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Abstract. In this paper we propose a variant of the level set formulation for identifying curves
separating regions into different phases. In classical level set approaches, the sign of n level set
functions are utilized to identify up to 2n phases. The novelty in our approach is to introduce a
piecewise constant level set function and use each constant value to represent a unique phase. If 2n

phases should be identified, the level set function must approach 2n predetermined constants. We
just need one level set function to represent 2n unique phases and this gains the storage capacity.
Further, the reinitializing procedure requested in classical level set methods is superfluous using our
approach. The minimization functional for our approach is convex and differentiable and thus avoid
some of the problems with the non-differentiability of the Delta and Heaviside functions. Numerical
examples will be given and we shall also compare our method with related approaches.
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1. Introduction to Related Level Set Methods. A function u defined on an
open and bounded domain Ω ∈ Rm may have different properties in distinct regions
of Ω. In many applications, one needs to separate Ω into a union of subdomains, i.e.
Ω = ∪n

i=1Ωi, so that distinctive properties of u can be linked to different subdomains
and incorporated into a modeling process. Several approaches have been used to find
a propitious partition of Ω, and some of them are shortly described below. For the
purpose of illustration, only the two-dimensional case is considered here.

One approach to find a partition of Ω is to use an active contour. The basic
idea is to let a closed curve C separate Ω into two disjunctive subdomains. Define
the region inside C for Ω1, and the region outside C for Ω2. The curve evolves
subject to constraints from u together with some smoothness requirements of C.
Traditionally, the curve C is parameterized as x = x(s), s ∈ [0, 1]. A convenient way
to approximate an explicit representation of C, is to divide s into a finite set of points
0 = s0 < · · · < si−1 < si < si+1 · · · < sn = 1, where the subintervals [si, si+1] can
vary in size and then update the particle x in an iterative way. For some applications,
it might be difficult to handle geometrical changes of the curve using this kind of
explicit approach. Numerical instability could also be a problem, since the points on
the curve may get clustered.

A recent and successful way to represent an evolving curve is the level set method
invented by Osher and Setian in [11]. With the level set representation a change of
topology such as merging and breaking of the curve, can be handled in an efficient
way. The curve that divides Ω into two subdomains is represented implicitly as the
zero level set curve Γ = {x ∈ Ω, φ(x) = 0} of a higher dimension level set function φ.
Rather than evolving the curve itself, the level set approach builds Γ into a function
φ. Normally, φ is initialized as the signed distance function:

φ(x) =
{

distance(x,Γ), x ∈ interior of Γ
−distance(x,Γ), x ∈ exterior of Γ. (1.1)

In Fig. 1.1(a) a simple level set function φ is illustrated, and its associated interface
Γ is given in Fig. 1.1(b). Γ divides Ω into two separate sub-domains. By moving φ
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(a) The level set function φ.

ϕ > 0

ϕ < 0

Γ

(b) The interface Γ.

Fig. 1.1. Plot of the higher dimension function φ(x) and the interface Γ = {x ∈ Ω, φ(x) = 0}.

up or down at different locations, the interface evolves. To divide Ω into more than
two domains, one needs to use multiple level set functions [17, 12, 4, 16]. One of
the concerns of multiple level set methods is to avoid vacuum and overlap between
the different phases [17]. In [16], the following approach was used to create multiple
phases without vacuum and overlaps. Assume we introduce two closed curves: Γ1

and Γ2, where each curve Γi are associated with a level set function φi, i = 1, 2. The
domain Ω can now be divided into 4 parts:

Ω1 ={x ∈ Ω, φ1 > 0, φ2 > 0}, Ω2 = {x ∈ Ω, φ1 > 0, φ2 < 0},
Ω3 ={x ∈ Ω, φ1 < 0, φ2 > 0}, Ω4 = {x ∈ Ω, φ1 < 0, φ2 < 0}.

(1.2)

By generalizing further, n level set functions give the possibility of 2n regions [17, 4].
These regions will be disjunct (no overlap) and their union is Ω (no vacuum).

