. This is a highly non-trivial matter and con-
vergence is not guaranteed for any starting guess. This effectively imposes limitations on
the practical magnitude of time-steps as well as on the number of grid blocks that can be
handled.

In this paper, we present an idea that allows the implicit upwind scheme to become
highly efficient. Under mild assumptions, it is possible to compute a reordering of the
equations that renders the system of nonlinear equations lower (block) triangular. Thus, the
nonlinear system may be solved one (or a few) equations at a time, increasing the efficiency
of the implicit upwind scheme by orders of magnitude. Similar ideas can also be used for
high-order discontinuous Galerkin discretizations. To demonstrate the power of these ideas,
we show results and timings for incompressible and weakly compressible transport in real
reservoir models.



Introduction
Although decades of research have been focused on efficient and accurate methods for simulat-
ing fluid transport in petroleum reservoirs, the most widely used discretization in commercial
simulator codes is still the implicit first-order upwind scheme. This indicates that there is a
real need for robust schemes that need not be modified when faced with rough coefficients,
unstructured, twisted, and degenerate grid geometries characterizing modern reservoir models.

High performance of implicit finite-volume methods can only be achieved with efficient
solvers for systems of nonlinear equations. Here, we present a method to obtain unsurpassed
performance from a standard first-order implicit upwind scheme applied to advective flow, i.e.,
without gravity or capillary forces; these can be treated by operator splitting if necessary, see
(Gmelig Meyling, 1991). Our method is simple to explain. By rearranging the unknowns in the
nonlinear system to be aligned with the flow direction, we are able to obtain a nonlinear lower-
triangular (block) system that can be solved by one nonlinear Gauss–Seidel iteration. Hence the
computational cost per time-step is comparable to simple explicit schemes.

To appreciate the potential for such a speedup, recall that to advance the solution one time-
step with an implicit method, one needs to solve a large system of equations for the fluid com-
position in each grid block. Due to the non-convexity of the flow models, the cost of solving the
nonlinear system, e.g., with Newton–Raphson’s method, increases quickly with the magnitude
of the time-step or the number of grid blocks. Furthermore, for non-convex nonlinear systems,
the Newton–Raphson method is not guaranteed to converge. However, each local iteration in the
nonlinear Gauss–Seidel iteration is unconditionally stable because the convergence of the un-
derlying nonlinear equation solver is guaranteed. Therefore, the time-steps and model sizes that
are possible to use with the implicit upwind scheme will in practice be limited by the efficiency
of the nonlinear solver and not by the stability of the discretization.

We have previously demonstrated the power of this simple idea for both linear and nonlin-
ear problems: in (Natvig et al., 2007) we computed time-of-flight and stationary tracer flow,
whereas in (Natvig and Lie, 2008) we considered incompressible two-phase and three-phase
flow. The reordering idea is particularly powerful when applied together with an implicit high-
order discontinuous Galerkin scheme, for which the degrees of freedom of neighboring grid
blocks are coupled only by the upwind flux and thus can be rearranged to obtain a triangular
block system that can be solved efficiently using a Gauss–Seidel type method. In the following
we extend the reordering approach to compressible two-phase flow without gravity or capillary
forces. The same ideas should also in principle apply to more general compressible multiphase
flow models, as long as the models have only positive characteristics.

The outline of the paper is as follows. First, we give an overview of the mathematical mod-
els and briefly introduce the implicit upwind scheme. Then, we describe how the nonlinear
equations and unknowns arising in the finite-volume discretization may be rearranged to ob-
tain a triangular (block) structure. Finally, we present numerical examples to demonstrate the
efficiency and utility of our solution method.

Mathematical Model
Our model problem is incompressible or weakly compressible, immiscible, two-phase flow
driven by pressures forces alone. A reasonable mathematical model for this flow must have
all fluids flowing in a direction of decreasing pressure, i.e., that each phase velocity vi follows
Darcy’s law,

vi = −λiK∇p, (1)

where K is a positive-definite permeability tensor and the fluid pressure p is common for all
phases since we disregard capillary forces. The mobility λi is a positive (scalar) function that
models how the flow of phase i is altered by the presence of other phase. The conservation of
mass for phase i can be written in terms of the phase saturations u = (u1, u2) as

φ
∂ui

∂t
+∇ · (fiv) =

qi

ρi
− φ

∂p

∂t
(cr + ci)ui − fi(u)civ · ∇p, (2)

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



where cr = 1
φ

∂φ
∂p is the rock compressibility and ci = 1

ρi

∂ρi
∂p is the compressibility of phase i.

