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Abstract

First, we present an efficient method for integrating dynamic data in high-resolution
subsurface models. The method consists of two key technologies: (i) a very fast multiscale-
streamline flow simulator, and (ii) a fast and robust ’generalized travel-time inversion’
method. The travel-time inversion is based on sensitivities computed analytically along
streamlines using only one forward simulation. The sensitivities are also used to selec-
tively reduce the updating of basis functions in the multiscale mixed finite-element pressure
solver. Second, we discuss extensions of the methodology to grids with large differences in
cell sizes and unstructured connections. To this end, we suggest to use rescaled sensitivities
(average cell volume multiplied by local sensitivity density) in the inversion and propose
a generalized smoothing operator for the regularization to impose smooth modification on
reservoir parameters. Two numerical examples demonstrate that this reduces undesired
grid effects. Finally, we show a slightly more complex example with two faults and infill
drilling.



Introduction
History matching refers to the process of modifying a reservoir description to match measured
dynamic reservoir responses. Typical examples of this process may be described by a loop
consisting of four elements and a conditional: (i) start with a grid description of the reservoir
and its media properties, (ii) perform a flow simulation using the forward reservoir model to
obtain dynamic flow responses, and (iii) evaluate the misfit between the calculated and observed
responses. If this misfit is sufficiently small, the loop terminates. If not, one inverts the dynamic
data to a new set of media properties and returns to the first step.

Although the principles of history matching are easy to describe, it is nontrivial to find a
good practical algorithmic realisation. First of all, the inverse problem associated with the data
matching is generally ill-posed and does not have a unique (and stable solution). The forward
model is nonlinear and may be biased, and it is often difficult to describe and quantify errors in
the flow model, the data, and the numerical methods. Second, one has to choose a suitable subset
of the parameters that makes it possible to match the observed data without overestimating.
Most formulations lead to (highly) non-convex and oscillatory misfit functionals, and finally,
the forward simulations are computationally demanding. In this paper, we present two key ideas
that address the last two problems for the particular case where permeability data are matched
based on observation of water-cut data.

The generalized travel-time (GTT) inversion method was introduced by Vasco et al. (1999)
and He et al. (2002) and has been successfully applied to several field cases, see e.g., Qassab
et al. (2003) and Hohl et al. (2006). By matching travel time rather than amplitudes, the mis-
fit functional exhibits quasilinear properties (Cheng et al., 2005b) and can be attacked using
a standard iterative least-squares minimization algorithm by adding appropriate regularization
terms that help preserve geologic realism, keep changes to prior model minimal, and only allow
smooth large-scale changes. Although the inversion method itself does not require a streamline
simulator (Cheng et al., 2005a), it is most efficient if the required production-response sensitiv-
ities are approximated by analytical integrals streamlines and a streamline simulator is used for
the forward simulation. In this paper, we discuss how the GTT methodology and the calculation
of sensitivities can be extended to (corner-point) grids with large differences in cell sizes and
unstructured grids.

To address the last question, we have previously shown (Stenerud et al., 2008, 2007a) how
the GTT inversion can be combined with a multiscale-streamline solver to provide highly ef-
ficient computations of the forward model. In particular, we have shown how the sensitivities
from the inversion method can be used to reduce the computational work of the multiscale flow
solver in regions of low sensitivity, thereby reducing the simulation time considerably with neg-
ligible loss in accuracy compared with a conventional reservoir simulator.

Flow Model and Numerical Methods
We consider incompressible, immiscible two-phase flow of oil and water and will for simplic-
ity neglect gravity, compressibility, and capillary forces. For simplicity, we assume constant
porosity φ ≡ 1 and focus only on history matching the absolute permeability K(x), which is
assumed to be a diagonal tensor. The forward model consists of a first-order elliptic system for
the pressure p and Darcy velocity ~v,

∇ · ~v = qt, ~v = −λt(S)K∇p, (1)

and a hyperbolic transport equation for the water saturation, ∂tS +∇·(fw(S)~v) = qw. By mak-
ing a coordinate transform, this equation can be cast into a family of one-dimensional equations
along streamlines using the time-of-flight, τ =

∫
φ(r)/|~v(r)|dr, as a spatial coordinate.