In this work, we propose an alternative approach. Assume that we need to find n
regions {Ωi}n

i=1 which form a portion of Ω. Some of the regions can be empty. This
means that we can over-estimate the total number of phases for practical applications
and superfluous phases will disappear at convergence. In order to find the regions, we
just need to find a piecewise constant function which takes values

φ = i in Ωi, i = 1, 2, · · · , n. (1.3)

The discontinuities of φ give us the curves that separate the regions. For some appli-
cations, we could formulate the identification of the curves as a minimization problem
with respect to φ under some constraints. We believe that this level set formulation
can be applied in different applications where the classical level set methods are used
today. In this work, we restrict ourself to one special case: image segmentation. For
such an application, we shall formulate the segmentation problem as a minimization
problem with respect to φ.

The idea of using one level set function to represent several phases is however not
completely new. In island dynamics models for epitaxial growth of thin films, a large
number of individual interfaces have to be identified. In [9, 5] they use one level set
function to track islands on different monolayers, i.e., they let φ = 0 represent the
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island boundaries of the first monolayer, φ = 1 represent the island boundaries of the
second monolayer and so on. By using just one level set function rather than one per
layer, their algorithm is kept simple and memory costs are kept low. We will use a
similar idea to track different segments in an image. However, to get this terrace level
set formulation to fit into a segmentation framework some innovative work has been
done in this paper. These issues are addressed in the next section.

Further, we would also like to mention that piecewise constant level set methods
have been used in image segmentation before. In [14] they defined an energy functional
dependent on H(φi) where φi = ±1, and they simply checked if the energy decrease
or not when one of the level set functions changed sign at a given point. This method
is extremely fast, but the authors give some examples where this method will fail.

Let us conclude this first section with the outline for this paper. In section 2 we
introduce a functional motivated from an optimal approximation problem. For the
approximation problem we will use the partition described in (1.3) to express a general
function as a piecewise constant function. In section 3 the augmented Lagrangian
method is introduced as a tool to solve the optimal approximation problem. In this
section we also describe our algorithm, together with some other implementation
details. The novelty in our approach, compared with classical level set methods, is
reported in section 4. Finally, section 5 is devoted to numerical examples.

2. Representing Piecewise Constant Functions. We use image segmenta-
tion as an example to show that our method can be utilized to identify curves separat-
ing regions. Let u0 be a function defined in a domain Ω, where u0 reflects the intensity
values for a given gray scale image, possibly imposed with noise. It is assumed that
the intensity value of the true image is slowly varying inside each phase, but has large
jumps between the phases. In order to find the discontinuities, we try to find a piece-
wise constant function to approximate the function u0 and the discontinuities of the
piecewise constant function will give us the boundary between the different phases.

In order to find a piecewise constant function, we need to find the value for
the constants and the location of the discontinuities. To find the locations of the
discontinuities, the curve that separates the regions needs to be determined. Mumford
and Shah [10] proposed to solve the “minimal” partition problem to approximate a
function u0 by a piecewise constant function u

inf
u,Γ

{
FMS(u,Γ) =

∑
i

∫
Ωi

|ci − u0|2dx+ ν|Γ|
}
, (2.1)

where Ω = ∪iΩi∪Γ. They tried to find a decomposition Ωi of Ω, where u=ci (constant)
inside each connected component Ωi. The positive parameter ν controls the length of
the curve Γ. For a fixed Γ, we see that (2.1) is minimized when ci = mean(u0) in Ωi.
A challenge when solving (2.1) is to find a unique representation of the parameterized
curve Γ. To accommodate this problem, Chan and Vese [1] reformulated and solved
(2.1) using a level set approach

inf
c,φ

{
F (c1, c2, φ) =

∫
Ω

|c1−u0|2H(φ) dx+
∫
Ω

|c2−u0|2(1−H(φ)) dx+ν
∫
Ω

|∇H(φ)| dx
}
,

(2.2)
where the Heaviside function H(φ) equals 1 if φ ≥ 0 and equals 0 if φ < 0. The
regularization term

∫
Ω

|∇H(φ)| dx measures the length of the interface [6] and favor
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smooth curves. Minimizing F (c1, c2, φ) with respect to c1 and c2, we obtain: c1 =
mean(u0) if φ > 0 and c2 = mean(u0) if φ < 0.

