

### SOCIO-ECONOMIC ASSESSMENT OF RELIABILITY CRITERIA



Friðrik Már Baldursson

PROFESSOR OF ECONOMICS, WP3 LEADER



**REYKJAVIK UNIVERSITY** 

ICELAND



# The basic trade-off: benefits of reliability vs. costs of providing it

Cost  $[\in/MWh]$ 





#### OBJECTIVE

- Develop methodology to quantitatively evaluate socio-economic impact of different reliability management approaches and criteria
- The Socio-Economic Impact Assessment (SEIA) methodology focuses on socio-economic surplus as the key economic measure of impact
- The SEIA quantifies surplus as the difference between (monetised) benefits and costs for stakeholders





#### **System Attributes**

| Assessed<br>market       | Stakeholder<br>groups   | Geographical<br>scope | Activity/<br>Temporal<br>scope |
|--------------------------|-------------------------|-----------------------|--------------------------------|
| Electricity<br>market *) | Electricity consumers   | Affected areas        | System operation               |
|                          | Electricity producers   |                       | Operational<br>planning        |
|                          | TSO                     |                       | Asset<br>management            |
|                          | Government              |                       | System<br>development          |
|                          | Society/enviro<br>nment |                       |                                |

\*) Restricting attention to the electricity market: implicit assumption that changes there do not have a significant effect on other markets





#### **SYSTEM COSTS AND BENEFITS** and transfer payments between stakeholder groups



#### System and stakeholder balances

| Quetem helenee                                                                           | Stakeholders' (Sub-system) balances *)                                                                                                 |                               |                                                                                                       |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|--|
| System balance                                                                           | Consumer balance                                                                                                                       | Producer balance              | Transmission balance                                                                                  |  |
| + Consumer utility from<br>electricity consumption                                       | + Consumer utility from<br>electricity consumption                                                                                     | + Payments for<br>Electricity | + Payments for<br>Transmission                                                                        |  |
| not supplied                                                                             | not supplied                                                                                                                           | provision                     | Flexibility services                                                                                  |  |
| <ul> <li>Generation costs</li> <li>Investment and operation costs of the grid</li> </ul> | <ul> <li>Payments for<br/>Electricity</li> <li>Payments for<br/>Transmission</li> <li>Payments for Flexibility<br/>services</li> </ul> | - Generation costs            | <ul> <li>Payment for reserve provision</li> <li>Investment and operation costs of the grid</li> </ul> |  |
| = Social surplus                                                                         | = Consumer surplus                                                                                                                     | = Producer surplus            | = TSO surplus                                                                                         |  |

\*) For purposes of simplification, the government (taxes on electricity) and environment (emission costs) are left out of the table; they are, however, included in the SEIA. There may be more categories of flows between stakeholders, e.g. payments for interruptions



#### **Calculation of surplus on stakeholder level**

- Requires an assessment of all flows of goods and services and the corresponding flows of money
- Internal flows also referred to as transfers require a detailed account of market regulations and agreements between stakeholders
  - Example: taxes; payments for electricity supply interruptions
- But cancel out when adding up all stakeholders' surpluses and are thus irrelevant for the SEIA from the system perspective
  - Example: payments for electricity supplied
- Double counting i.e. considering an item twice or multiple times must be avoided!
  - Example: costs of emission allowances vs. social costs of emissions
- Detailed formulas developed for the surplus of stakeholder groups for different activities/time horizons considered
- Methodology numerically illustrated on a test case (a modified RBTS)



#### **EXAMPLE: NTC given to the market**

## Modified RBTS with two regions West and East



## Costs for different TSO candidate decisions





#### **Implementation issues**

How to value consumption of electricity and supply interruptions?

- The implementation takes the demand of electricity as given (inelastic)
- A simplification for the purposes of GARPUR
- But allows for modelling the cost of interruptions in some detail
  - Consumer type, location, time of interruption, duration
- Multiple time horizons / activities
  - Cost items taken into consideration as well as granularity will differ depending on the horizon
  - Costs and benefits should be either calculated as net present values or annualized
- Modifications needed when several countries, regions and TSOs are involved
   Cross-border flows must be accounted for





#### **Multiple countries/regions/TSOs**

Flows crossing borders have to be included in the expression of surplus

- When several affected countries are considered in SEIA, flows between countries cancel out in the overall SEIA
- Cross-border reliability cooperation is beneficial it increases overall surplus
   The more integration the higher the expected socio-economic surplus
   Shown in the context of cooperation on reserves
- However, distributional issues arise there will typically be winners and losers
   E.g. producers vs. consumers in a low-cost country where exports increase due to cooperation on reserves
- Direct or indirect side payments may be necessary to make cooperation between TSOs incentive compatible





#### **Multiple consumer groups**

Reliability criteria have distributional effects on different consumer groups and different locations

- Changing the reliability criterion will come at a cost for some consumers and as an advantage for others
- So its acceptability may differ
- A change leads to two fundamental trade-offs
  - First, economic efficiency versus equity
    - Imposing limits on inequality, e.g., a minimum or universal reliability level, not raising costs of highcost consumers, decreases efficiency but is generally considered to be more fair
  - Second, individualism versus solidarity
    - That is, does every consumer pay for the cost he imposes on the system or are costs socialised?
- Striking the balance between these opposing objectives is the role of a regulator, based on society's preferences.





