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Electrochemical cells need as a minimum 
positrode 
electrolyte
negatrode

Examples: PEM water and PCE and SOE steam electrolysers
Application and technology determine conditions
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Proton ceramic steam electrolysis coupled with thermal
energy sources: 

Example of solar-thermal molten salt plant



The chemistries of PCECs – example of BGLC-BZY-Ni
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PCECs synthesis and fabrication – 1100 -1600°C in air
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Phases and interfaces:    Why do they form?    Wanted or not?
Thermodynamics: Acid – base.   Phase diagram        Balanced kinetics



Phases and interfaces
 The phases formed are preferably coexistent
 They would then be neighbours in a (binary, ternary, 

quadrernary…multinary) phase diagram
 They would spontaneously form from an atomic mix of the

cations – a PCEC soup
 Solid solutions; defects.

 The interfaces are grain boundaries (unnecessary), phase
boundaries (necessary - wanted), and surfaces.

 Two and three phase boundaries (2pb, dpb, 3pb, tpb)
 Interfaces impose
◦ Function – ionic and electronic separation
◦ Interface energy – destabilises the system; phase stability may change. 

E.g. BaZrO3 + CO2 = BaCO3 + CeO2
◦ Charge separation – space charge – affects carrier concentrations; 

fuction or dysfunction



PCECs – chemical and electrical gradients – 600°C
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Redox chemistry Electrochemistry          Electrode kinetics
Electrochemical driving forces - everything wants to move – are we in control?



Similarities to living organisms?

How do they do it?



Three selected chemistries of PCECs
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Y3+ vs Yb3+

In situ exsolution

Perovskite
magic



Perovskite magic

 High solid solubilities: High doping and defect
concentrations
◦ Low energy of defects

 Large A site cations
◦ Oxide sublattice dynamics

 Acid-base
◦ Stabilisation
◦ Differentiation

 Structure variety
◦ Cubic when you need it – layered when you don’t

 Transition metal variety
◦ B – O – B covers all imaginable electronic properties

 More?



In situ exsolution

 Phase separation

 Reduced solid solubility
◦ Reduced temperature
◦ Changed redo-ox
 Reducing conditions
 Oxidising conditions
 Polarisation
 Kinetic demixing

 Continuous or cyclic
 Fresh
 Mechanically robust

Simplest example: Ni-YSZ

Ni2+ dissolves in YSZ 
during sintering of NiO-YSZ 
composite electrode in air

Ni exsolves operando in H2

The same applies to Ni-
BZY

The race is on for 
positrodes



Three selected chemistries of PCECs
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Y3+ vs Yb3+ in BaZrO3 BZY    BZYYB     BZYb
Some Yb reduces the p-type electronic conductivity. Why?



Y vs Yb

 Y3+ [Kr]
 r3+ = 88 pm

 Yb is 1s22s22p63s23p63d104s24p64d105s25p64f145d06s2

 [Xe]4f145d06s2

 Yb3+ 1s22s22p63s23p63d104s24p64d104f135s25p6

 [Xe]4f13

 r3+ = 86 pm



Conclusions
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The chemistries of PCECs
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Proton conducting oxides by hydration of oxygen vacancies
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Protons transport: rotation and hydrogen bond jumps

From K.-D. Kreuer, 2008



Proton conductivity in acceptor-doped oxides

La27W5O55.5

Ca-doped LaNbO4
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Fuel cell
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Electrolyser and electrochemical compressor
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ELECTRA and GAMER EU projects: Production of tubes

Courtesy of Marie-Laure Fontaine, SINTEF
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