To obtain an equation for the fluid pressure, we introduce the total velocity v = v1 + v2 and add
the conservation equations for the two phases to obtain

φ(cr + u1c1 + u2c2)
∂p

∂t
+ (c1v1 + c2v2) · ∇p +∇ · v =

q1

ρ1
+

q2

ρ2
. (3)

To solve the system (1)–(3), we will use a sequential splitting where the pressure equation (3)
and transport equation (2) are solved sequentially, each by an implicit scheme. In the following,
we tacitly assume that a suitable numerical solution of (1) and (3) is available, given in the form
of compressibilities, pressure time-derivatives, and gradients that are constant in each grid block
and fluxes that are constant on grid block interfaces. Moreover, we drop the phase subscripts
from here on.

Discretization
To simplify notation, we introduce the shorthands a = (cr + ci)∂p

∂t and b = civ · ∇p and let
un denote the fluid composition at time tn. Assuming that un−1 is given, integrating (2) over
a control volume C and approximating the time derivative by a backward difference, we derive
the following nonlinear boundary-value problem for un

∫

C

( φ

∆t
(un − un−1) + φaun + f(un)b

)
dx +

∫

∂C
(f(un)v) · nds =

∫

C

q

ρ
dx. (4)

To get a finite-volume scheme, we partition the domain into grid blocks Ci and approximate u,
a, and b by piecewise constant functions with constant values in each grid block. Since we use a
piecewise constant approximation of u, the value of f(u) is not well-defined on ∂C. To obtain
a consistent discretization, we introduce the upwind numerical flux function. Given inner and
outer approximations u+ and u− of u and a normal velocity v · n that is positive when directed
outward, the upwind flux f̂ is given by

f̂(u+, u−) = v+f(u+) + v−f(u−), (5)

where v+ = max(v · n, 0) and v− = min(v · n, 0). If we let Γij = |∂Ci ∪ ∂Cj | denote the
interface area between grid blocks Ci and Cj , the upwind matrix V may be defined by

Vii =
∑

j

v+
ijΓij , Vij = v−ijΓij . (6)

The control volume equation (4) may then be written as

(I + ∆tA)Un + ∆tφ−1(B + V )F (Un) = ∆tφ−1Q + Un−1, (7)

where I , A, φ, and B are diagonal matrices and Un−1, Un, F (Un), and Q are column vectors
with one entry for each grid block in the domain. We write (7) compactly as G(Un) = 0 with

G(Un) = αUn + βF (Un)− γ, (8)

where γ is a vector, α is a diagonal matrix, and β is a sparse matrix. The vector-valued function
G is non-convex because F is a vector of non-convex functions. Therefore, the standard tool for
solving nonlinear systems, the Newton–Raphson method, is not guaranteed to converge when
applied to (8).

Assume for the moment that β is lower triangular. Then (8) can be written in the more
revealing form




α11

α22

. . .







Un
1

Un
2
...


 +




β11

β21 β22

. . .







f(Un
1 )

f(Un
2 )

...


 =




γ1

γ2
...


 . (9)

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



Hence, the solution can be computed with the nonlinear equivalent of a single Gauss–Seidel
iteration. In each step of this process, a single nonlinear equation is solved using, e.g., the
bisection method.

In reality, β only has triangular structure in special cases, such as the homogeneous quarter
five-spot on a Cartesian grid. However, as we will see in the next section, it is often possible, and
quite easy, to find a permutation matrix P that renders PβP T lower (block) triangular. There
are big advantages with permuting the equations to triangular structure. Because the bisection
method is guaranteed to converge to a solution if it exists, the nonlinear Gauss–Seidel method
is guaranteed to converge. This makes the implicit upwind scheme unconditionally stable. Sec-
ond, with modern root-finding schemes, the convergence rate obtained for each scalar nonlinear
equation is close to second order. Furthermore, solving one or a few nonlinear equations at a
time is more efficient because we get local control over the iteration. The number of iterations
needed for convergence may vary considerably over the domain. Using Newton–Raphson’s
method on the whole domain, we have no way to differentiate between ’hard’ and ’easy’ parts
of the domain. However, by decomposing the system (9) in a sequence of smaller systems,
we may control the number of iterations locally. In fact, we may even change other aspects of
the computation locally as well, such as the type of nonlinear solver or the order of the spatial
discretization.