#### **Example from Norway**

## Interruption cost for different duration and for various consumer types, cost level 2014, exchange rate 0.115 €NOK

| Marginal interruption costs<br>V <sub>icd</sub> [€/kWh] |                    | Residen-<br>tial | Industry | Commercial | Public | Large<br>industry | Agriculture |
|---------------------------------------------------------|--------------------|------------------|----------|------------|--------|-------------------|-------------|
| Duration<br>interval                                    | 0 – 1 minute       | 7.80             | 235.2    | 193.8      | 401.40 | 339               | 34.80       |
|                                                         | 1 minute - 1 hour  | 1.16             | 9.86     | 19.72      | 13.49  | 0.36              | 1.64        |
|                                                         | 0 hour - 1 hour    | 1.27             | 13.62    | 22.62      | 19.96  | 6.00              | 2.19        |
|                                                         | 1 hour - 4 hours   | 1.12             | 9.50     | 10.50      | 3.23   | 1.92              | 1.81        |
|                                                         | 4 hours - 8 hours  | 1.15             | 6.44     | 16.30      | 5.97   | 0.32              | 1.64        |
|                                                         | 8 hours - 24 hours | 1.12             | 4.21     | 11.81      | 2.04   | 0.32              | 1.65        |

L. Bjørk, E. Bowitz, C. Seem, U. Møller, G. Kjølle, M. Hofmann and H. Seljeseth, "Socio-economic costs of interruptions and voltage disturbances. Implications for regulation," Energy Norway, 2012.





GARPUR

Source: NVE Rapport nr. 74, 2014



#### **Devil is in the detail: SEIA data needs**

| Quantity inputs                                                                        | Value inputs                                                                             |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Electricity demanded                                                                   | <ul> <li>Value of served load</li> </ul>                                                 |  |  |
| <ul> <li>Energy not supplied</li> </ul>                                                | <ul> <li>Value of lost load</li> </ul>                                                   |  |  |
| <ul> <li>Demand and supply elasticities *)</li> </ul>                                  |                                                                                          |  |  |
| <ul> <li>Type and quantity of TSO investments,<br/>asset depreciation</li> </ul>       | Corresponding per unit costs                                                             |  |  |
| Maintenance actions                                                                    | Corresponding per unit costs                                                             |  |  |
| Type and quantity of ancillary services                                                | <ul> <li>Direct associated costs</li> </ul>                                              |  |  |
| Generation fuel input                                                                  | Fuel prices                                                                              |  |  |
| Other generator variable input                                                         | Corresponding per unit costs                                                             |  |  |
| Operation input                                                                        | Corresponding per unit costs                                                             |  |  |
| <ul> <li>Type and quantity of generation<br/>investment, asset depreciation</li> </ul> | <ul> <li>Corresponding per unit costs</li> </ul>                                         |  |  |
| • Emissions of pollutants not yet internalized                                         | <ul> <li>Corresponding monetized value of social<br/>and environmental damage</li> </ul> |  |  |
| Electricity flows to/from other regions                                                | Electricity prices                                                                       |  |  |
|                                                                                        | <ul> <li>Interest rate for discounting</li> </ul>                                        |  |  |

\*) Despite their placement in the "Quantity inputs" column, demand and supply elasticities are dimensionless parameters that can neither be classified as quantity nor value inputs.



#### Where do the data come from?

In the GARPUR context, power system quantity data come from simulations in other modules

- Value inputs will typically need to be procured from various sources
  - TSOs supply tariffs and their direct unit costs
  - Generation costs need to be estimated based on fuel prices, other input costs, generation technology etc.
  - Wholesale electricity prices, simulated by a separate market module
  - Compensation for ENS depends on regulation
  - Social cost of emissions (not internalized in generation costs) external studies, e.g. IPCC reports
  - Prices of flexibility services and reserves, modelled separately
  - Interest rate: especially relevant for system development context
    - Social discount rate
    - Reasonable to use the rate recommended by ENTSO-E for evaluation of system development projects
- VoLL is a central value input availability of estimates varies





#### **Estimating VoLL**

A variety of methods exists, but customer surveys are the most common approach

- An approximation, but can be seen as a lower bound for the total socio-economic interruption cost
- Cost of HILP events may need to be estimated separately
- Large variation in cost data between countries
  - Perhaps due to differences in factors such as sectoral composition of electricity consumption, dependency of electricity in the economy, etc
  - But also due to different cost estimation methods and different normalization factorsPrices of flexibility services and reserves, modelled separately
  - So care is needed when comparing cost estimates between studies
  - CEER has set out guidelines for best practice
- When no data are available it is possible to use data from a different country or region, but then scaled by purchasing power coefficients





#### Further development of models and data

- SEIA framework can be extended in order to analyse possible responses of electricity market stakeholders to changing market variables.
  - Ideally, electricity market prices and power system volumes (quantities) would be determined simultaneously in a single module with interaction between the two types of variables.
- Future research also needs to be directed towards the building blocks of electricity market models



- Assumption of price-inelastic demand in the SEIA except for long-term based on empirical research
  - This may change in the future especially on the shortest horizons with "smart" technologies







