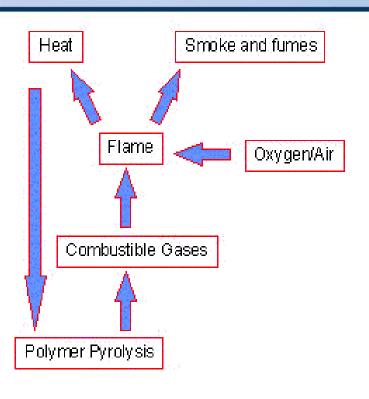
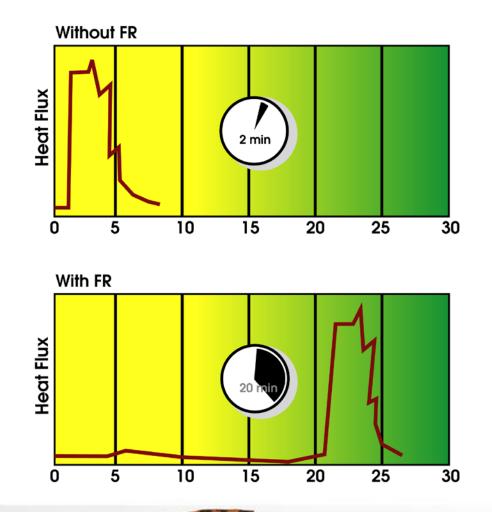


FR Products for the Evolving Global Marketplace


Paul Killian Global Business Manager, TPE & FR Products

Flame Retardant Thermoplastics

20°


Fuel

- External heat applied to plastic
- Thermal degradation of polymer (Pyrolysis)
- Gaseous volatiles (FUEL => H* and OH* radicals)
- External heat source + Fuel = HEAT
- Ignition
- Spontaneous Combustion:
 - Heat produced by reaction becomes enough to sustain the combustion

Why use Flame Retardants?

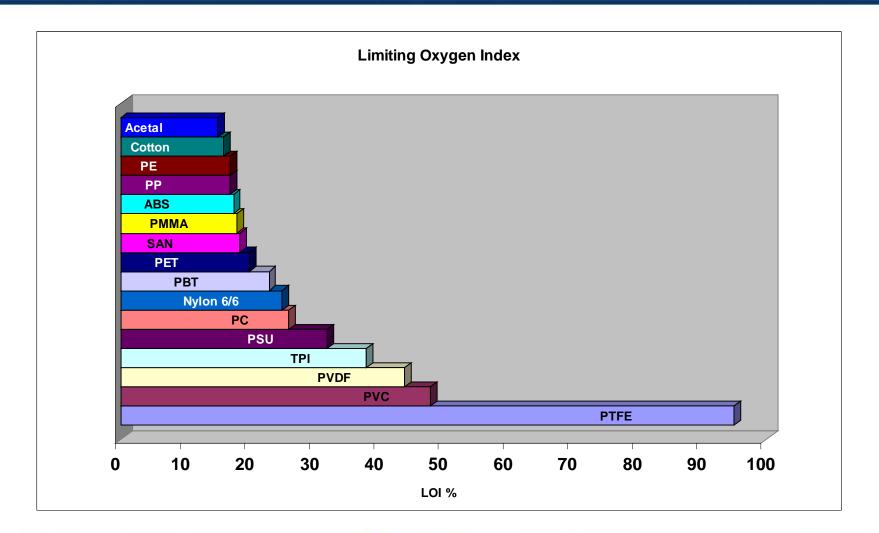
Goals of Flame Retardant Compounds

- ► Increase Resistance to Ignition.
- ≻Reduce Rate of Flame Spread.
- ≻Reduce Rate of Heat Release.
- Reduce Smoke Emission
 - ****Products are NOT incombustible**
- Meet Customer's Environmental concerns

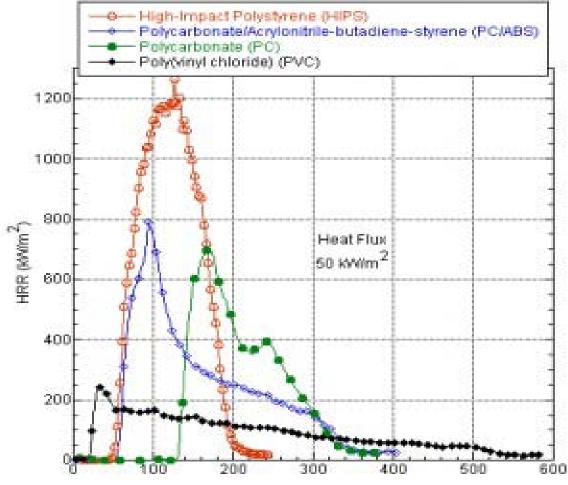
Regulation Driven

- Independent Certifiers (UL)
- ➢ Federal Aviation Association (FAA)
- ➢ Military
- Federal/State/City Laws/Local & Country Ordinances

- European Directives
- > Building Codes in various countries
- Insurance Underwriters (Factory Mutual)


Flammability of Polymers

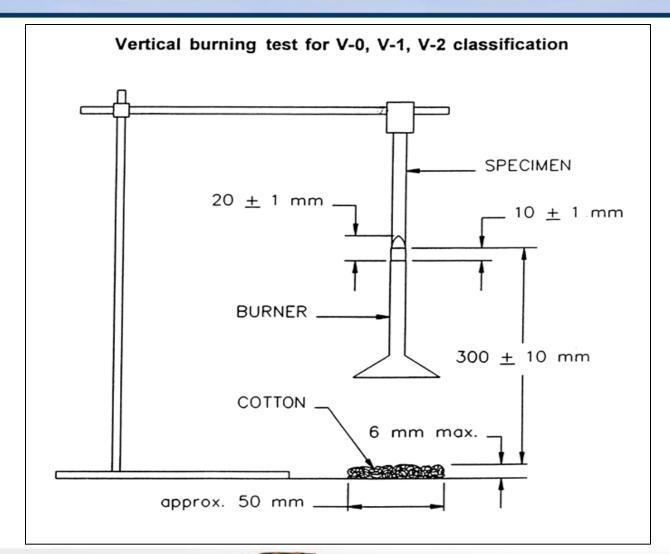
Flammable


- ✓ Polyolefins
- ✓ Nylons
- ✓ Polycarbonate
- ✓ Styrenics
- ✓ Polyesters
- ✓ TPEs

Inherently Flame Resistant ✓ Polysulfones ✓ Polyphenylene Sulfide ✓ Polyetherimide ✓ Polyetheretherketone ✓ Fluoropolymers ✓ TPI ✓ PTFE

Comparative LOI Values

Heat Release Rate


Time (s)

Common Test Methods

►UL 94 – HB, V-2, V-1,V-0, 5-V, VTM ► Glow Wire Ignition – IEC 60695-2 Limiting Oxygen Index- LOI Flame Spread – ASTM E162 Cone Calorimetry Smoke Density ► Various Wire & Cable standards

UL 94 V Test Set Up

Glow Wire Testing

IEC 60695-2 test method

- ➢ Glow Wire Flammability Temperature highest temperature of the incandescent wire at which the material does not ignite
- ➢ Glow Wire Flammability Index highest temperature of the incandescent wire at which the material extinguishes itself

<u>RTP performs this test</u> at RTP France & RTP HQ

RoHS Directive

- Restriction of Hazardous Substances (RoHS)
 EU Directive in effect as of July 2006
- Bans use of lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI), polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE)
 DOES NOT NEED TO BE HALOGEN FREE
- > RTP concern would be pigments and flame retardants.
- Decabrom exemption was annulled (July 2008)
 - RoHS Compliant solutions are in place
 - New UL ratings will be needed on certain RoHS compliant materials

IMAGINEERING PLASTICS WORKSHOP

- RTP can provide official compliance letter

RoHS Directive

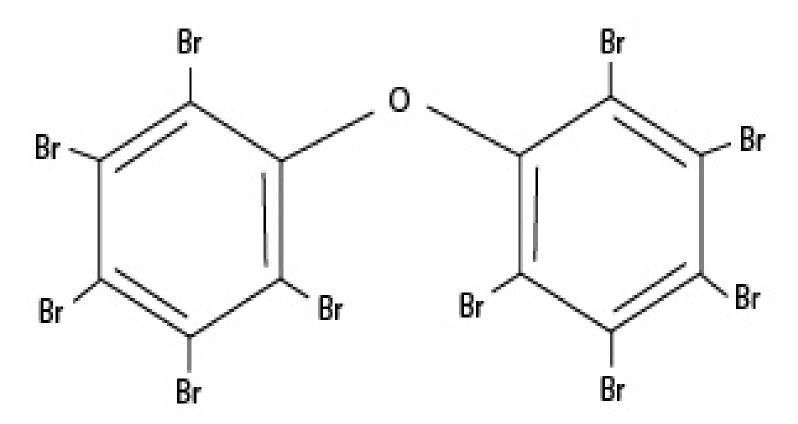
Other countries following the EU's lead:

- China RoHS
- ➢ Korean RoHS
- ➢ Japan RoHS
- RoHS2 next generation of EU version

Restricted substances are consistent throughout all variations:

WEEE Directive -

- often linked with the RoHS, affecting electrical and electronic equipment (as opposed to materials).