Permutation to triangular system
To rearrange the equations and unknowns of (8) to obtain a triangular system of nonlinear equa-
tions, we seek a (symmetric) permutation P that renders PβP T lower triangular. This permu-
tation may be associated with a sequence p = P [1, . . . , n]T of grid blocks.

Since the characteristics of the transport equations (2) are all positive, and the upwind flux
approximation preserves this property in a discrete sense, we know that if there is a flux from
grid block Ci to grid block Cj , then locally, the solution Un

i in Ci depends on the solution Un
j

in Cj . Therefore, a necessary condition for PβP T to be lower triangular is that i appears before
j in p. However, a sufficient condition for a triangular structure to exist is that globally there are
no fluxes from Cj to Ci, either directly or through intermediate grid blocks.

To see how we find a suitable sequence p, we form a directed graph G(V, E), where each
vertex in V corresponds to a grid block and each directed edge in E corresponds to a positive
flux. In other words, if there is a positive flux v+

ij from Ci to Cj , then there is a directed edge
from vertex Vi to vertex Vj in G. Note that there is a one-to-one correspondence between G and
the flux field since the sparsity pattern of v+ is the adjacency graph of G.

In a directed graph, the task of aligning the vertices with the direction of the edges is called
a topological sort. This is a classic problem in graph theory, and a topologically sorted sequence
of nodes is straightforward to obtain as the post-ordering of the depth-first traversal of the re-
versed graph, where all the directed edges have been reversed. The post-ordering appends a
vertex i to p only when all vertices reachable from i have been added. In other words, grid block
Ci is added to the sequence only after all blocks that form the discrete domain of dependence of
Ci have been added.

However, a topological sort may not exist if there are cycles in G. A cycle (or strongly con-
nected component) is a collection of vertices where each vertex can be reached from any other
vertex. The solution to this problem is to collapse all vertices in strongly connected components
to a single super-vertex. The occurrence of cycles in G corresponds to irreducible matrix blocks
on the diagonal of PβP T . An efficient method to obtain both a topological sequence and the
strong components of G is Tarjan’s algorithm (Tarjan, 1972).

The parallel to systems of equations is immediate: If the directed graph G is acyclic, the
system of equations may be permuted to a lower triangular structure. If there are loops in G,
the system may only be permuted to a block-triangular system, where each irreducible diagonal
block corresponds to a strongly connected component.

Before we proceed, we remark that the idea of rearranging the rows and columns of a square

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



matrix to obtain a triangular matrix is well-known in the case of linear equations. If such a
permutation exists, the solution of the corresponding linear system is obtained by a simple
forward substitution. This method was published in the 70’s by Duff and Reid (1978). The
same idea has also been applied to nonlinear systems by Dennis et al. (1994), although not in the
context of fluid flow. Wang and Xu (1999) used somewhat similar ideas to compute convection-
dominated fluid dynamics. The closest work to ours, however, was done by Reed and Hill (1973)
who used a discontinuous Galerkin scheme to solve a neutron transport equation. In the context
of porous media flow we refer to Kwok (2007) for an overview of efficient implicit schemes for
fluid transport.

Numerical Examples
In this section we will compare three different solvers for the nonlinear boundary-value prob-
lems (8) arising in each time-step of the implicit upwind method. The first nonlinear solver
is a plain implementation of Newton–Raphson’s method with the direct sparse solver from the
UMFPACK library (Davis and Duff, 1997), which is generally considered a decent and very
robust solver. To get a robust scheme we use 0.5 as initial guess in all iterations, use a relaxation
factor of 0.9, and iterate until the nonlinear residual is less than 10−6 . We will call this solver
NR–UMFPACK in the following.

The performance of the Newton-Raphson method depends on the performance of the linear
solver. The second nonlinear solver is the Newton–Raphson method combined with Permuted
Forward Substitution (PFS). This linear solver is based on permuting the linear system to lower
(block-)triangular form and then using a very efficient forward (block) substitution. For each
scalar diagonal element, we compute the solution directly, while for each irreducible diagonal
block associated with strongly connected collections of grid blocks, we solve the corresponding
linear system using UMFPACK. We call this solver NR–PFS in the following.

