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Why model fuel cells?
MANAGING RISK 251

-increase safety and reliability for ship owners by

writing better rules
*Help manufacturers design for marine environment

15 September 2009




The expertise DNV gains by creating and using models will help in making better rules
for minimizing risk, increasing reliability and efficiency optimization. DNV
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The cell is a cross-flow molten carbonate fuel cell, which we model as
consisting of three layers to achieve short enough solution times. ManacING risk 10
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http://lwww.doitpoms.ac.uk/tlplib/fuel-cells/printall.php
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The status of the modelling:

MANAGING RISK m

We have a model of the cell itself
1)  With temperature distributions
i) Fuel and air gas compositions
i) Chemical reactions

Iv) Electric current, voltage and power
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We model the gasses as flowing in one direction in two-dimensional layers,
neglecting both depth and the channel structure. MANAGING RISK [0

Fuel flowing in
x-direction

The conservation of mass leads to the
convective flow of molar density, C;
for each chemical specie, below is the
case with no chemical reactions for
species i in the fuel flow with speed u y

—
oc, 0c,
+u—=0

ot OX |  MCFC

A 4

fuel we have three different . o
reactions leading to change in Air fIqwmg in
the concentration y-direction

For the case of hydrogen in the I I T T

ac, ~ dCy _ |
0’[ 5X electrochemica

I + 3rref —CH, + rref —-CO
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The chemical reactions are described by empirical equations taken from

literature. MANAGING RiSK [T
Malten Carbonate
Fuel Cell
I current
Volectrochemical =
glectrochemica 2 F Faraday constant

H,+CO —CO,+H,0+2e

1o,+C0,+2¢ > c0O*
2

The current is proportional to the reaction
rate of the electrochemical reaction.

I"ref —CH, /_\

CH,+H,0<3H,+CO
The models for the reforming reaction rates are
taken from Sundmacher et al. "Molten carbonate
fuel cells — modeling, analysis, simulation, and
control” 2007, p231
PIE—————
rref —CO

CO+H,0 < H,+CO,
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Energy conservation leads to the equations for the temperature of the two-
dimensional gas layers, the three dimensional ”"solids” and the heat flows.

Enthalpy in Enthalpy out
_ Interconnect
h_fuelin I1Q h_fuel out
I1Q
Membrane
h_airin 11 Q h_air out
e
Interconnect
—h +h
+ helectrochemical ref ~CH, ref -CO
Heat flows between The heat from the chemical reactions is deposited
gas and solids through or taken from the top of the membrane, the solid

convective heat transfer approximating the anode, electrolyte and cathode.



The heat transfer is modelled using convective heat transfer between gas and

solid, convective heat transport in the gas and heat conductance in the solid.

DNV

Fuel gas with no external heat coming in or
out, just the transport through the flow.

Fuel gas with heat flowing into/from the membrane and the upper interconnect

SN
Jo o £+U% :@ﬂ(-r —T,) D (T -Ty)

The convective heat transfer coefficients, h, The fuel only flows in the x-direction,
are dependent on the geometry of the cell therefore we only include the derivative with
and data on these will be important for a regards to x. The air only flows in the y-

. _ _ direction, so for the air gas we use the
model to realistically depict a given cell. derivative with regards to y.

- Gas channel width, height, number.

- Shape of channels.
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We model the anode/electrolyte/cathode membrane as a solid, with the same
thermal conductivity and heat capacity for all parts of the membrane.

HES

I The heat equation determines the
heat flow within the solid

- o
.mleTrinnect l pC —— k V 2T
ot

IS

T(xy,2)
<

Heat flowing in and out of the solid are
governed by boundary conditions
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The gPROMS tools combines an equation based solver with graphical
connections between components.
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MODEL Column_section (PML Separation)
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FOR i :=

1 TO no_components DO

(1/flow_scale) * §total holdup_mass(i,l)

(l/flow_scale) * |

component _mass_inputii,l)

vap_mass_flowrate(Z) *
in_lig.mass_flowrate ¥
vap_mass_flowrate(l) *
ligq mass_flowrate(l) *
For
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We can use the model to look at the gas composition and temperature
distribution inside the cell |
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A steady-state performance map can be generated to illustrate system
performance for different control parameters. MANMCING RIS ]

Fuel utilization
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Transient simulations between different steady-state running points can be
used to find the optimal ways of changing load. MANAGING RISK [110]
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Simulations can be used to help introduce more environmentally
friendly power generation systems

MANAGING RISK

MODEL DistillationFlowsheet (PML Distllation Example) [=1E3]
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transient conditions. volume 36, pages 285 — 293, New York, NY, USA, 1996. Three dimensional
sitmulation;Molten carbonate fuel cell; Transient conditions;Dynamic simulation;Current density
distribution;.

Peter Heidebrecht. Modelling, analysis and optimisation of a molten carbonate fuel cell with
direct internal reforming (DIR-MCFC). PhD thesis. 2005,

CY. Yuh and J.R. Selinan. Polarization of molten carbonate fuel cell electrodes ii. character-

ization bv ac impedance and response to current interruption. Jowrnal of the Electrochemical
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