The classical inverse ECG problem

Is it possible to compute the electrical potential at the surface of the heart from body surface measurements?

Т

research laboratory

The Bidomain model

Н

$$\begin{split} \chi C_m \frac{\partial v}{\partial t} + \chi I_{\mathsf{ion}}(v) &= \nabla \cdot (\boldsymbol{M}_i \nabla v) + \nabla \cdot (\boldsymbol{M}_i \nabla u_e) \quad \text{in } H \\ \nabla \cdot (\boldsymbol{M}_i \nabla v) + \nabla \cdot ((\boldsymbol{M}_i + \boldsymbol{M}_e) \nabla u_e) &= 0 \quad \text{in } H \\ \nabla \cdot \boldsymbol{M} \nabla u &= 0 \quad \text{in } T \end{split}$$

• $v = u_i - u_e$: membrane potential

- *I*ion: ionic current
- M_i, M_e : conductivity tensors

Why?

- Improve traditional ECG recordings
- Better qualitative and quantitative understanding of the heart
- Detect diseases and malfunctions

...

simula . research laboratory]

Inner

1/48

Outside the heart

In T (torso):

 $\nabla \cdot (M \nabla u) = 0 \quad \text{in } T,$ $(M \nabla u) \cdot n = 0 \quad \text{along } \partial T.$

(Not a closed problem!)

3/48

ECG (electrocardiogram)

- ECG recording $\rightarrow d = d(t)$ along $\Gamma \subset \partial T$
- Focus on one time instance $t = t^*$, $d = d(t^*)$
- Briefly about the time dependent problem

V4

Outside the heart + ECG

In T (torso):

 $\nabla \cdot (M\nabla u) = 0 \quad \text{in } T,$ (M\scale u) \cdot n = 0 \quad along \partial T, + ECG recording of u along \Gamma \scale \partial T.

u along ∂H ?

The Challenge, cont.

Operator $R(g) = u(g)|_{\Gamma}$, where u = u(g) solves

$$\begin{aligned} \nabla \cdot (M \nabla u) &= 0 & \text{in } T, \\ (M \nabla u) \cdot n &= 0 & \text{along } \partial T, \\ u &= g & \text{along } \partial H. \end{aligned}$$

Find *g* such that

$$R(g) = d$$

where d is the data from the ECG recording

Properties

Solve

$$R(g) = d \tag{1}$$

for g.

- *R* is a linear operator
- (1) is ill-posed
- If $d \notin \operatorname{Range}(\mathbf{R})$

$$\min_{g} \|R(g) - d\|^2.$$

esearch laboratorv

5/48

simula . research laboratory]

Inner

This lecture

- Fourier analysis on the unit square, stationary
- The general case, stationary
- The time dependent problem
- Numerical results

Fourier analysis

Fourier analysis

simula . research laboratory]

The direct problem

Find u = u(g) satisfying

 $\begin{array}{rcl} \Delta u &=& 0 & \mbox{in } T, \\ \nabla u \cdot n &=& 0 & \mbox{along } \partial T, \\ u &=& g & \mbox{along } \partial H. \end{array}$

a . research laboratory

9/48

The direct problem, cont.

Separation of variables:

$$N_k(x,y) = \cos(k\pi x)\cosh(k\pi y), \quad k = 0, 1, \dots$$

satisfies

research laboratory

simula - research laboratory

$$\Delta u = 0 \quad \text{in } T,$$

$$\nabla u \cdot n = 0 \quad \text{along } \partial T.$$

The direct problem, cont.

Fourier cosine series of *g*:

$$g(x) = \sum_{k=0}^{\infty} p_k \cos(k\pi x)$$

Solution formula for the direct problem

$$u(g)(x,y) = u(x,y) = \sum_{k=0}^{\infty} \frac{p_k}{\cosh(k\pi)} \cos(k\pi x) \cosh(k\pi y).$$

The direct problem, cont.

Linearity:

$$u(x,y) = \sum_{k=0}^{\infty} c_k \cos(k\pi x) \cosh(k\pi y),$$

where $\{c_k\}$ are constants, satisfies

 $\Delta u = 0 \quad \text{in } T,$ $\nabla u \cdot n = 0 \quad \text{along } \partial T.$

The direct problem, cont.

R: heart surface \rightarrow body surface

$$R(g) = R\left(\sum_{k=0}^{\infty} p_k \cos(k\pi x)\right) = u(g)(x,0)$$
$$= \sum_{k=0}^{\infty} \frac{p_k}{\cosh(k\pi)} \cos(k\pi x)$$

simula . research laboratory]

lower

13/48

The direct problem, cont.