To solve the pressure equation (1), we will use a finite-volume method (two-point or a
mimetic method (Aarnes et al., 2008)) or the multiscale mixed finite element method (Aarnes
et al., 2004, 2008). The multiscale method solves the flow equations on a coarser grid using
coarse-grid basis functions that incorporate subgrid velocity (or flux) variations from the original
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fine grid. These basis functions are constructed numerically by solving a local flow problem,
as in a flow-based upscaling method, but unlike an upscaling method, we keep the whole local
flow solution as a building block for the global solution and not just the average in the form
of an upscaled permeability or transmissibility. By using the subgrid resolution of the basis
functions, we obtain an approximate solution on the fine grid at the cost of solving a global
problem on the coarsened grid. The blocks in the coarse grid can be formed by accumulating
almost arbitrary connected collections of cells from the fine grid, meaning that the coarse grid
can easily be adapted to follow geological features and well paths. Previous studies (Aarnes
et al., 2008; Kippe et al., 2008) show that the multiscale method is very robust with respect to
the shape of the coarse blocks.

Solving local flow problems is typically the most expensive step in a multiscale method.
All basis functions must be constructed initially and will generally be time-dependent through
λ(S). The total mobility, however, is a relatively smooth and slowly varying function away
from strong saturation fronts, meaning that the basis functions need only to be recomputed
infrequently. Reuse of basis functions is the key to high efficiency of multiscale methods com-
pared with e.g., a domain-decomposition or a multigrid approach for solving the global flow
problem directly on the fine grid. In a history-matching setting, where one performs multiple
flow simulations on models that differ only a little, one can in addition reuse basis functions
from the previous forward simulation. This means that the multiscale flow solver will be effi-
cient when used in history matching. Herein we will use sensitivities from the inversion method
to determine areas that have little effect on the production responses and in which the basis
functions therefore need not be updated. If multiple realizations are simulated in parallel, one
may use a common, extended set of basis functions that spans out the stochastic variability, see
(Aarnes and Efendiev, 2007).

Generalized Travel-Time Inversion
Generalized travel-time (GTT) inversion can be used to match several types of data, but in
the following we will only consider matching permeability based on observation of water-cut
data in the production wells. To measure the misfit in water cut, we start from a standard
least-squares functional that for each well sums the squared deviance between the calculated
response ycalc(tj) and the observed response yobs(tj) at each data point tj , possibly weighted
by a scalar that measures our trust in each observation. The usual approach is now to try to
match the amplitude of ycalc to the observation yobs at every data point. The GTT approach, on
the other hand, assumes that the amplitude is (almost) correct, but that the time it is observed is
wrong. We therefore seek a time-shift ∆t in the calculated responses that minimize the sum of
the squared deviance between yobs(·) and ycalc(· − ∆t). However, rather than using the least-
squares functionals to determine the optimal time shifts for each well, we use the coefficient of
determination

R2(∆t) = 1−
∑

j(y
obs(tj + ∆t)− ycalc(tj))

2

∑
j(yobs(tj)− yobs)2

(2)

Once the time-shifts are determined, we need to invert them into modifications of the per-
meabilities. The inversion is formulated as the minimization of a regularized functional

arg min
δK

‖∆t−GδK‖+ β1‖δK‖+ β2‖L δK‖. (3)

Here, the first term is the misfit and G = {∂∆tj
∂Ki

} the sensitivity matrix and δK is the perme-
ability perturbation. The next two terms are regularisation terms: ‖δK‖ seeks to minimise the
permeability modifications, and ‖L δK‖ seeks to keep modifications as smooth as possible by
introducing the smoothing operator L that measures the local roughness of δK. To minimize
(3) one can use a standard iterative least-square algorithm.
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The GTT method, as formulated above, is general and should in principle apply directly to
(fully) unstructured grids. However, to obtain a practical method, with good convergence prop-
erties, we need to address some specific issues for the smoothing operator and the calculation of
sensitivities.

Smoothing Operator. On Cartesian grids, L is typically a Laplacian operator, e.g., the stan-
dard five-point (2D) or seven-point (3D) stencil. How to find a good smoothing operator for
fully unstructured grids is more difficult, as discussed in more detail in (Stenerud et al., 2007b).
First of all, the operator should give the same smoothing effect independently of the local grid
density. Second, the operator should reduce to a standard Laplacian scheme on Cartesian grids.
Third, the smoothing of each cell i should depend on cells in an appropriate neighbourhood
N (i), the influence of each neighbour j should decay by the (Euclidean) distance ζ(i, j), be
zero outside some finite range, and should be bounded as the distance ζ(i, j) goes to zero. To
meet these requirements, we proposed to use a stencil on the following form (centred at cell
number i)

Li m = −wiimi +
∑

j∈N (i) wjimj ,

wji = wnorm · ρ(ζ(i, j);R), wii =
∑

j∈N (i) wji.
(4)

Here, N (i) gives the neighbourhood; ρ(ζ;R, . . .) is a standard correlation function from geo-
statistics, where the generalized correlation length R is used to control the range of influence for
ρ; and wnorm is a normalization weight used to ensure that the influence of each neighbourhood
is approximately the same, see (Stenerud et al., 2007b) for more details.

