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MEA STACK SYSTEM
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Characterization using d.c. techniques:

voltammetry – electrochem. active area

linear voltammetry – H2 crossover (int. short circuit)

polarization curves – performance
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Interest on EIS as applied to Fuel Cells

MEA development

• platinum activity follow-up

• bulk membrane resistance

• ionic conductivity at CL (through distributed element model)

Stack

• sensitivity to operating conditions

Systems control

• Potential flooding/drying detection
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- Combination of experimentally determined kinetic parameters with EIS-
determined parameters for PEMFC dynamic model

Steady-state and transient models
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Facts & warnings:

• EIS highly sensitive to changes within the fuel cell

• EIS response is strongly dependent on design

• If gradients (heterogeneities) along active area exist, 

EIS will pick them up

• “Dry” and excess of water may coexist in different 

regions of FC (as well as other effects)

• EIS should not be seen as a black or white result but

as a color pallette (i.e. interpreted as such)

Q = can EIS bu used as a diagnostic technique during operation near

flooding/drying conditions?
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water dynamics near dry/wet limit

Dehydration Stage: (previously conditioned and purged)

• Tcell = 40 °C

• Cathode: P: 10psi;  flow: air 0.5 L/min

• Anode: P= 10psi; gas exit closed

• t = 1hr, EIS for ohmic resistance @ Eoc

Rest Stage (no humidification):
• Tcell = 40 °C

• Cathode, P = 10psi, Flow: air 0 L/min (just after dehydration process)

• Anode, P = 10psi, gas exit closed.

• t = 1hr, EIS for ohmic resistance @ Eoc

MEA: 25cm2, Gore, Pt = 0.7 mg/cm^2, carbon paper, DL = 50µµµµ, 

GFF: simple serpentine



8

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

Time (min)

Drying process 3

Redistribution of
water

cell’s ohmic resistance
determined by high frequency intercept

redistribution of

water from bulk

membrane

*low conductivity final current collectors plates used



9

DLCLM

DLCLM

DLCLM

after conditioning

after high air flux
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Experimental approach:

- Initial conditioning

- Operating near the limit of drying/flooding

- EIS (1Hz to 1KHz), 10mV (Ecell = 0.4V)

• low T & stoich’s

• dead ended configuration

• purge stages

• dry feeds

• use of O2

Real life is cruel for EIS:

Practical operating conditions are hardly under steady-state, it

depends on specific application and design

Own 50 cm2 MEA, GFFc = 4ps, GFFa pch. 0.7 mg Pt/cm2, Nafion NRE-212. 

GDL-30-BC (C paper w/MPL). T=343.15 K (70°C) & 69 kPa (10 psi)
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Rs CPEa

Rct a

CPEc

Rct c

Rs = total ohmic resistance

Rct a = anode charge transfer resistance

CPEa = non-ideal double layer capacitance anode

Rct c = anode charge transfer resistance

CPEc = non-ideal double layer capacitance anode

X

CPE = distributed element, diffusional process
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Conclusions:

- During drying, both in-phase and out-of-phase

impedance content increase

- During flooding only out-of-phase content increases

- For both cases it appears that there is one single 

frequency threshold (~10Hz) from which out-of-phase

content starts to shift to:

• smaller frequencies for flooding

• larger frequencies for drying
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Phase angle vs. Imaginary content:

- θ seems to better define initial drying/flooding process 

(one single frequency?)

- θ can be associated with concentration profiles (ac

voltammetry?)
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Recommendations:

• Minimize FC design effects (ε, GFF, GDL, CL, etc.), better 

base-line during testing

• specific frequencies might be design-dependent: need

further studies

• dry/flooding case: comparison of states only as a short 

time forcast

• Different FC sizes might need different approaches for

diagnosis

• Isolation of true dry and true flooding conditions is only

possible if homogenous internal conditions are achieved

• Structural effects should be studied (carbon support as a 

conducting grid, i.e. additional capacitance or inductance

effects?)
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• Properties of components are needed particularly

substack layers (i.e. capillary properties, etc.)

This presentation was AH1N1 freeP!

For your safety:


