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Summary. We introduce a novel multiscale approach for reservoir simulation as
an alternative to industry-standard upscaling methods. In our approach, reservoir
pressure and total velocity is computed separately from the fluid transport. Pressure
is computed on a coarse grid using a multiscale mixed-finite element method that
gives a mass-conserving velocities on a fine subgrid. The fluid transport is computed
using streamlines on the underlying fine geogrid.
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1 Introduction

The size of geomodels used for reservoir description typically exceeds by sev-
eral orders of magnitude the capabilities of conventional reservoir simulators
based upon finite differences. These simulators therefore employ upscaling
techniques that construct coarsened reservoir models with a reduced set of
geophysical parameters. In this way the size of the simulation model is re-
duced so that simulations can run within an acceptable time-frame.

Streamline methods are gaining in popularity and have a potential of sim-
ulating much larger reservoir models than what is possible using traditional
finite difference simulators. Streamline methods are based upon a fractional
flow formulation, where the model is split into an elliptic/parabolic pressure
equation and hyperbolic fluid transport equations. For immiscible, incom-
pressible fluids and negligible gravity and capillary forces, the equations read

∇ · v = q, v = −Kλt∇p, (1)

φ
∂S

∂t
+∇ · fw(S)v = qw. (2)

Here p denotes pressure, v the total velocity, S water saturation, K rock
permeability, λt(S) total mobility, and φ rock porosity. The two equations are
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solved sequentially: first the pressure equation (1) is solved to give a velocity
field, by which the saturations can be transported according to (2), and so
on.

A major obstacle in applying streamline methods to large geomodels is the
need for accurate and efficient solution of the pressure equation (1). In par-
ticular, the pressure solver must be locally (and globally) mass-conservative
and should handle: (i) irregular grids that conform to geological structures;
(ii) strongly heterogeneous and anisotropic formations; and (iii) flows with
large dynamic aspect ratios. Mixed finite element methods (MFEM) and
multi-point flux-approximation finite-volume methods (MPFA) are examples
of methods that handle these properties, and cover the most widely used
methods for elliptic problems where mass preservation is an issue.

Here we present a new simulation method for incompressible, immiscible
two-phase flow on Cartesian grids. Pressure and velocities are computed using
a multiscale, mixed finite-element method (MsFEM) [3, 1], where the pressure
is computed on a coarse grid and a mass-conservative velocity field is computed
on the underlying fine grid, using numerically constructed base functions with
subgrid resolution on the coarse grid. Together with streamline computation
of fluid transport, this gives an efficient and robust method that resolves
detailed flow patterns on the underlying fine grid. A more detailed study of
this multiscale method is presented in [2]. Our main point here is to indicate
that the combination of multiscale pressure solvers and streamline methods
has a great potential for bridging the gap between high-resolution geomodels
and the capabilities of current reservoir simulators.

2 Streamline Method

Streamlines are flow-paths traced out by a particle being passively advected by
an external flow field such that the streamline is tangential to the flow velocity
at every point. The streamlines can be parametrised by the time-of-flight τ ,
which measures the travel time along each streamline. In our case,

v · ∇τ = φ or equivalently ∂τ = φ/|v| ds. (3)

Together with the bistream functions ψ and χ, which satisfy u = ∇ψ ×∇χ,
the streamlines define a formal spatial coordinate transform. Applied to the
saturation equation (2), for which u = v/φ, this transformation gives

St + f(S)τ = 0. (4)

Streamline simulators compute the fluid transport by solving one-dimensional
equations like (4) along streamlines in 3D. Here we use a very efficient front-
tracking method [6] to solve (4). The method starts from piecewise initial data,
approximates the flux function by a piecewise linear function, and solves the
corresponding Cauchy problem exactly.
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3 Multiscale Mixed Finite-Elements

The mixed formulation of (1) over a domain Ω ∈ IR3 reads: find (p, v) ∈
L2(Ω)×H1,div

0 (Ω) such that∫∫∫
Ω

(Kλt)−1v · u dx−
∫∫∫

Ω

p ∇ · u dx = 0,∫∫∫
Ω

l ∇ · v dx =
∫∫∫

Ω

ql dx,

(5)

for all u ∈ H1,div
0 (Ω) and l ∈ L2(Ω). In a mixed-finite element method,

the approximation space for v is spanned by a finite set of base functions
{ψ} ⊂ H1,div