The active contour model without edges (2.2) can only divide Ω into two distinct
regions. Later, Chan and Vese generalized this 2-phase active contour model to a
multiphase level set formulation [4, 16]. By using a multiphase level set representation,
it is possible to solve the “minimal” partition problem (2.1) for an arbitrary number
of partitions. Below we show the energy functional for a 4-phase partition, involving
2 level set functions

F (c, φ1, φ2) =
∫
Ω

|c1 − u0|2H(φ1)H(φ2) dx+
∫
Ω

|c2 − u0|2H(φ1)(1−H(φ2)) dx

+
∫
Ω

|c3 − u0|2(1−H(φ1))H(φ2) dx+
∫
Ω

|c4 − u0|2(1−H(φ1))(1−H(φ2)) dx

+ ν

∫
Ω

|∇H(φ1)| dx+ ν

∫
Ω

|∇H(φ2)| dx. (2.3)

Once the constant values {ci}4
i=1 and the level set functions φ1, φ2 are identified, the

piecewise constant function u can be written as

u = c1H(φ1)H(φ2) + c2H(φ1)(1−H(φ2)) + c3(1−H(φ1))H(φ2)
+ c4(1−H(φ1))(1−H(φ2)). (2.4)

Given u on this form, an alternative formulation of (2.3) was suggested in [3, 7]. Here
the authors tried to minimize the following energy functional directly with u given as
in (2.4)

F (c, φ1, φ2) =
∫
Ω

|u− u0|2dx+ ν

∫
Ω

|∇φ1|dx+ ν

∫
Ω

|∇φ2|dx. (2.5)

The above functional is essentially an application of the functional given in [3] for
the image segmentation problem. Omitting the regularization term, functional (2.3)
equals functional (2.5) except from one scalar. However, the gradients are not equal,
producing different numerical schemes. Tests in [7] indicate somewhat better per-
formance using the gradient associated with functional (2.5). Using the approaches
above, two level set functions must be utilized to find four disjunct regions covering
Ω. Correspondingly, we need to identify n functions and 2n constants in order to
identify the regions for 2n phases.

Using our new approach as shown in (1.3), we just need one function to identify
all the phases. Associated with φ, we define the basis functions ψi as

ψi =
1
αi

n∏
j=1
j 6=i

(φ− j) and αi =
n∏

k=1
k 6=i

(i− k). (2.6)

It is clear that a function u given by

u =
n∑

i=1

ciψi (2.7)
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is a piecewise constant function and u = ci in Ωi if φ is as given in (1.3). The sum in
u involves basis functions of polynomial functions of order n−1 in φ and the unknown
coefficients ci, i = 1, 2, · · ·n. Each ψi is expressed as a product of linear factors of
the form (φ − j), with the ith factor omitted. Thereupon ψi(x)=1 for x ∈ Ωi, and
ψi(x) equals zeros elsewhere as long as (1.3) holds. The basis functions can further
be utilized to express arc length of ∂Ωi and the area Ωi of each phase, i.e.

|∂Ωi| =
∫

Ω

|∇ψi| dx and |Ωi| =
∫

Ω

ψi dx. (2.8)

In Fig. 2.1 we demonstrate the relationship between an image function u, the
partition of Ω associated with this image, the piecewise constant level set function φ
and the corresponding basis functions ψi, i = 1, 2, 3. To ensure that equation (2.7)

(a) Image u with 3 ob-
jects.
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(c) Level set function φ = 1 ∨ 2 ∨ 3.
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(d) Basis function ψ1. ψ1 = 0
or 1.
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(e) Basis function ψ2. ψ2 = 0
or 1.
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(f) Basis function ψ3. ψ3 = 0
or 1.