The number of cells in a k-ring1 neighbourhood Nk is bounded by k times the number of
faces (or edges) per cell independent of cell sizes, i.e., by 6k in a corner-point grid, except near
faults where there may be more non-neighbouring connections. The number of cells in a radius2

neighbourhood Nr=R varies with the grid density and we therefore expect it to be more robust
and less grid-dependent.

Correlation functions are used to model the covariance structure of a random spatial quan-
tity. Some readers may be more familiar with the variogram function γ(ζ; R). For a sta-
tionary Gaussian random field, the two are related as follows: γ(ζ; R) = σ2(1 − ρ(ζ; R)),
where σ2 is the variance. In the following we will either use the constant correlation func-
tion ρconst(ζ; R) that equals one for ζ ≤ R and zero elsewhere, or the exponential correlation
function ρexp(ζ; R, ν) = exp(−3(ζ/R)ν), which decays with increasing distance.

Sensitivities. By using a streamline simulator for the forward model, all entries in the sensi-
tivity matrix Gij = ∂∆tj

∂Ki
can be approximated in terms of analytical integrals and be determined

very efficiently from a single forward simulation. First, observe that water-cut curves are cal-
culated by averaging the fractional flow at the outlet of all streamlines connected to a producer.
The only effect of a permeability perturbation δKi in cell i, is to perturb the time-of-flight of
all streamlines passing through that cell, thereby delaying or speeding up the arrival of a certain
saturation value at the streamline outlet. This will, in turn, introduce a time shift in the overall
water cut at the well. Now, let τ` denote the time-of-flight at the outlet of streamline Ψ`. Then,

∂τ`

∂Ki
=

∂∆τ`,i

∂Ki
=

∫

∆Ψ`,i

∂s(ξ)
∂Ki

dξ = −
∫

∆Ψ`,i

s(ξ)
Ki

dξ = −∆τ`,i

Ki
, (5)

where ∆τ`,i is the time-of-flight of the streamline increment ∆Ψ`,i through cell i and s(ξ) is
the ’slowness’ function φ(ξ)/|~v(ξ)|. To relate the perturbation of τ to the shift in the water-cut

1The k-ring (or kth order) neighbourhood includes all cells that can be reached by k edges or less in the connec-
tivity graph in which the centroids of each cell is a vertex.

2The radius neighbourhood with radius r includes all cells that can be reached by a search in the connectivity
graph without violating ζ(i, j) ≤ r. The radius neighbourhood should at least include the 1-ring neighbour.
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curve, we make the approximation that the saturation along each streamline follows a Buckley–
Leverett profile. At the outlet, f ′c(So,`) = τ`/tj , where fc is the convex hull of the fractional-
flow function and So,` is the outlet saturation. In the GTT method, we assume that So,` is fixed.
Hence, ∂tj/∂Ki is proportional to ∂τ`/∂Ki. The sensitivity of ∆t follows by summing over all
streamlines and using the definition that N∆t = −∑

j tj for N observation points.
It follows from the above formulation that the sensitivities are additive. For a general poly-

hedral cell, one can therefore find the sensitivity by subdividing the cell into simplexes, on which
sensitivities are easily determined. However, this will not be necessary for hexahedral cells in
corner-point grids, for which efficient streamline tracing methods exist.

Because sensitivities are additive, they scale with the volume of the cell, which implies that
too small/large modifications may be imposed on small/large cells during the history match. To
exemplify, let us imagine that we split one of the cells in two. Because the sensitivity in the
new cells is one half of the sensitivity in the unsplit cell, the permeability modification in the
two half-cells will be smaller than if they were considered as one (unsplit) cell. Accordingly, it
is natural to use scaled sensitivities adjusted for cell volume (i.e., the sensitivity density in each
cell multiplied by the average cell volume) to remedy this undesired grid effect for cases with
large variations in cell sizes. Scaling sensitivities will make it more difficult to match data, but
will generally improve the predictive power of the derived permeability fields.

Numerical Examples
The versatility of the generalized travel-time inversion algorithm has been extensively dis-
cussed in publications by Datta–Gupta and coworkers, see e.g., (Vasco et al., 1999; He et al.,
2002; Qassab et al., 2003; Hohl et al., 2006). Similarly, the potential speedup that can be ob-
tained from using a mulitscale pressure solver is thoroughly discussed by Stenerud et al. (2008,
2007a). Herein, we will therefore focus on a few special issues that arise when applying the
GTT methodology to unstructured grids. To keep the presentation simple, we will present two
synthetic and idealized cases to illustrate properties of the sensitivities and the smoothing oper-
ators that one should keep in mind when applying the technology to unstructured grids or grids
with large differences in cell sizes. Finally, we present a more complex case with two faults and
infill drilling.

For all cases considered, the flow is described using quadratic relative permeability curves
with individually specified end-point mobility ratios. For simplicity, the examples use a standard
pressure solver: for greater computational efficieny, a multiscale solver could have been used.

Example 1: To illustrate the effect arising from (large) difference in cell sizes, we consider
an unstructured triangular grid with 581 cells inside a bounding box of 322 × 318 meters,
containing a ring with high cell density, see Figure 1. The contrived reservoir is produced using
an inverted nine-spot. Synthetic data from 1200 days of production are obtained by adding
5% (white) noise to the results of a streamline simulation using a mixed finite-element pressure
solver. In the inversion, we use data from the first 800 days. The remaining 400 days are used
to assess the predictive ability of our method. The initial model is assumed to be homogeneous
with 7 mD.

Table 1 reports time-shift and amplitude residuals for four different smoothing operators
and Figure 1 shows the resulting permeability fields after eight iterations. All operators capture
the large-scale trends. Because there is no initial heterogeneity to preserve, the matched fields
are too smooth, in particular for operators #3 and #4. The residuals are lowest for operators
#1 and #2. On the other hand, the smoothing in these operators does not extend across the
ring of small cells. Hence, too small modifications are imposed inside the ring unless one uses
rescaled densities. For operators #3 and #4, the influence region for each cell is larger, and
modifications induced by large sensitivities nearby are distributed into the ring with small cells.
We also observe that whereas ∆lnK decreases, the residuals increase when we introduce the
rescaled sensitivities. This is a result of the fact that matching becomes more difficult, because
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Table 1: Time-shift (T) and amplitude (A) residual measured in percentage of initial and reduction in
permeability discrepancy (∆ln K = ‖ ln Ktrue − ln Kmatch‖) with four different smoothing operators
and original and scaled sensitivities.

Operators Unscaled Scaled
Nbh ρ T A ∆ln K T A ∆ln K

Initial — — 100.0 100.0 1.165 100.0 100.0 1.165
Op #1 N1 ρconst(·; 5) 6.0 14.2 0.771 7.0 16.1 0.631
Op #2 N2 ρconst(·; 5) 8.2 18.9 0.612 12.6 22.5 0.525
Op #3 Nr=30 ρexp(·; 5, 2) 9.5 18.6 0.585 12.1 20.8 0.546
Op #4 Nr=40 ρexp(·; 5, 2) 12.0 20.9 0.555 12.4 21.7 0.568

Grid and wells Operator #1 Operator #1, scaled Operator #2

True model, K Operator #3 Operator #3, scaled Operator #4

Figure 1: Grid and well configuration, reference permeability field, and derived permeability fields for
operators #1 to #4, see Table 1.

rescaled sensitivities will enforce greater modifications in cells that are less important to shifting
the production curves.

Figure 2 shows a comparison of the initial and final match of the water-cuts obtained by
operator #4 with unscaled sensitivities for three selected wells: the well with best match (P8),
the well with worst match (P2), and the well with least data (P4). For all wells, the match and
the prediction are satisfactory, and in particular for well P4, which had almost no production
history during the data period.

The example above demonstrated that grid effects arising due to differences in cell sizes
can be counteracted by using a radius neigborhood rather than a k-ring neighbourhood in
the smoothing operator, or alternatively by using scaled sensitivities. For layered reservoirs,
smoothing across geological layers is undesirable if one is to preserve the layered structure. A
natural strategy is therefore to use smoothing operators with significantly larger neighbourhood
and/or correlation lengths in the horizontal than in the vertical direction.

Example 2: In the next example, we demonstrate grid effects arising in models containing
thin geological layers. To this end, we consider a simple 21 × 21 × 7 tensor-product grid
with homogeneous permeability and where the relative thickness of the horizontal grid layers
varies throughout the model, as shown in Figure 3. The homogeneous permeability is chosen on
puropose to accentuate the undesired grid effects. However, we remark that such a structure may
arise in sublayers within the stratigraphic column in high-resolution geomodels or for models
with local grid refinement.