IMAGINEERING PLASTICS WORKSHOP

- WEEE variations to accompany RoHS variations

What is a PBBE?

Decabromodiphenyl ether

EPA Action vs. Decabrom

> Decabrom in the US will be phased out by 2012

The EPA & the Big 3 supplies of decabrom have come to an negotiated agreement whereby they will stop selling decabrom

- ≻ Albemarle
- ≻Chemtura
- ≻ICL

Importation of foreign manufactured decabrom and goods containing decabrom will also be affected

Eco Labeling

- Currently 328 ecolabels globally in 204 countries and 40 industry segments
- Intended to help consumers make "correct environmental choices"
- In compounding language, this means potential restrictions on FR type, namely halogens
- Each eco-label could have its own unique effect.
- <u>RTP's independence and objectivity in choosing FR</u> <u>technologies provides you the tools to navigate the complicated</u> <u>& changing regulatory world.</u>

Choosing an FR System

How do we decide which FR to use?

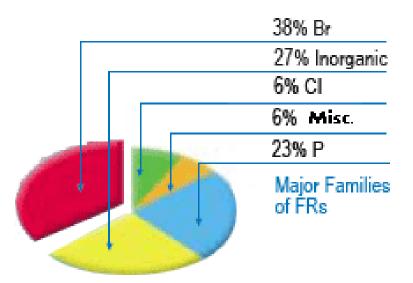
- Resin System?
- FR test method?
- Other application performance requirements?

- Fillers/Additives?
- RoHS concerns?
- Halogen concerns

Halogen vs. Non-Halogen

Halogenated FR – primarily means Br or CL is present

IMAGINEERING PLASTICS WORKSHOP


- Lower Cost
- Wider processing window
- Good FR efficiency
- Good physical properties retention

≻Non-Halogenated FR

- Low Smoke generation
- Lower Toxicity
- Less Corrosive in General
- Not Available in Styrenics

Common Types of FR Additives

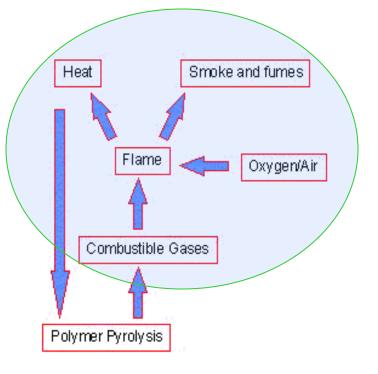
- Halogenated FR's **
 - Brominated
 - Chlorinated
- **Synergists added
- Non-Halogen FR's
 - Metal hydroxides
 - Phosphorous Based
 - Melamine Based

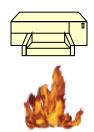
Flame Retardant Mechanisms

Vapor Phase Inhibition

Halogen radicals affect free radical combustion process

FR additive breaks down $XBr \rightarrow X + Br$.

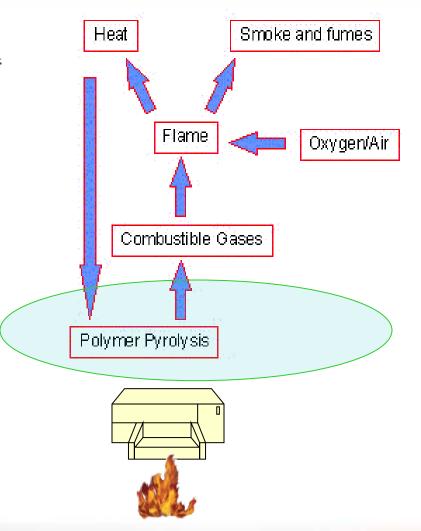

Halogen radical reacts with hydrocarbon molecules in the polymer structure


 $Br \cdot + RH \rightarrow R + HBr$

Hydrogen Halides interfere with radical chain $H \cdot + HBr \rightarrow H2 + Br \cdot$ $OH \cdot + HBr \rightarrow H2O + Br \cdot$

Resulting $Br \cdot radical$ is less reactive than the $H \cdot and OH \cdot radicals$ that are responsible for combustion

