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Abstract 
We develop and apply a front-tracking method for the numerical simulation of three-phase flow in porous media. 
The proposed framework combines analytical solutions to the corresponding Riemann problem with an efficient 
front-tracking method to study Cauchy and initial-boundary value problems. The method has the ability to track 
individual waves and give very accurate (or even exact) resolution of discontinuities. This numerical procedure is 
then used in combination with a streamline method, for the simulation of three-dimensional, three-phase flow 
problems. We demonstrate the applicability of the method through several numerical examples, including a 
streamline simulation of a water-alternating-gas (WAG) injection process in a three-dimensional, heterogeneous, 
shallow-marine formation.  

1. Introduction 
In recent years, streamline methods have emerged as an attractive way to simulate flow in highly 
heterogeneous formations. The essence of these methods is to decouple three-dimensional 
transport equations into a set of one-dimensional problems along streamlines. Streamline 
methods, however, rely heavily on the efficient solution of the transport equations in 1D. Here, 
we propose the use of a front tracking method for the solution of one-dimensional three-phase 
flow problems along streamlines.  

The term “front tracking” refers to a family of numerical methods that perform some kind 
of tracking of shocks and other evolving discontinuities. Most front-tracking schemes consist in 
a finite-difference scheme coupled with a recipe for detecting and tracking discontinuities. Our 
method is different in the sense that no finite differences are involved. Instead, the numerical 
solution is computed by treating all waves as discontinuities. Smooth rarefaction waves are 
approximated by small discontinuities that violate the entropy condition, whereas shocks and real 
other discontinuities are tracked exactly [1]. The most appealing features of the method is that it 
is able to resolve discontinuities exactly, has no grid-dependence, and is unconditionally stable. 
Depending upon the availability of a fast Riemann solver and the complexity of the wave 
interactions of the problem, the method can be very efficient compared with conventional finite 
volume and finite element methods. In reservoir simulation, front tracking is a key technology in 
obtaining the high numerical efficiency of the two-phase version of the streamline simulator 
FrontSim [2] by Schlumberger.  

The use of front tracking for simulation of three-phase flow has been limited, in part 
because of lack of general analytical solutions to the three-phase Buckley-Leverett problem. 
However, see e.g., [3] for early results on triangular three-phase models. Here, we implement 
and extend a recently developed analytical solution to the Riemann problem [4], and use it as a 
building block in the front-tracking algorithm. However, evaluation of the full three-phase 
Riemann solution is expensive in the context of a front-tracking method, because typical 
applications require hundreds of millions of calls to the Riemann solver. In this paper, we 
propose a hierarchical data reduction algorithm that accomplishes two goals: (1) avoid blow up 
of the number of Riemann problems to be solved, and (2) obtain a much faster method by using 
an accurate (but not exact) Riemann solution.  

In Section 2, we outline the mathematical model, and discuss the wave structure of the 
Riemann problem. In Section 3 we describe the front-tracking method, with particular reference 
to the way in which rarefaction waves are discretized. The data reduction algorithm is given in 
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Section 4. In Section 5 we present two numerical simulations. The first example is a one-
dimensional problem modeling water-alternating-gas injection in an oil and gas reservoir. The 
second example is a three-dimensional three-phase flow simulation in a highly heterogeneous 
formation, where the front tracking algorithm is used in combination with a streamline method. 
These numerical simulations illustrate the potential of this approach for fast and accurate 
simulations in real three-dimensional, heterogeneous reservoirs. We summarize the main 
conclusions in Section 6.  

2. Riemann solver for three-phase flow 
Under certain assumptions, the mathematical model describing three-phase flow in porous media 
may be expressed in terms of a pressure equation, and a system of saturation equations. For one-
dimensional flow, the system of saturation equations takes the form (after re-scaling of the space 
variable):  
 ( ) 0t xu f u+ = ,  (1) 

where  is the vector of water and gas saturations, and ( w gu S S= , ) )( w gf f f= ,  is the vector of 
fractional flow functions. The oil saturation is determined by the algebraic relation 

. If the effects of miscibility, compressibility, capillarity and gravity are 
neglected, the fractional flow of phase  is simply:  

1o wS S= − − gS
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where iλ  is the relative mobility of phase i , and T w g oλ λ λ λ= + +  is the total mobility. The 
relative mobility is defined as:  
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i

i

kλ
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= ,  (3) 

where  and rik iµ  are the relative permeability and the dynamic viscosity of phase i , 
respectively. The relative permeabilities are normally understood as functions of the fluid 
saturations alone. It is well known that most relative permeability models used today give rise to 
elliptic regions, that is, open sets in the saturation space where the system (1) is locally elliptic 
rather than hyperbolic [5,6,7]. There is an ongoing debate on whether elliptic regions are 
physical, or simply an unintended consequence of the severe modeling assumptions made in 
development of three-phase flow models. In this paper, we adopt the view that elliptic regions 
are the result of an incomplete model, and we use relative permeability functions that render the 
system hyperbolic [7].  