The third nonlinear solver for (8) is, of course, the Nonlinear Permuted Forward Substitution
(NPFS) solver described above. Whereas PFS solves linear equations for each diagonal element
in the permuted linear system, NPFS uses nonlinear solvers. In the following examples, we
will use Ridder’s method (Press et al., 1992) for the scalar nonlinear equations and the NR–
UMFPACK method described above for strongly connected grid blocks.

For each nonlinear solver, we report elapsed CPU time per time-step and the average number
of iterations per block. Keep in mind that the NPFS solver will use a different number of
nonlinear iterations in each grid block. It may even use no iterations if the nonlinear residual
is already zero in a grid block. Therefore, the average number of iterations per grid block may
sometimes be less than one. In the timings, we exclude time used to calculate the grid-block
permutation. These times are reported as a separate number, since one permutation may be used
for many time-steps in a sequential splitting scheme.

For each simulation, the pressure is computed by a mimetic finite-difference method. For
compressible oil, we recompute the pressure and flux fields for each time-step, while for incom-
pressible oil, we do not recompute pressure between time-steps. Because the mimetic solver
resembles the mixed finite-element method, we cannot expect flux fields to be acyclic, as dis-
cussed in (Natvig and Lie, 2008). However, both the number of cycles and the magnitude of
the largest cycle are small, and cycles have little effect on the overall efficiency of the schemes
based on permutation of grid blocks.

Case 1: The first model is a simple quarter five-spot with unit permeability and porosity. The
flow is driven by two rate-controlled wells placed in the corners. We use a Cartesian grid with
100 × 100 × 1 grid blocks, each with dimensions 1 × 1 × 1m. We inject water at a rate of
100 cubic meters per day for 64 days. Both the medium and the water phase are considered
incompressible, while for the oil phase we consider two cases: (i) incompressible oil, and (ii)
compressible oil with compressibility given by Table 1. The mobilities are quadratic functions
of water saturation and the oil to water viscosity ratio is 1.0.

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



Table 1: Table of the formation-volume factor Bo [m3/Sm3] as a function of pressure p [bar].
p 27.5890 82.7371 137.8951 193.0532 248.2113 303.3693 358.5274 386.1064
Bo 1.012 1.0040 0.9960 0.9880 0.9802 0.9724 0.9646 0.9607

Table 2: Runtimes and average number of nonlinear iterations per block per time-step versus
the time-step ∆t for Case 1 with incompressible oil and compressible oil (bottom).

∆t NR–UMFPACK NR–PFS NPFS
days time (sec) iterations time (sec) iterations time (sec) iterations

2 1.34e-01 13.88 2.45e-02 13.88 2.48e-03 1.98
4 1.43e-01 14.69 2.54e-02 14.69 2.71e-03 2.27
8 1.48e-01 15.12 2.59e-02 15.12 3.06e-03 2.65

16 1.47e-01 15.00 2.53e-02 15.00 3.41e-03 3.17
32 1.48e-01 15.00 2.62e-02 15.00 3.97e-03 3.84

2 1.34e-01 13.84 2.42e-02 13.84 2.49e-03 1.98
4 1.43e-01 14.56 2.52e-02 14.56 2.71e-03 2.27
8 1.46e-01 14.88 2.58e-02 14.88 3.04e-03 2.65

16 1.42e-01 14.50 2.51e-02 14.50 3.46e-03 3.18
32 1.39e-01 14.00 2.44e-02 14.00 3.98e-03 3.81

Table 2 reports the elapsed CPU time per time-step for different choices of the time-step.
We first observe that NR–PFS is almost an order of magnitude faster than NR–UMFPACK. The
better performance of NR–PFS is directly attributed to the efficiency of the PFS linear solver.
Secondly, we observe that NPFS is an order of magnitude faster than NR–PFS. This difference
can to a large extent be attributed to the iteration count. As pointed out above, NPFS has the
ability to vary the number of iterations used from on grid block to the next. It will even use
no iterations in grid blocks where the nonlinear residual is zero, as e.g., will be the case in the
unswept zone, where the saturation is identically zero. Similarly, in some blocks volume errors
coming from the sequential splitting may cause saturations to be outside [0, 1]. NPFS detects
this and sets the saturation to either 0 or 1 without any iteration. The Newton–Raphson method,
on the other hand, is bound to use the same number of iterations in all grid blocks. The time
used to compute the permutation P was 8.0× 10−4 seconds.

