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Investigation of Degradation and Cell
 

Failures

Insufficient understanding of cell degradation and cell failures in 
SOFC 
Extensive experimental experience is not generally available 
which would allow accurate analysis and improvements
Long term experiments are demanding and expensive
Only few tools and diagnostic methods available for developers 
due to the restrictions of the elevated temperatures



Conventional Test Stand Diagnostics

Conventional
 

test stand diagnostics:
 

provide important and essential 
information about fuel cell performance and behaviour:

U(i) characteristics, OCV…
EIS on single cells
Current interrupt methods
Performance degradation with time U(t); i(t) …
Cell voltage distribution Ustack = U1 + U2 + U3 ….
Pressure loss / Gas tighness test
Gas utilization measurement
Temperature distribution and control



„Sophisticated“
 

(non-traditional) in-situ
 

Diagnostics

Electrochemical impedance spectroscopy on stacks

Spatially resolved measuring techniques for current, voltage, 
temperature and gas composition

Optical imaging

Optical spectroscopy

Acoustic emission detection

X-ray tomography



Challenges
 

for
 

EIS for
 

Stack
 

Investigations

Large areas (e.g. 100 cm2)  lead to high current and low impedances of 
about 1 mOhm.
Electrochemical processes appear at high frequencies (up to 100 kHz) 
due to the high reaction rates at high temperatures. 
Stacks generally contain metallic components leading to high frequency 
disturbances.
Contacting of all cells and sensing in specific cells does not account for 
the voltage distribution in the stack.
The sensor wires are at high temperatures: an optimization of the 
measurement system is not possible during operation.
Strong overlapping of electrode processes; evaluation with equivalent 
circuits can be inaccurate.
For system with current > 40 A no commercial equipment available.



Mitigation
 

of EIS Problems

Reduction of the high frequency disturbances by optimization of 
the wiring of the electrical sensing of the SOFC stack.
Variation of the operating conditions (gases, temperature) in 
order to determine the different impedances of the electrode 
processes
Modeling of the spectra by an equivalent circuit.
Development of advanced EIS equipment for high currents / high 
frequencies in corporation with instrument manufacturer (Zahner 
Elektrik GmbH).



Experimental Set-up
 

for
 

EIS Measurements
 

of Stacks
 

at DLR



CSZ05-DGF09-CT, 750°C
5H2+5N2+3%H2O / 20air  (SLPM)
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Performance of the 5-Cell Short Stack at 750°C
 (5 H2 +5 N2 +3%H2 O / 20 air (SLPM), 94 h)
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@ 3,5V
Pstack

 

= 184 W
FU = 37%
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Plot of one Cell of a 5-Cell Short Stack at Different Current Densities
 (750°C, 2.5 H2 +2.5 N2 / 20 air (SLPM), 142 h)

0.14 - 0.17 cm2 0.55 - 2.2 cm2



Equivalent Circuit for the Fitting of the Impedance Spectra
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CSZ-05-83-CT, 750°C
2,5H2+2,5N2 / 21 Air (SLPM)

cell 5, 142 h     
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Motivation

Strong local variation of gas composition, temperature, current density 
Distribution of electrical and chemical potential dependent on local 
concentrations of reactants and products

Reduced efficiency
Temperature gradients
Thermo mechanical stress
Degradation of electrodes

H2 H O2

O2 O2

H2 H O2

O2



Measurement
 

Setup for
 

Segmented
 

Cells

16 galvanically isolated segments
Local and global i-V characteristics
Local and global impedance measurements

Local temperature measurements
Local fuel concentrations
Flexible design: substrate-, anode-, and 
electrolyte-supported cells
Co- and counter-flow



Cell design and Testing Station

From a „simple“
 

cell design 
with manually controlled  
features

GC measurement

Flexible housing, impedance spectra with reduced interferences

Assembly and contacts

All cell concepts
Improved contacting
Reliable assembly
Impedance 
measurement
Temperature 
measurement 



Schematic Lay-out of the Electrical Circuit of the 
Segmented Cell Configuration
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Internal cell resistances: 
Ri,j, 