0 (Ω); for instance, a set of piecewise linear functions as in the
Raviart–Thomas elements of lowest order. In the multiscale method, the base
functions are computed numerically by solving a subgrid problem for each
interface Γij between two coarse grid blocks Ti and Tj

(∇ · ψij)|Ti
=

{
1/|Ti|, if

∫
Ti
q dx = 0,

q/
∫

Ti
q dx, otherwise,

(∇ · ψij)|Tj
=

{
−1/|Tj |, if

∫
Tj
q dx = 0,

−q/
∫

Tj
q dx, otherwise

(6)

with no-flow boundary conditions ψij ·n = 0 on ∂(Ti∪Tj). These numerically
generated base functions guarantee a velocity approximation with subgrid res-
olution. The approximation is mass conservative on the subgrid if the subgrid
problems (6) are solved with a mass-conservative method. The base functions
ψij will generally be time dependent since they depend on λt, which is time
dependent through S(x, t). For incompressible two-phase flow it is sufficient
to regenerate only a small portion of the base functions in each pressure step
since the mobility only varies significantly near strong saturation fronts.

4 Numerical Results

To demonstrate that our multiscale method is a viable and robust approach,
we present numerical results for Model 2 in the tenth SPE comparative solu-
tion project [4]. The model was designed as a benchmark for various upscaling
techniques and contains a stack of two heterogeneous formations, see Figure 1.
Both formations have large permeability variations, 8–12 orders of magnitude,
but are qualitatively different. The Tarbert formation is smooth, and there-
fore not too hard to upscale. The Upper Ness formation is fluvial with narrow
and intertwined flow channels of high permeability.

We compare our simulation results with a reference solution obtained by
direct simulation on the fine grid using a standard two-point finite-volume
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Fig. 1. Schematic of the reservoir model used in [4]. The reservoir dimensions are
1200 × 2200 × 170 ft., and the model consists of 60 × 220 × 85 grid cells. The top
and bottom plots to the right depicts the logarithm of the horizontal permeability
in the top layer of the Tarbert formation and the bottom layer of the Upper Ness
formation.

method. We also compare with the nested gridding method of Gautier et
al. [5], which can be considered as the upscaling-based analogue of our method.
In the nested-gridding method the absolute mobility (Kλt) is upscaled by
solving local flow problems. Secondly, the pressure equation is solved on the
coarse grid using the upscaled absolute mobilities. Finally, the coarse-grid
fluxes are used to determine boundary conditions for local subgrid problems
that are solved to obtain a mass-conservative velocity on the subgrid scale.
The fluid transport is solved using streamlines for all three methods.

Figure 2 shows a plot of the fraction of water in the produced fluid (water
cut) as a function of time for 2000 days of production. The time steps are 25
days up to day 250, 50 days up to day 500, 100 days up to day 1000, and then
200 days. The performance of our multiscale method is remarkably good; the
match is almost exact for all four producers and the fine-scale flow channels are
reproduced to a large extent as can be seen in Figure 3. Although the nested-
gridding method has subgrid resolution, it does not account for the coupling
between fine-grid and coarse-grid effects and therefore fails to reproduce the
individual water cuts correctly.

Acknowledgement. The research was funded by the Research Council of Norway
under grant number 158908/I30.

References

1. J. E. Aarnes. On the use of a mixed multiscale finite element method for greater
flexibility and increased speed or improved accuracy in reservoir simulation. Mul-
tiscale Model. Simul., 2(3):421–439, 2004.

2. J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale finite elements and
streamline methods for reservoir simulation of large geomodels. Adv. Wat. Re-
sour., submitted.



A Multiscale Reservoir Simulation Method 5

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer A

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer B

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer C

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
at

er
cu

t

Producer D

Reference
MMsFEM 
Nested Gridding

Reference
MMsFEM 
Nested Gridding

Reference
MMsFEM 
Nested Gridding

Reference
MMsFEM 
Nested Gridding

Fig. 2. Water cut curves after 2000 days of simulation.
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Fig. 3. Water saturation in the bottom layer after 800 days.
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