Fig. 2.1. The relationship between an image function u ∈ BV (Ω), the partition of Ω associated
with the image, the piecewise constant level set function φ and the corresponding basis functions ψi,
i = 1, 2, 3.

gives us a unique representation of u, i.e. at convergence different values of φ should
correspond to different function values u(φ) in (2.7), we introduce

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ− i). (2.9)

If a given function φ : Ω 7→ R satisfies

K(φ) = 0, (2.10)
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there exists a unique i ∈ {1, 2, · · · , n} for every x ∈ Ω such that φ(x) = i. Thus,
each point x ∈ Ω can belong to one and only one phase if K(φ) = 0. Thus constraint
(2.10) is used to guarantee that there is no vacuum and overlap between the different
phases. In [17] some other constraints for the classical level set methods were used to
avoid vacuum and overlap.

Based on the above observations, we propose to solve the following constrained
minimization problem for segmenting an image u0

min
c, φ

K(φ)=0

{
F (c, φ) =

∫
Ω

|u− u0|2dx+ β
n∑

i=1

∫
Ω

|∇ψi|dx
}
. (2.11)

We see that large approximation errors will be penalized by the fidelity term
∫
Ω
|u−

u0|2. From (2.8), it is clear that the penalization term is just the sum of the length of
the subdomain boundaries and the penalization parameter β > 0 controls the effect of
these terms. Another approach could be to regularize φ directly in (2.11). This would
make the algorithm simpler, but the total variation norm of φ is related to both the
jumps and the length of the subdomain boundaries. Such a penalization will depend
on the jumps which is not preferable for our case, see Fig. 2.1(c). We just want to
penalize the length of the curves. If the image u0 is a piecewise constant function and
we take β = 0, then any minimizer of (2.11) will give a function u such that u = u0

where u is related to the minimizers c and φ as in (2.7).

3. Minimization using augmented Lagrangian Method. We shall use the
augmented Lagrangian method to solve the constrained minimization problem (2.11).
The augmented Lagrangian functional for this minimization problem is defined as

L(c, φ, λ) = F (c, φ) +
∫

Ω

λK(φ) dx+
r

2

∫
Ω

|K(φ)|2dx, (3.1)

where λ ∈ L2(Ω) is the multiplier and r > 0 is a penalty parameter which needs to be
chosen properly. To find a minimizer for (2.11), we need to find the saddle points for
L. We use the following Uzawa type algorithm to find a saddle point for L(c, φ, λ)

Algorithm 1. Choose initial values for φ0 and λ0. For k = 1, 2, · · · , do:
1. Find ck from

L(ck, φk−1, λk−1) = min
c
L(c, φk−1, λk−1). (3.2)

2. Use (2.7) to update u =
∑n

i=1 c
k
i ψi(φk−1).

3. Find φk from

L(ck, φk, λk−1) = min
φ
L(ck, φ, λk−1). (3.3)

4. Use (2.7) to update u =
∑n

i=1 c
k
i ψi(φk).

5. Update the Lagrange-multiplier by

λk = λk−1 + rK(φk). (3.4)

This algorithm has a linear convergence and its convergence has been analyzed in
Kunisch and Tai [8] under a slightly different context. This algorithm has also been
used in Chan and Tai [3, 2] for a level set method for elliptic inverse problems.
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There are different methods to solve minimization problem (3.3). We have used
the gradient method with a fixed step size to solve it. For a given old value of φ, we
get a new φ by

φnew = φold −∆t
∂L

∂φ
(ck, φold, λk−1). (3.5)

The step size ∆t is chosen by a trial and error approach and it is fixed during the
whole iterative procedure. It is not necessary to solve the minimization problem (3.3)
exactly. We terminate the gradient iteration (3.5) when∥∥∥∥∂L∂φ (ck, φnew, λk−1)

∥∥∥∥
L2

≤ 1
10

∥∥∥∥∂L∂φ (ck, φk−1, λk−1)
∥∥∥∥

L2

(3.6)

is reached or else after each 400 iterations, whereupon we take φk = φnew. To compute
dL
dφ we utilize the chain rule to get

∂L

∂φ
= (u− u0)

∂u

∂φ
− β

n∑
i=1

∇·
( ∇ψi

|∇ψi|

)∂ψi

∂φ
+ λ

∂K

∂φ
+ rK

∂K

∂φ
. (3.7)