Resistances of the wires 
contacting the anode: 
RLA,j

Resistances of the wires 
contacting the cathode: 
RLK,j

Only segments 1, 2, 3, 16 
are illustrated



OCV Voltage
 

Measurement
 

for
 

Determination of Humidity

• Voltage distribution at standard flow rates:
• 48.5% H2 , 48.5% N2 + 3% H2 O, 0.08 SlpM/cm² air
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Produced water:
S4: 0.61%, S8: 0.72%, 
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Variation of Load
 

-
 

Reformate

Anode supported cell, LSCF cathode, 73,96 cm², gas concentrations (current density equivalent): 54.9% N2 , 
16.7% H2 , 16.5% CO, 6,6% CH4 , 2.2% CO2 , 3.2% H2 O (0.552 A/cm²), 0.02 SlpM/cm² air
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KS4X050609-7 in Metallischem Gehäuse; Substrat: Anodensubstrat, 
aktive Zellfläche:73,78 cm²,A: 542 µm NiO/YSZ,  E: 14 µm YSZ + YDC, 

K: 28 µm LSCF, Kontaktierung: 30 µm LSP16+Pt3600,
Integral, Gasflüsse: 0,552 A/cm² Stromdichteäquivalent (54,9% N2, 16,7% H2, 

16,5% CO, 6,6%CH4, 2,2%CO2, 3,2% H20) // 0,08 SlpM/cm² Luft, 
800 °C, 0 mA/cm²

Reformate: Changes
 

of the
 

Gas Composition
 at 0 mA/cm²

Metallic housing, anode substrate, active area 73.78 cm²
Anode: 542 µm NiO/YSZ, Electrolyte: 14 µm YSZ + YDC,
Cathode: 28 µm LSCF
Operation conditions: 0.10 A/cm² - Anode 

 

= 5.52
(54.9% N2 , 16.7% H2 , 16.5% CO, 6.6% CH4 , 2.2% CO2 , 3.2% H2 O 
0.08 Nlpm/cm² Air, 800°C)
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Alteration of the
 

gas composition
 

at 435 mA/cm²
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Combined Experimental and Modeling
 

Approach 

Objectives of the study:
Better understanding of the local variations

Identification of critical conditions
Optimisation of cell components

Experiments on single              Experiments on single              
segmented SOFCsegmented SOFC

Electrochemical model of         Electrochemical model of         
local distributionslocal distributions

H2
H2/CO

CH4

H2O
CO2

anode

electrolyte

cathode

O2/N2 N2 x
y

x
y

elyt elde
gas z

interconnector

interconnector



Potential for
 

Optical
 

Spectroscopies

Raman spectroscopy
Laser Doppler Anemometry (LDA)
Particle Image Velocimetry (PIV)
Fast-Fourier Infrared (FTIR)
Coherent Anti-Stokes Raman Spectroscopy (CARS)
Electronic Speckle Pattern Interferometry (ESPI)

Digital CCD camera

Distance microscope
(resolution1 µm)

Quarz window

Transparent
flow field

Imaging
spectrograph

Lenses/filter

Pulsed Nd:YAG laser
(532 nm, 10 ns)

Open tube
(5 mm)

a) In situ microscopy b) In situ Raman laser diagnostics

15 cm

Heat & radiation shield

SOFC



neutron 
tomography

in-situ synchrotron 
radiography

in-situ neutron 
radiography

Tomography
 

Diagnosis of PEM Fuel
 

Cells

Investigation of water management under operating conditions



X-Ray
 

Tomography
 

(CT) Facility
 

at DLR

3 dimensional non intrusive 
imaging of SOFC cassette

X-Ray CT Facility v|tome|x L450 at DLR Stuttgart



Summary

The operating conditions (elevated temperature) reduce 
significantly the possibilities for in-situ SOFC diagnostic methods.
EIS will remain the main diagnostic probe of the state of SOFC.
Non-traditional in-situ diagnostics methods can provide additional    
important information:

Spatially resolved measurements to obtain local distribution 
of cell properties (current, voltage, impedance, gas compo- 
sition, temperature)
Combined analytical and modeling approach

Large future potential for optical spectroscopies (e.g. Raman 
spectroscopy) and x-ray tomography. 
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