The Riemann problem is a particular case of the system (1), in which the initial condition 
is given by piecewise constant data, separated by a single discontinuity:  

 0

if 0
( )

if 0
L

R

u x
u x

u x
< ,⎧

= ⎨ ≥ .⎩
 (4) 

Analytical solutions to the Riemann problem of three-phase flow have been studied extensively 
(see [8] for an overview). In a recent paper [4], a complete catalogue of solutions was identified, 
and efficient algorithms for the computation of the solution were given. The main assumptions 
used to limit the admissible wave structure are: (1) the system is strictly hyperbolic; and (2) both 
characteristic fields are nongenuinely nonlinear. Both conditions are natural extensions of the 
corresponding conditions in the two-phase flow case. Under those assumptions, the solution to 
the Riemann problem comprises two separated waves, connecting three constant states:  
  (5) 1 2W W

L Mu u⎯⎯→ ⎯⎯→ .Ru
Using a result that limits the admissible types of waves that may be present [9], it is concluded 
that only nine combinations of waves are possible: each of the two waves can only be a single 
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rarefaction R , a single shock S , or a composite rarefaction-shock RS . Efficient algorithms for 
the calculation of all solution types have also been devised [4].  

The algorithm starts by setting an initial guess tr
Mu  of the intermediate state, and by assuming 

a trial solution of type 1 2R R , that is, a solution consisting in two rarefaction waves. The heart of 
the algorithm involves two actions:  
1. Compute the intermediate state, given a trial wave structure  and an initial guess tr tr

1 2W W tr
Mu . 

This step is performed following the algorithms given in [4].  
2. Ascertain what the wave structure of the solution would be if the intermediate state were the 

one just computed. The wave type is inferred separately for each individual wave ( 1 2i = , ).  
It is not sufficient to check the admissibility of individual waves. If the solution involves shocks, 
one must also check that they form an increasing sequence of wave speeds, that is, 1 2σ σ< . The 
algorithm terminates if the trial wave structure  is admissible. Otherwise, both the 
intermediate state and the wave structure are updated from the computed values. Because 
rarefaction curves and shock curves typically have similar paths on the saturation space, the 
intermediate state is usually not very sensitive to the solution type, and the procedure often 
converges after one iteration.  

tr tr
1 2W W

3. The front-tracking method 
Front tracking is an algorithm for constructing exact or approximate solutions to hyperbolic 
conservation laws of the form  
  (6) 0( ) 0 ( 0) ( )t xu f u u x u x+ = , , = .
Assume that the initial function  is a piecewise constant function so that the Cauchy 
problem consists of a series of local Riemann problems. In the previous section we discussed 
how to solve the Riemann problem exactly to produce a similarity solution, which is commonly 
referred to as the Riemann fan. Each Riemann fan is local in time and space and consists of a set 
of constant states separated by simple waves. By connecting the local Riemann fans, one obtains 
a solution that is global in space. Since each simple wave has a finite speed of propagation, the 
global solution is well defined up to the time when the first waves from two neighboring 
Riemann fans interact. If the two interacting waves are discontinuities, the interaction defines a 
new local Riemann problem and the new global solution can be constructed by inserting the 
corresponding local Riemann fan, see Figure 1. If all simple waves admitted by the system are 
discontinuities, all local Riemann problems produce constant states separated by discontinuities. 
In this case our construction can be repeated to compute the exact solution of the Cauchy 
problem up to an arbitrary desired time level. If the system admits rarefactions, as is the case for 
the three-phase model, the above construction cannot be used directly to construct an exact 
solution. However, an approximate solution can be constructed if we approximate each Riemann 
fan by a step function so that the approximate Riemann fan consists of constant states separated 
by space-time rays of discontinuities. To this end, we discretize the smooth rarefaction waves by 
a series of (small) jump discontinuities and keep the shocks (and the linear discontinuities).  

0( )u x

 

 
Fig. 1. Construction of a global solution by connecting local Riemann fans in the ( )x t, -plane. 
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We now use the algorithm outlined above to construct a global approximate solution (in 
space and time) in the same way as one builds scaffolding. Start by resolving Riemann the initial 
problems and connect the local approximate Riemann fans. The result is a set of constant states 
separated by space-time rays of discontinuity, henceforth referred to as fronts. Then, track all 
fronts until the first two fronts collide, resolve the corresponding Riemann problem, insert the 
approximate Riemann fan, and so on. This is the front-tracking algorithm.  

