

Diagnosis of PEMFC operation using EIS

Electrical Research Institute

Hydrogen and Fuel Cells Group

Félix Loyola, Ulises Cano-Castillo ucano@iie.org.mx

International Symposium on DIAGNOSTIC TOOLS FOR FUEL CELL TECHNOLOGIES Trondheim, Norway, June 2009

Characterization using d.c. techniques:

voltammetry – electrochem. active area linear voltammetry – H_2 crossover (int. short circuit) polarization curves – performance

Interest on EIS as applied to Fuel Cells

MEA development

- platinum activity follow-up
- bulk membrane resistance

• ionic conductivity at CL (through distributed element model)

Stack

sensitivity to operating conditions

Systems control

Potential flooding/drying detection

Steady-state and transient models

- Combination of experimentally determined kinetic parameters with EISdetermined parameters for PEMFC dynamic model

Fig. 3 Comparación de Respuestas (Modeladas vs. Experimentales)

Q = can EIS bu used as a diagnostic technique during operation near flooding/drying conditions?

Facts & warnings:

- EIS highly sensitive to changes within the fuel cell
- EIS response is strongly dependent on design
- If gradients (heterogeneities) along active area exist, EIS will pick them up
- "Dry" and excess of water may coexist in different regions of FC (as well as other effects)
- EIS should not be seen as a black or white result but as a color pallette (i.e. interpreted as such)

water dynamics near dry/wet limit

Dehydration Stage: (previously conditioned and purged)

- Tcell = 40 °C
- Cathode: P: 10psi; flow: air 0.5 L/min
- Anode: P= 10psi; gas exit closed
- t = 1hr, EIS for ohmic resistance @ Eoc

Rest Stage (no humidification):

- Tcell = 40 °C
- Cathode, P = 10psi, Flow: air 0 L/min (just after dehydration process)
- Anode, P = 10psi, gas exit closed.
- t = 1hr, EIS for ohmic resistance @ Eoc

MEA: 25cm², Gore, Pt = 0.7 mg/cm², carbon paper, DL = 50 μ , GFF: simple serpentine

cell's ohmic resistance

determined by high frequency intercept

*low conductivity final current collectors plates used

after conditioning

CL

DL

Μ

after high air flux CL w/H₂O gradient

after 1 hr rest H₂O redistributes in CL

Real life is cruel for EIS:

Practical operating conditions are hardly under steady-state, it depends on specific application and design

Experimental approach:

- Initial conditioning
- Operating near the limit of drying/flooding
- EIS (1Hz to 1KHz), 10mV (Ecell = 0.4V)

- low T & stoich's
- dead ended configuration
- purge stages
- dry feeds
- use of O₂

Own 50 cm2 MEA, GFFc = 4ps, GFFa pch. 0.7 mg Pt/cm2, Nafion NRE-212. GDL-30-BC (C paper w/MPL). T=343.15 K (70°C) & 69 kPa (10 psi)

 R_s = total ohmic resistance

R_{ct a} = anode charge transfer resistance CPEa = non-ideal double layer capacitance anode

R_{ct c} = anode charge transfer resistance CPEc = non-ideal double layer capacitance anode

CPE = distributed element, diffusional process

resistive losses increase during drying

kinetic losses increase during drying and flooding

during drying CPE impedance increases (distributed nature of CL?) during flooding CPE impedance reduces 16

Conclusions:

- During drying, both in-phase and out-of-phase impedance content increase

- During flooding only out-of-phase content increases

- For both cases it appears that there is one single frequency threshold (~10Hz) from which out-of-phase content starts to shift to:

- smaller frequencies for flooding
- larger frequencies for drying

Phase angle vs. Imaginary content:

- θ seems to better define initial drying/flooding process (one single frequency?)

- θ can be associated with concentration profiles (ac voltammetry?)

Recommendations:

 Minimize FC design effects (ε, GFF, GDL, CL, etc.), better base-line during testing

- specific frequencies might be design-dependent: need further studies
- dry/flooding case: comparison of states only as a short time forcast
- Different FC sizes might need different approaches for diagnosis
- Isolation of true dry and true flooding conditions is only possible if homogenous internal conditions are achieved
- Structural effects should be studied (carbon support as a conducting grid, i.e. additional capacitance or inductance effects?)

• Properties of components are needed particularly substack layers (i.e. capillary properties, etc.)

For your safety:

This presentation was AH1N1 free...!