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P2

days

w
at

er
−c

ut

 

 

obs
init
matched

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P4

days

w
at

er
−c

ut

 

 

obs
init
matched

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P8

days

w
at

er
−c

ut

 

 

obs
init
matched

Figure 2: Water-cut match for operator #4 for wells P2, P4, and P8. The first 800 days constitute the
matching period, while the next 400 days are predicted.

K from original Gij K obtained from scaled Gij

Layer 1 2 3 4 5 6 7
Thickness 1.0 0.089 0.164 0.212 0.251 0.285 1.0

Figure 3: History matched permeability for a homogeneous reservoir with varying vertical thickness of
grid layers. The initial model has too high permeability in the front half and too low permability in the
back half.

The reservoir is produced through an inverted nine-spot well pattern, with an injector in the
middel and producers in the four corners and at the center of each vertical side. We match syn-
thetic water-cut data obtained from a flow simulation using a sequentially implicit finite-volume
solver, which generally smears the solution compared with the streamline solver. Figure 3 shows
matched permeability fields using a prior model that assumes that the reservoir consists of two
facies, one with too high permeability in the front half, and one with too low permeability in the
back half. The permeability field matched using sensitivities shows large variations. In the front
half, we see that almost no modifications have been imposed in the thin layers, whereas too large
modifications towards lower values are imposed in the upper and lower layers to compensate
for fast flow in the thin layers. With the scaled sensitivities, the variations in the front half are
significantly smaller and the permeability is almost constant in each vertical column in the grid.

Example 3: Our third, and final, example considers a 50 × 50 corner-point grid two non-
sealing strike-slip faults that introduce non-neighbouring connections, see Figure 4. Whereas
the grid has three shifted sections inside a bounding box of 646 × 605 meters, the lognormal
permeability field has a logical structure with diagonal permeability streaks. Initially, we pro-
duce the reservoir from an inverted five-spot configuration, with an injector in the center and
four producers in the corners operating at equal constant rate. Producer P4 in the south-west
corner has early breakthrough and is converted to an injector after 900 day. After conversion,
P4 has 3/5 of the total injection rate. Simultaneously, a new producer (P5) is added in the
south-west corner of the middle section. Alltogether, 2500 days of synthetic production data are
obtained by adding 15% white noise to a streamline simulation of the reference model.

As our prior model, we use another realization from the same heterogeneity model, con-
ditioned on the true permeabilities in the well blocks. Table 2 reports reduction in time-shift
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Grid and wells True Initial With operator #3

Figure 4: Grid and well configuration and permeability fields for Example 3.

Table 2: Time-shift (T) and amplitude (A) residual measured in percentage of initial and reduction in
permeability discrepancy (∆ln K = ‖ ln Ktrue − ln Kmatch‖) with four different smoothing operators.

Nbh ρ T A ∆ln K
Initial — — 100.0 100.0 0.421
Op #1 N1 ρconst(·; 5) 5.5 35.0 0.334
Op #2 N2 ρconst(·; 5) 4.9 35.0 0.332
Op #3 Nr=30 ρexp(·; 5, 2) 5.8 35.2 0.334
Op #4 Nr=40 ρexp(·; 5, 2) 5.7 35.8 0.332

and amplitude residuals and permeability discrepancy derived with four different smoothing
operators. Figure 4 shows the derived match for operator #3 along with the true and the initial
permeability. From the figure we clearly see that the inversion preserves geological realism from
the prior model without introducing any smearing across the faults. The match of the water-cut
data are shown in Figure 5. Overall, the match to the production data and the quality of the
derived permeability fields are satisfactory.

Concluding Remarks
Multiscale-streamline inversion is a promising methodology for history-matching highly de-
tailed reservoir models with a large number of cells. Admittedly, the methodology has a large
number of parameters and effects: regularization parameters, scaled or unscaled sensitivities,
smoothing operator with accompanying parameters (neighbourhood, correlation, and normal-
ization weights), number of streamlines in forward simulation and for calculating sensitivities,
and choice of coarse grid and strategy for reusing basis functions in the multiscale solver. For-
tunately, the overall methodology is relatively robust (or insensitive) with respect to the most of
these parameters. However, for grids with large differences in cell sizes, we have demonstrated
that better results are obtained if one uses sensitivities scaled by the cell volume rather than the
original time-shift sensitivities. Similarly, for unstructured grids, some care should be taken in
choosing the smoothing operators.
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Figure 5: Water-cut match for operator #3 for Example 3. The first 2500 days are used to match data,
where as the last 500 days is for prediction
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