An important point that we have so far not discussed is how to approximate rarefaction 
waves. One possibility is to discretize each rarefaction wave uniformly in wave speed. However, 
since the integral curves are given as either ( )w gS R S=  or ( )g wS R S= , we can simply discretize 
the rarefactions by sampling uniformly along the integral curves in state space; that is, discretize 
each rarefaction wave by a set of constant states {  such that }iu 1i i

uu u δ−| − |≈ , for some 
prescribed uδ . Since the rarefaction waves are discretized in state space, the wave velocities for 
each discontinuity must be determined. There are several natural candidates like the 
characteristic speed of the left or the right state, or the average of the characteristic speeds, see 
e.g., [1]. We use the Rankine–Hugoniot wave speed given by the left and right state of each 
discontinuity, ensuring that each discontinuity in the approximate Riemann fan satisfies the 
equation in the weak sense, regardless of whether it is admissible or not.  

4. Data reduction strategy 
A potential pitfall of the front-tracking algorithm is that the number discontinuities in the 
solution may blow up in finite time for general systems. Generally, one must therefore use 
Glimm-type interaction estimates to do some kind of data reduction, see [1]. Then one can prove 
that the algorithm converges as the piecewise constant approximation of the initial data and the 
sampling of the Riemann fans are refined.  

We are interested only in solutions with finite accuracy, and the algorithm terminates in a 
finite number of steps if we remove small waves (or Riemann problem) below some prescribed 
tolerance. Moreover, to speed up the algorithm it is feasible to give weak waves a simplified 
treatment in terms of an approximate Riemann solver. Inspired by [10], we propose a general 
four point strategy for solving the Riemann problem ( )L Ru u,  approximately:  
1. If 1L Ru u δ| − |≤ , ignore the Riemann problem  
2. If 1 L Ru u 2δ δ<| − |≤ , approximate the Riemann problem by a single discontinuity with shock 

speed equal the average of the Rankine–Hugoniot velocity of each component.  
3. If 2 L Ru u 3δ δ<| − |≤ , approximate the Riemann problem by a two-shock solution . If 1 2S S

1 2σ σ≤/ , solve the full Riemann problem.  
4. Otherwise solve the full Riemann problem.  

5. Numerical simulations 
In the following we will present two examples to demonstrate the behavior of the front-tracking 
algorithm. We have chosen a simple three-phase model given by the relative mobility functions  
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2
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 (7) 

where , , 0wa = 0 1ga = . 0 35wµ = . , 0 012gµ = . , and 0 8oµ = . . With this choice, the system is 
strictly hyperbolic in the entire saturation triangle, except at the vertex of 100% gas saturation, 
where the eigenvalues are equal [4].  
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5.1. One-dimensional WAG injection 

We model a simplified, one-dimensional, water-alternating-gas (WAG) process, in which the 
injected conditions vary in time. We consider a linear reservoir with initial saturations of 
20% gas and 80% oil. The process starts by injecting pure water and, at time , the injected 
state changes to 99% gas saturation. Subsequent cycles of water and gas injection are 
established, with each injection phase lasting for a period 

0 2t = .

0 2t∆ = . .  
Because of the stepwise change in the left boundary condition, the solution is not a single 
Riemann fan. Figure 2 shows the fronts in the ( )x t, -plane for a very coarse approximation 

0 05uδ = . , with and without the data reduction on waves. Notice how all the strong waves are 
preserved under the data reduction and that in both cases; in particular, the oil bank reaches the 
production well at . Moreover, one can clearly see that each interactions of two weak 
waves results in a  solution. The number of Riemann problems was 5563 and 1833, 
respectively, with 1605 being  and 234 full for the run with data reduction. The ratio of 
runtimes was 4 6 .  

0 564t ≈ .
1 2S S

1 2S S
1. :

 

  
Fig. 2. Fronts in the ( )x t, -plane for the one-dimensional WAG process, using 0 05uδ = . . Shocks 
are shown as dashed lines, whereas rarefactions are solid lines. (Left) Full resolution of all waves 

with . (Right) Data reduction with 5
1 2 3 10δ δ δ −= = = 3 0 2δ = .  and . 5

1 2 10δ δ −= =

 
In Figure 3 we plot the saturation profiles at times 0t = , 0.1, 0.2, 0.5, 1.5 and 2t = , 

calculated with the front-tracking method and the standard first-order upwind finite difference 
method with the cycle period reduced to 0 1t∆ = . . In the front-tracking solution, we used 

0 005uδ = .  for an accurate sampling of the rarefaction waves. The front-tracking method requires 
in this case the solution of about 1.6 million Riemann problems. The finite difference solution 
was computed with 100 grid cells, and a fully implicit time stepping procedure. We employed a 
constant time step 0 005t∆ = . , which corresponds to a Courant number 2 1Co t xσ= ∆ /∆ ≈ . With 

, the computational effort of both methods is comparable. It is apparent that the 
front-tracking method gives a very accurate resolution of moving fronts, while the solution 
obtained with the finite difference upwind method is greatly affected by numerical diffusion. 

Finally, in Figure 4 we p

this discretization

lot the water saturation profiles obtained using 3 0 0δ = . , 0 1. , 
and 0 2.  for two values of the rarefaction parameter. For 3 0 1δ = . , the results are bl o 
plotting accuracy from those with full Riemann solution, whereas for 3 0 2

insepara e t
δ = .  there is a minor 

difference. Table 1 shows the corresponding run statistics and seen together with Figure 4 
demonstrates the feasibility of the data reduction. 
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Fig. 3. Saturation profiles at , 0.1, 0.2, 0.5, 1.5 and 0t = 2t = , calculated by: front-tracking using 

0 005uδ = .  (left), and upwind finite differences with 100 grid cells (right). 

 

  
Fig. 4. Water saturation profiles with varying degree of data reduction: 0 05uδ = .  (left), and 

0 025.  (right). 

 

Table 1. Run statistics for Figure 4. 
 0 05uδ = .  0 025uδ = .  

3δ  0.0 0.1 0.2 0.0 0.1 0.2

Runtime 3.9 1.3 0.32 14.2 3.9 1.03
# W1W2 26587 1645 745 107315 3554 1615
# S1S2 0 26616 5320 0 97946 23242

 

5.2. Three-dimensional WAG injection 

An interesting application of the front-tracking method for three-phase flow is in combination 
with streamlines to simulate multidimensional displacement scenarios. In a streamline 
simulation, the pressure and the transport equations are decoupled and solved sequentially. In the 
fluid transport, each streamline is treated as an isolated flow system and the saturation is 
advanced forward in time by solving a one-dimensional hyperbolic system, here by using the 
front-tracking method. At the end of the transport step, the water saturations are projected back 
onto the background grid, the fluid mobilities are updated, and the pressure recomputed. For a 
full three-dimensional simulation, the saturation step typically involves several thousand 
streamlines, resulting in a very large number of calls to the Riemann solver. To increase the 
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speed significantly, we use the adaptive Riemann solver described in Section 4, in which the 
wave structure of strong Riemann problems is resolved exactly, whereas weak Riemann 
problems are approximated by a two-shock solution. In particular, we use 5

1 2 10δ δ −= = , 

3 0 2δ = .  and 0 05uδ = . .  
As an application example, we consider a synthetic, full three-dimensional reservoir model 
consisting of a five spot well configuration (one injection well at the center and four production 
wells at the corners) in a highly heterogeneous, shallow-marine Tarbert formation. The 
heterogeneity model is a subsample of the recent 10th SPE comparative solution project [11] on 
a  grid. The field has large (but smooth) permeability variations: 6 orders of 
magnitude in the horizontal direction and 10 orders in the vertical direction see Figure 5. The 
porosity is strongly correlated to the permeability.  

30 110 15× ×

 
Fig. 5. Logarithm of horizontal permeability and well configuration for the Tarbert formation. 

 

 
Fig. 6. Water saturation after 2000 days of production with a WAG injection scheme. 

         
Fig. 7. Oil, gas, and water production rates computed by the front-tracking simulator and Eclipse. 
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For simplicity, we neglect gravity and assume incompressible flow. The three-phase 
model is as given in the previous section. The initial saturation is . We 
consider 2000 days of production by a WAG cycle, where the injected fluid composition is 
changed between  and (  every 200 days, starting at day 400. Figure 6 shows 
the water saturation after 2000 days of production. In Figure 7, we plot the production rates of all 
three fluids, water, oil, and gas. We compare the results calculated by the front-tracking method 

( ) (0 0 0 2)w gS S, = . , .

(1 0 0 0). , . 0 05 0 95). , .

with those produced by the black-oil reservoir simulator Eclipse 100. Given the completely 
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different nature of both simulators, the agreement is remarkable. The WAG simulation involved 
632 million calls to the Riemann solver, out of which 617 million were approximated by a two-
shock solution, and ran about 6 times faster than the Eclipse simulation. 

6. Conclusions 
ted a front-tracking method for the numerical solution of three-phase porous 

cy of the front-tracking algorithm in combination with 
streaml

mann solvers, the front-tracking method, and streamline 
tracing
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