It is easy to get ∂u/∂φ, ∂ψi/∂φ and ∂K/∂φ from (2.6), (2.7) and (2.9).
As u is linear with respect to the ci values, we see that L is quadratic with respect

to ci. Thus the minimization problem (3.2) can be solved exactly. Note that

∂L

∂ci
=

∫
Ω

∂L

∂u

∂u

∂ci
=

∫
Ω

(u− u0)ψi dx, for i = 1, 2, · · ·n. (3.8)

Therefore, the minimizer of (3.2) satisfies a linear system of equations Ack = b

n∑
j=1

∫
Ω

(ψjψi)cki dx =
∫
Ω

u0ψi dx, for i = 1, 2, · · ·n. (3.9)

In the above ψj = ψj(φk), ψi = ψi(φk) and thus, ck = {cki }n
i=1 depends on φk. In our

simulations, we form the matrix A and vector b and solve the equation Ack = b by
an exact solver.

Remark 1. The updating for the constant values in (3.2) is very ill-posed. A
small perturbation of the φ function produces a large perturbation for the c values.
Due to this reason, we have tried out a variant of Algorithm 1. In each iteration we
alternate between (3.3) and (3.4), while (3.2) is only carried out if ‖K(φnew)‖L2 <
1
10‖K(φold)‖L2 . Here, φold denotes the value of φ when (3.2) was carried out the last
time and φnew denotes the current value of φ. If we use such a strategy, we can do
just one or a few iterations for the gradient scheme (3.5) and Algorithm 1 is still
convergent. This strategy is particular efficient when the amount of noisy is high.

Remark 2. In Algorithm 1, we give initial values for φ and λ. We first minimize
with the constant values, and then minimize with the level set function. The multiplier
is updated in the end of each iteration. In situations where good initial values for c are
available, an alternative variant of Algorithm 1 may be used, i.e. we first minimize
with the level set function followed by a minimization for the constant values and then
update the multiplier.
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4. Strength and Weakness of our Level Set Formulation. In this section
we will point out the main differences between a classical level set formulation and the
variant we have proposed here. First, while multiple level set methods [4, 16] utilize n
level set functions to represent 2n distinct phases, our alternative level set formulation
let us represent the same number of phases using only one level set function. This
gains the storage capacity.

Further, when minimizing (2.3), the associated Euler-Lagrange equations are [4,
16]

∂φ1

∂t
= δ(φ1)

{
β div

( ∇φ1

|∇φ1|

)
−

[(
(u0 − c1)2 − (u0 − c3)2

)
H(φ2) +

(
(u0 − c2)2 − (u0 − c4)2

)
(1−H(φ2))

]}
,

∂φ2

∂t
= δ(φ2)

{
β div

( ∇φ2

|∇φ2|

)
−

[(
(u0 − c1)2 − (u0 − c2)2

)
H(φ1) +

(
(u0 − c3)2 − (u0 − c4)2

)
(1−H(φ1))

]}
,

(4.1)

where both the Heaviside function H(φ) and the Delta function δ(φ) are involved.
Normally, these functions have to be regularized, see for example [1] for different
approximations for Hε(φ) and δε(φ). Without these approximations the level set
functions φi, i=1,2, do not evolve properly, and converge to a local minimum. How-
ever, some numerical errors do occur when approximations are used for Hε(φ) and
δε(φ). For small ε, the Delta function δε(φ) is a function with sharp singular layers
around the zero level curve of φ. We do not use such approximations in our formula-
tion. The energy function for our approach is smooth and convex. The convergence
for the Uzawa algorithm can be analyzed and it has a linear convergence rate.

Also, φ is normally initialized as the signed distance function like in (1.1). How-
ever, as the interface evolves, φ will generally drift away from its initialized value.
Moreover, φ may develop noisy features and steep gradients that are not amenable
to finite-difference approximations. For this reason, it is advisable to reinitialize the
level set function, i.e. force φ to satisfy the partial differential equation: |∇φ| = 1.
The reinitializing technique is superfluous in our formulation.

Advantages using classical level set methods are the ability to express geometrical
quantities and motions. The length of the zero level curve Γ and the area A of
the region inside Γ are measured by |Γ| =

∫
Ω
|∇H(φ)| dx and |A| =

∫
Ω
|H(φ)| dx.