Case 2: The second model is a synthetic faulted reservoir with 72 720 active blocks, with a
layered and log-normally distributed permeability field with a ratio of maximum to minimum
permeability of 5.3 × 103, see Figure 1. We have placed four pressure-controlled wells in
this model, two injection wells, I1 and I2, both with bottom-hole pressure 500 bar, and two

Figure 1: Saturation profile after 1 600 days for the synthetic faulted reservoir model with layered log-
normal permeability field, two injection wells, I1 and I2, and two production wells, P1 and P2.

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



Table 3: Runtimes and average number of nonlinear iterations per block per time-step versus
the time-step ∆t for waterflood simulations of Case 2 with incompressible oil (top) and com-
pressible oil (bottom).

∆t NR–UMFPACK NR–PFS NPFS
days time (sec) iterations time (sec) iterations time (sec) iterations
100 6.66e+01 14.38 1.25e+01 14.38 4.35e-02 2.00
200 6.38e+01 14.62 1.27e+01 14.62 4.58e-02 2.33
400 5.76e+01 14.75 1.28e+01 14.75 5.42e-02 2.79
800 5.02e+01 14.50 9.96e+00 11.50 6.22e-02 3.26
100 7.27e+01 13.81 1.18e+01 13.81 6.55e-02 1.84
200 6.54e+01 14.50 1.24e+01 14.50 6.62e-02 2.15
400 6.68e+01 14.25 1.22e+01 14.25 7.21e-02 2.66
800 5.63e+01 14.50 1.24e+01 14.50 9.15e-02 3.24

Figure 2: Water saturation in the Johansen formation from the North Sea after 100 000 days of water
injection.

production wells, P1 and P2, with bottom-hole pressure 250 and 300 bar, respectively.
For this case, the nonlinear system (8) will not be in (block) triangular form. Furthermore,

due to the heterogeneity of the model, we cannot expect the flux fields to be acyclic. How-
ever, in the computations reported below, the number of strongly connected components was on
average 20, the number of grid blocks in strongly connected components was altogether 942,
and the largest component involved contained 823 grid blocks. The time used to compute the
permutation P was 1.1× 10−2 seconds.

Table 3 reports the elapsed CPU time per time-step for a simulation of 1600 days of water
flooding a reservoir initially filled with incompressible oil. Again, there is an order of magnitude
difference in runtimes both between NR–UMFPACK and NR–PFS and between NR–PFS and
NPFS. Table 3 also reports the elapsed CPU times when the oil is assumed compressible oil. As
we see, the runtimes do not change significantly for weakly compressible fluids.

Case 3: The third model is a geological model of a North Sea sandstone formation, with one
large fault and several smaller ones, see Figure 2. The permeability and porosity fields are quite
smooth with jumps between the layers. The ratio of largest to smallest permeability is 8.8×104.
The grid, however, is quite rough with 27 437 blocks, many of which are twisted and pinched.
The ratio of largest to smallest grid block is roughly 4× 103 and the ratio of largest to smallest
face areas is 106.

The model was originally used to study the feasibility of CO2 deposition, but here we pre-

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



Table 4: Runtimes and average number of nonlinear iterations per block per time-step versus
the time-step ∆t for waterflood simulations of the Johansen formation from the North Sea with
incompressible oil (top) and compressible oil (bottom).

∆t NR–UMFPACK NR–PFS NPFS
days(!) time (sec) iterations time (sec) iterations time (sec) iterations
12 500 2.26e+00 12.69 3.28e-01 12.69 4.44e-02 0.93
25 000 2.35e+00 12.62 3.32e-01 12.62 4.73e-02 1.10
50 000 2.38e+00 13.25 3.46e-01 13.25 4.16e-02 1.41

100 000 2.50e+00 13.50 3.49e-01 13.50 4.21e-02 1.99
12 500 2.19e+00 12.69 3.91e-01 12.69 5.82e-02 1.33
25 000 2.02e+00 12.75 3.86e-01 12.75 6.07e-02 1.48
50 000 2.09e+00 13.25 3.90e-01 13.25 6.16e-02 1.79

100 000 2.20e+00 14.00 4.11e-01 14.00 6.39e-02 2.38

Figure 3: Number of iterations for each block in the Johansen model for a typical time-step.

tend that it is a petroleum reservoir. The reservoir covers roughly 50 × 50 kilometers and 1
kilometer in the vertical direction and the volumes and time scales involved are, of course, to-
tally unrealistic, but the heterogeneity and geometrical complexity are representative for a real
reservoir. In the model, we place one producer in the center near the large fault, and three in-
jectors in different sectors. All wells are vertical, pressure-controlled wells with bottom-hole
pressures of 300 bar in the producer and 700 bar in the injectors.