Lowers energy production & reaction rate Left over Br· radicals repeat process

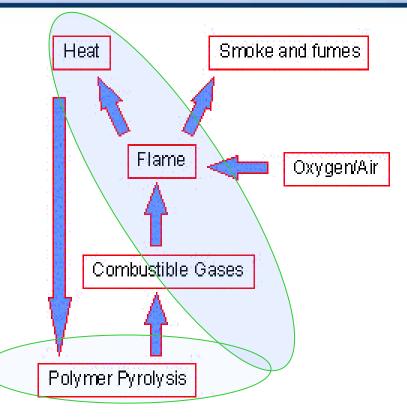

Flame Retardant Mechanisms

Condensed Phase Char Formation

- (Typical of Non-Halogen Systems)
- -Melamine Cyanurate
- -Metallic Hydrates
- -Zinc Borates
- -Phosphates
- Metal Phosphinates

Formation of char-layer on surface

Insulates polymer from heat inhibiting pyrolysis process Creates a fuel barrier hindering the passage of combustible gases



Flame Retardant Mechanisms

Remove/Reflect Heat & Dilute (quench & cool)

- Melamine Cyanurate
 - Decomposes endothermically absorbing heat energy (heat sink)
 - Non-burning drip is created
- Metallic Hydrates
 - Alumina Trihydrate
 - Magnesium Hydroxide
 - Zinc Borate
- Endothermic release of water
 - cools polymer
 - dilutes combustible gases
- Metallic oxide forms a reflective surface barrier
 - Slows polymer degradation & combustion reaction

Halogen Free Chemistry

<u>**Phosphorous**</u> – in various forms, contributes to the char concept to create a barrier between fuel & flame as well as releases CO2 to dilute combustible gases

<u>Nitrogen</u> – promotes char formation & works synergistically with phosphorous to make P more effective

<u>Hydrated Minerals</u> – product water during combustion process that quenches the combustion zone, cools the heat of reaction, and dilutes combustible gases

Halogen Free FR types

EDAP & APP (nitrogen/phosphorous)	Olefins, TPEs
Metallic phosphinates	Polyamide, PBT, some TPEs
Hydrated Minerals (ATH, MgOH, ZnB)	Olefinic cable jacketing, specialty compounds
Organo-phosphinates (RDP type)	PC, PC/ABS

Development Trends

- Two factors driving push to non-halogen technology
 - 1) Environmental concerns this the first & traditional concern with halogenated systems

- 2) volatility in the current FR pricing
 - Antimony oxide pricing
 - Raw bromine pricing

Development Trends

Halogen Free is the theme

- <u>Polypropylene</u> well established technology for unfilled PP compounds.
- <u>Glass-filled Polypropylene</u> volatile FR market demands this development
- <u>Nylons</u> the available FR technology has expanded and improved over the past 5-10 years
- <u>PBT</u> technology that is an off-shoot of nylon work now available
- **PPA** improved thermal stability now available for the high temperature nylon resins
- **Polycarbonate** Glass filled & unfilled compounds show no loss of properties compared to halogenated systems

IMAGINEERING PLASTICS WORKSHOP

• TPEs - SBCs, TPVs, TPUs, and COPE options

Property Comparison – 30% Glass filled Nylon 6

Physicals:	RTP 205 A FR	Halogen Free Version
FR @ 1.5 mm	V-0	V-0
Tensile Str. (MPa)	138	121
Flex Str. (MPa)	207	192
Flex Mod. (GPa)	9.6	9.1
Notched Izod Impact (J/m)	102	102
Spec. Gravity	1.65	1.39

- Significantly Lower Specific Gravity
- Slightly lower strengths & modulus
- Comparable Impact Strength
- V-0@1.5mm

Property Comparison – 30% Glass Fiber PBT

Physicals:	RTP 1005 FR A	Halogen Free
FR @ .8mm	V-0	V-0
Tensile Str. (MPa)	138	106
Flex Str. (MPa)	228	170
Flex Mod. (GPa))	9.65	10.3
IN (J/m)	87	88
Spec. Gravity	1.65	1.56

- Lower Specific Gravity
- Lower Strength & Modulus
- Maintained impact properties
- V-0@.8mm

Summary of Halogen Free Product Development

- Halogen free FR technology has improved over the past decade
- As a result, more & better compound options are available
 - PPA & high temperature nylons
 - TPE options
 - PBT compounds
 - non red P glass-reinforced nylon compounds

- Development continues as further improvements are necessary
- Economics continue to improve

Conclusion

- Flame Retardant performance remains a critical technology
- Halogen Free technology is dominating the new product development trends
- Combining new FR technologies with other value added technologies will be the development direction of the future

examples: 1) FR w/ VLF technology

2) non-hal technology with key additive technologies