Further, the unit normal N and the mean curvature κ to Γ are defined by N= ∇φ
|∇φ|

and κ = ∇ ·N. For our approach, there are some difficulties to find a suitable way to
represent the unit normal and the mean curvature for the curves.

Another shortcoming of our method is that higher order polynomials are used as
basis functions to represent u in (2.7). Further, the same basis functions are also used
to find c in (3.9). To illustrate this weakness, we depict the linear, quadratic, cubic
and quartic basis functions in Fig. 4.1. In Fig. 4.1 we see that one, and only one basis
function is different from zero at each root when K(φ) = 0 is fulfilled. However, by
inspecting the higher order basis functions ψi in Fig. 4.1(c) and (d) we see that even a
small perturbation away from each root causes a significant change in the contribution
from several of the basis functions. This sensitivity for perturbations makes the
coefficient matrix in (3.9) ill-conditioned. To cure this problem we could search for
other basis functions with better orthogonality properties, but that is outside the
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(a) Linear basis functions ψi, i=1,2.
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(b) Quadratic basis functions ψi, i=1,2,3.
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(c) Cubic basis functions ψi, i = 1, 2, · · · , 4.

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Quartic basis functions ψi, i = 1, 2, · · · , 5.

Fig. 4.1. Different basis functions defined in (2.6).

scope of this paper.
To the end, we emphasize that numerical tests have shown that proper initial

guess are needed using our approach. Fortunately we can use a simple strategy to
approximate the constant coefficients ci. Basically these constants are given by (3.9)
if ψi(φ) is approximately known. Assume now that an observed signal u0 should
be segmented into n phases. From the constraint K(φ) = 0 it follows that φ must
take values in the set {1, 2, · · · , n}. As an approximation for φ we let φ = u0 and
thereafter rescale φ such that 1 ≤ φ(x, y) ≤ n for (x, y) ∈ Ω. Using this approach we
have a way to initialize φ and find ψi(φ) to get good initial guess for the coefficients
ci, i = 1, 2, · · · , n.

5. Numerical Results. In this section we validate the piecewise constant level
set method (PCLSM) with numerical examples. We consider only two-dimensional
cases and restrict ourself to gray-scale images, but the model can handle any dimension
and can be extended to vector-valued images as well. Both synthesized images, natural
scenes and a MR image are evaluated in this section. Our results will be compared
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(a) Observed image u0 (SNR≈ 5.2).
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(b) Initial level set function φ.
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(c) Different phases using PCLSM.
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(d) At convergence φ approaches 4 constant
values.

Fig. 5.1. Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 are depicted as a bright region in Fig. 5.1(c).

with other related works [4, 16, 15]. The original image is known for some cases we
evaluate here. Thereupon it is trivial to find the perfect segmentation result. To
complicate such a segmentation process we typically expose the original image with
Gaussian distributed noise and use the polluted image as the observation data u0.
To indicate the amount of noise that appears in the observation data, we report the
signal-to-noise-ratio: SNR= variance of data

variance of noise.
To demonstrate a 4-phase segmentation we begin with a noisy synthetic image

containing 3 objects (and a background) as shown in Fig. 5.1(a). This is the same
image as Chan and Vese used to examine their multiphase algorithm [4, 16]. A careful
evaluation of our algorithm is reported below. The observation data u0 is given in
Fig. 5.1(a) and the only assumption we make is that a 4-phase model should be utilized
to find the segments. In Fig. 5.1(d) the φ function is depicted at convergence (less
than 1000 iteration). φ approaches the predetermined constants φ = 1 ∨ 2 ∨ 3 ∨ 4.
Each of these constants represents one unique phase as seen in Fig. 5.1(c). Our result
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(a) Observed image u0 (SNR≈ 5.2).
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(b) Initial level set function φ.
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(c) Different phases using PCLSM.
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(d) At convergence φ approaches 4 constant
values.

Fig. 5.2. Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 are depicted as a bright region in Fig. 5.2(c).

is in accordance with what Chan and Vese report in [4, 16].
In many applications the number of objects to detect are not known a priori.