- Fourier coeff.: $p_k \to \frac{p_k}{\cosh(k\pi)}$
- Large k

$$\left|\frac{p_k}{\cosh(k\pi)}\right| \ll |p_k|$$

strong damping effect

R has a strong smoothing effect

The direct problem, cont.

17/48

The inverse problem

- R: heart surface \rightarrow body surface
- For a given ECG recording d, find g such that

$$R(g) = d$$

Recall that

$$R\left(\sum_{k=0}^{\infty} p_k \cos(k\pi x)\right) = \sum_{k=0}^{\infty} \frac{p_k}{\cosh(k\pi)} \cos(k\pi x)$$

simula . research laboratory]

The inverse problem, cont

Consequently

$$R\left(\cos(k\pi x)\right) = \frac{1}{\cosh(k\pi)}\cos(k\pi x)$$

Eigenvalues

$$\lambda_k = \frac{1}{\cosh(k\pi)} \quad k = 1, 2, \dots$$

- Zero is a cluster point for $\{\lambda_k\}$
- R not continuously invertible, R^{-1} <u>not</u> "well-behaved"

The inverse problem, cont.

Fourier expansion

$$d(x) = \sum_{k=0}^{\infty} d_k \cos(k\pi x)$$

Can Easy solve R(g) = d for $g = \sum_{k=0}^{\infty} p_k \cos(k\pi x)$:

$$R(g) = \sum_{k=0}^{\infty} \frac{p_k}{\cosh(k\pi)} \cos(k\pi x) = \sum_{k=0}^{\infty} d_k \cos(k\pi x),$$

yields

esearch laboratory

$$p_k = d_k \cosh(k\pi)$$
 for $k = 0, 1, \dots$

Example 1

- Exact data, $d(x) = \cosh^{-1}(\pi) \cos(\pi x)$
- Error-prone data, $d_{\delta}(x) = d(x) + \delta \cos(5\pi x)$
- Then
- $R^{-1}(d_{\delta}) R^{-1}(d) \approx 3.32 \cdot 10^6 \,\delta \cos(5\pi x)$
- For example, $||d_{\delta} d||_{L^{\infty}} = O(10^{-3})$ implies that

 $||R^{-1}(d_{\delta}) - R^{-1}(d)||_{L^{\infty}} = O(10^3)$

The inverse problem, cont.

Consequently

simula . research laboratory]

21/48

$$g(x) = R^{-1}(d(x)) = R^{-1}\left(\sum_{k=0}^{\infty} d_k \cos(k\pi x)\right)$$
$$= \sum_{k=0}^{\infty} d_k \cosh(k\pi) \cos(k\pi x)$$

• Fourier coeff.: $d_k \to d_k \cosh(k\pi)$

• Even for small k, $\cosh(k\pi)$ is large, e.g.

 $\cosh(5\pi) \approx 3.32 \cdot 10^6$

Regularization

Output least squares, minimize

 $J(g) = \|R(g) - d\|_{L^{2}(\Gamma)}^{2}$

Tikhonov regularization

$$J_{\epsilon}(g) = \|R(g) - d\|_{L^{2}(\Gamma)}^{2} + \epsilon \|g\|_{L^{2}(\partial H)}^{2}$$

Second order Tikhonov regularization

 $J_{2,\epsilon}(g) = \|R(g) - d\|_{L^2(\Gamma)}^2 + \epsilon \|g_{xx}\|_{L^2(\partial H)}^2$

Approximations

$$R_{\epsilon}^{-1} pprox R^{-1}$$
 and $R_{2,\epsilon}^{-1} pprox R^{-1}$

(derived from $\nabla J_{\epsilon} = 0$ and $\nabla J_{2,\epsilon} = 0$)

22/

Regularization, cont.

- R: heart surface \rightarrow body surface
 - No regularization

$$R^{-1}\left(\sum_{k=0}^{\infty} d_k \cos(k\pi x)\right) = \sum_{k=0}^{\infty} d_k \cosh(k\pi) \cos(k\pi x)$$

Tikhonov

$$R_{\epsilon}^{-1}\left(\sum_{k=0}^{\infty} d_k \cos(k\pi x)\right) = \sum_{k=0}^{\infty} d_k \frac{\cosh(k\pi)}{1 + \epsilon \cosh^2(k\pi)} \cos(k\pi x)$$

Second order Tikhonov

$$R_{2,\epsilon}^{-1}\left(\sum_{k=0}^{\infty} d_k \cos(k\pi x)\right) = \sum_{k=0}^{\infty} d_k \frac{\cosh(k\pi)}{1 + \epsilon(k\pi)^4 \cosh^2(k\pi)} \cos(k\pi x)$$

Example 1, revisited

- Exact data, $d(x) = \cosh^{-1}(\pi) \cos(\pi x)$
- Error-prone data, $d_{\delta}(x) = d(x) + \delta \cos(5\pi x)$
- Tikhonov, error

$$E(\epsilon,\delta) = \|R^{-1}(d) - R^{-1}_{\epsilon}(d_{\delta})\|_{L^{2}(\partial H)}^{2}$$

Regularization, cont.