We observe that the number of strongly connected components in the flux fields was on
average 77.4, the number of grid blocks in strongly connected components was around 780,
and the largest component involved contained 380 grid blocks. The time used to compute the
permutation P was 3.6× 10−3 seconds.

Table 4 confirms the trends seen in the two previous cases that NPFS is about one order of
magnitude faster than NR–PFS, which again is about one order of magnitude faster than NR–
UMFPACK. We also note the low iteration count for NPFS. To support the explanation given
in Case 1, Figure 3 shows the number of iterations in each grid block for a typical time-step
after the injection fronts have extended into the reservoir. The figure shows that no iterations are
performed in the unswept zone and that the maximum number of iterations appears in the well
blocks and in regions behind the injection fronts.

Concluding Remarks
We have shown that the solution of purely advective flow can be made orders of magnitude
faster by utilising the flow directions of the flux field (as is done in a streamline method) to

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



rearrange the discrete equations into a lower (block) triangular form that can be solved very effi-
ciently using a single nonlinear Gauss–Seidel iteration. We have previously shown (Natvig and
Lie, 2008) that this idea may be used to develop implicit methods that scale linearly with model
size. Herein, the focus has been on extending the methodology to compressible flow and on
investigating the robustness versus that of a standard Newton–Raphson method. Although the
results show that the method is highly efficient, one may object that gravity and capillary forces
cannot be included directly in the method, as this would violate the underlying assumption of
unidirectional flow. However, gravity and capillary forces can easily be treated using opera-
tor splitting, as has been done successfully with streamline methods for the last 10–20 years.
Moreover, the ideas presented here can readily be extended to more complex flow models and
higher-order spatial discretizations, as demonstrated in (Natvig and Lie, 2008). In summary,
we find the results very promising and believe that the method has a significant potential for
practical applications.

Acknowledgements: The research was funded by the Research Council of Norway through grant no.
186935/I30. We thank B. Skaflestad and H.M. Nilsen for useful discussions and help with developing
the pressure solver used in all the experiments.

References
Davis, T.A. and Duff, I.S. [1997] UMFPACK: An unsymmetric-pattern multifrontal method for

sparse LU factorization. SIAM J. Matrix Anal. Appl., 18(1), 140–158.

Dennis, Jr., J.E., Martı́nez, J.M., and Zhang, X. [1994] Triangular decomposition methods for
solving reducible nonlinear systems of equations. SIAM J. Optim., 4(2), 358–382.

Duff, I.S. and Reid, J.K. [1978] An implementation of Tarjan’s algorithm for the block triangu-
larization of a matrix. ACM Trans. Math. Software, 4(2), 137–147.

Gmelig Meyling, R.H.J. [1991] Numerical methods for solving the nonlinear hyperbolic equa-
tions of porous media flow. In: Third International Conference on Hyperbolic Problems, Vol.
I, II (Uppsala, 1990). Studentlitteratur, Lund, 503–517.

Kwok, F. [2007] Scalable linear and nonlinear algorithms for multiphase flow in porous media.

Natvig, J.R. and Lie, K.A. [2008] Fast computation of multiphase flow in porous medis by
implicit discontinuous Galerkin schemes with optimal ordering of elements. J. Comput. Phys.

Natvig, J.R., Lie, K.A., Eikemo, B., and Berre, I. [2007] A discontinuous Galerkin method for
computing single-phase flow in porous media. Adv. Water Resour., 30(12), 2424–2438.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. [1992] Numerical recipes in
C. Cambridge University Press, Cambridge, second edition. The art of scientific computing.

Reed, W.H. and Hill, T.R. [1973] Triangular mesh methods for the neutron transport equation.
(LA-UR-73-479).

Tarjan, R. [1972] Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2), 146–
160.

Wang, F. and Xu, J. [1999] A crosswind block iterative method for convection-dominated prob-
lems. SIAM J. Sci. Comput., 21(2), 620–645.

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008