A robust and reliable algorithm should find the correct segmentation even when the
exact number of phases are not known. By introducing a model with more phases
than one actually needs, we can find the correct segmentation if all superfluous phases
are empty when the algorithm has converged. To see if our algorithm can handle such
a case we use Fig. 5.2(a) as the observation image and utilize a 5-phase model. Our
results are reported below. One of the 5 phases must be empty if a 5-phase model
is used to find a 4-phase segmentation. Due to the high noise level some pixels can
easily be misclassified and contribute to the phase that should be empty. The level
set function shown in Fig. 5.2(d) approaches the constants φ = 1 ∨ 2 ∨ 4 ∨ 5, except
from the few misclassified pixels where φ = 3 as seen in Fig. 5.2(c). By comparing
Fig. 5.1(c) (where a 4-phase model is used) and Fig. 5.2(c) (where a 5-phase model is
used), we observe only small changes in the segmented phases, except from the extra
nonempty phase φ = 3 in Fig. 5.2(c). For a test like this, we can not control which
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(a) Observed image u0 (SNR≈ 10.6).
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(b) Initial level set function φ.
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(c) Different phases using PCLSM.
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(d) At convergence φ approaches 5 constant
values.

Fig. 5.3. Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 are depicted as a bright region in Fig. 5.3(c).

phase that ends up empty.
In the example below we use PCLSM to find a 5-phase segmentation. We use

a noisy synthetic image containing 4 stars on 4 different backgrounds, as shown in
Fig. 5.3(a). There are only 5 different phases in this image. The star in the upper left
corner belongs to same phase as the background in the upper right corner. Further,
the star in the upper right corner belongs to the same phase as the background in
the lower left corner, and the star in this corner belongs to the same phase as the
background in the lower right corner. In total that gives us 5 different phases. Almost
no misclassification was observed in this test. By using one level set function, we
manage to find all 5 objects, as seen from Fig. 5.3(c). This is in contrast to classical
level set methods where 3 level set functions must be utilized to get the same result.

If an image actually consists of 5 objects, but a 4-phase model is utilized in the
segmentation procedure, one may hope that 2 of the 5 objects merge into 1 new
object without affecting the segmentation result for the other objects. Below we
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(a) Observed image u0 (SNR≈ 10.6).
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(b) Initial level set function φ.
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(c) Different phases using PCLSM.
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(d) At convergence φ approaches 4 constant
values.

Fig. 5.4. Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 are depicted as a bright region in Fig. 5.4(c).

depict our result using Fig. 5.4(a) as the observation data in a 4-phase segmentation.
By comparing Fig. 5.3(c) and Fig. 5.4(c) we see that phase φ = 2 and phase φ = 3 in
Fig. 5.3(c) have merged into one phase φ = 2 in Fig. 5.4(c). All other phases seem to
be unaffected of this.

All the examples above indicate that our algorithm is an interesting alternative
to the multiphase algorithm [4, 16] where standard level set formulation is utilized.
We have shown that our algorithm is robust with respect to noise. As in [4, 16]
we have shown that the exact number of phases do not have to be known a priori.
Redundant phases can disappear in the sense that they will end up empty. Below
we proceed with some examples using real pictures (some natural scene and one
MR image). First we demonstrate that PCLSM can be use to extract characters or
numbers form images. We begin with an image of an old newspaper where only two
phases are needed; one phase to represent the characters and one phase to represent
the remaining. To evaluate the segmentation process, the Chan/Vese method [4, 16],
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(a) Old newspaper.
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(c) Result using PCLSM.
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(d) Result using CVM.

Fig. 5.5. For the purpose of illustration only a small partition of the level set function φ is
depicted in the upper right corner. We see that φ takes two constant values, as it should.

for short (CVM), is examined using the same input image. The results achieved
with the segmentation techniques PCLSM and CVM are shown in Fig. 5.5(c) and
Fig. 5.5(d) respectively. Few differences between the segmented images were observed,
but a careful inspection of all characters in Fig. 5.5(c) and Fig. 5.5(d) reveals that
PCLSM preserves small details somewhat better than CVM. In this paper we will
mainly focus on the segmentation process, but let us briefly describe a way to identify
the characters separated by phase φ = 2 given in Fig. 5.5(b). First one can isolate
each character in this phase by a Peak-and-valley method [13]. Thereafter, to identify
the isolated characters, the center of mass for each character is aligned to the center
of mass for all character templates in a database. Thereafter each isolated character
is registered to all templates. Finally the difference between each registered character
and all templates are measured. The template corresponding to the smallest difference
in L2-norm is chosen to be the solution.

In the next example we illustrate a 2-phase segmentation on a real car plate
image. Locating and reading car plates is a well known problem, and there are a
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(a) Real image of a car plate.
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(b) Initial image (SNR≈ 1.7).
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(c) Segmented with PCLSM.
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(d) Segmented with CVM.

Fig. 5.6. Character and number segmentation from a car plate.

number of commercial software available. Below we demonstrate that our level set
method can be used in such an application. Since character and number recognitions
are the main target in this example, we assume the location of the car plate to be
known. A perfect segmentation was found with both PCLSM and CVM if Fig. 5.6(a)
was used as the observation data. We challenge these two segmentation techniques
by adding Gaussian distributed noise to the real image and use the polluted image
in Fig. 5.6(b) as the observation data. With this amount of noise both PCLSM and
CVM miss some details along the edges for the characters and numbers. By increasing
the regularization term for CVM we obtain smoother edges but then each character or
number may be broken into several pieces. From Fig. 5.6(c) we see that each character
and number appear as unbroken.

In our next example segmentation of a MR image is demonstrated. The image in
Fig. 5.7 is available to the public at http://www.bic.mni.mcgill.ca/brainweb/. These
realistic MRI data are used by the neuroimaging community to evaluate the perfor-
mance of various image analysis methods in a setting where the truth is known. For
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Fig. 5.7. MRI image with a change in the intensity values going from left to right caused by
the non-uniformity RF-puls.

the image used in this test the noise level is 7% and the non-uniformity intensity level
of the RF-puls is 20%, see http://www.bic.mni.mcgill.ca/brainweb/ for details con-
cerning the noise level percent and the intensity level of the RF-puls. Both PCLSM
and SPM [15] are used to segment the above MRI phantom and the results are de-
picted in Fig. 5.8. SPM is a statistical segmentation software program to process MRI
data for research and clinical use. In Fig. 5.8 there are three tissue classes that should
be identified; phase 1: cerebrospinal fluid, phase 2: gray matter, phase 3: white mat-
ter. Because of this, four phases were used, but we do not depict the background
phase here. The main difference between PCLSM and SPM is their ability to handle
noisy data. SPM is adjusted for MR data, but each phase obtained with SPM is
perforated with misclassified pixels. The same problem does not occur with PCLSM.

As a final example we consider a scattered data problem. Here the goal is to
connect single observation points and form continuous objects. The lights in a satellite
image of Europe by night act as scattered data points. The intensity from each light
source is the same, but the density of data points fluctuate within the satellite image.
Generally it is hard to find features by connecting single observation points. Models
based on edge stopping functions will fail completely for applications like this. We do
not reckon our model as well suited for scattered data problems, but by following the
proposition from remark 1 in section 3 we managed to get the result in Fig. 5.9(c).
This result is comparable with what Chan and Vese report in [1] for the same satellite
image. In Fig. 5.9(b)-(d) we demonstrate the effect of the total variation norm for ψi

in (2.11). Weighting these terms too softly causes an image with perforated regions
as seen in Fig. 5.9(b). On the other hand, if these terms are weighted too hard all
sparse regions disappear, as seen in Fig. 5.9(d).
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submission of this work.
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(a) SPM: phase 1.
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(b) PCLSM: phase 1.
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(c) Exact: phase 1.
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(d) SPM: phase 2.
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(e) PCLSM: phase 2.
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(f) Exact: phase 2.
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(g) SPM: phase 3.
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(h) PCLSM: phase 3.
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(i) Exact: phase 3.

Fig. 5.8. SPM is adjusted for MR data, but it seems hard for SPM to handle to noise properly.
All phases found by PCLSM match the exact phases in a better way than SPM does.
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Fig. 5.9. Scattered data are connected to form an object.
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