- For the low frequency components of the data d, the action of R^{-1} , R_{ϵ}^{-1} and $R_{2,\epsilon}^{-1}$ is almost identical, provided that ϵ is small
- The high frequency components of d are damped efficiently by R_{ϵ}^{-1} and $R_{2,\epsilon}^{-1}$

Example 1, revisited - cont.

- L^2 error on the heart surface
 - No regularization

 $e(\delta) \approx 2.35 \cdot 10^6 \delta$

Tikhonov (optimal regularization)

 $E(\delta) \approx 4.05 \cdot 10^{-5} \delta$

Second order Tikhonov (optimal regularization)

 $E_2(\delta) \approx 6.48 \cdot 10^{-8} \delta,$

research laboratory

simula . research laboratory

Example 1, revisited - cont.

- Second order works better than plain Tikhonov regularization
- In general, difficult to find an optimal value for the regularization parameter ϵ

The general case

R: heart surface \rightarrow (part of the) body surface

- Complex geometry
- Non-constant conductivity M
- Fourier analysis impossible

The general case, cont.

Operator $R(g) = u(g)|_{\Gamma}$, where u = u(g) solves

$$\begin{aligned} \nabla \cdot (M \nabla u) &= 0 & \text{in } T, \\ (M \nabla u) \cdot n &= 0 & \text{along } \partial T, \\ u &= g & \text{along } \partial H \end{aligned}$$

and $\Gamma \subset \partial H$.

Find *g* such that

simula . research laboratory]

simula - research laboratory]

Inner

29/48

Linearity

R is a linear operator:

 $R(a_1g_1 + a_2g_2) = a_1R(g_1) + a_2R(g_2),$

for any scalars a_1 and a_2 and functions g_1 and g_2 defined on ∂H .

We will use this fact to discretize our inverse problem

Discretization

Linearly independent functions

 $g_1,\ldots,g_n:\partial H\to\mathbb{R},$

and

$$V_n = \operatorname{span}\{g_1, \dots, g_n\},$$

$$R_n = R|_{V_n}$$

Discretization, cont.

Original problem

 $R_n(g) = d$

• $d \notin \operatorname{Range}(R_n)$

$$\min_{g \in V_n} \|R_n(g) - d\|_{L^2(\Gamma)}^2$$

Tikhonov

$$\min_{g \in V_n} \left\{ \|R_n(g) - d\|_{L^2(\Gamma)}^2 + \epsilon \|g\|_{L^2(\partial H)}^2 \right\}$$

Discretization, cont.

 $g \in V_n$:

[simula . research laboratory]

33/48

$$g = \sum_{i=1}^{n} p_i g_i,$$

where $\{p_i\}$ are scalars. Consequently, if

$$r_i = R_n(g_i)$$
 for $i = 1, ..., n$,

then the linearity of R_n implies that

$$R_n(g) = \sum_{i=1}^n p_i r_i.$$

34

Discretization, cont.

$$g = \sum_{i=1}^{n} p_i g_i, \text{ thus}$$

$$J_{\epsilon}(g) = J_{\epsilon}(p_1, \dots, p_n)$$

$$= ||R_n(g) - d||^2_{L^2(\Gamma)} + \epsilon ||g||^2_{L^2(\partial H)}$$

$$= ||\sum_{i=1}^{n} p_i r_i - d||^2_{L^2(\Gamma)} + \epsilon ||\sum_{i=1}^{n} p_i g_i||^2_{L^2(\partial H)},$$

where

$$r_i = R_n(g_i)$$
 for $i = 1, ..., n$

[simula . research laboratory]

a . research laboratory

Discretization, cont.

The condition

$$\frac{\partial J_{\epsilon}}{\partial p_i} = 0$$
 for $i = 1, \dots, n$

gives the $n \times n$ system

$$\sum_{i=1}^{n} \left[\int_{\Gamma} r_j r_i \, dx + \epsilon \int_{\partial H} g_j g_i \, dx \right] \, p_j = \int_{\Gamma} dr_i \, dx \quad \text{for } i = 1, \dots, n.$$

research laboratory

An algorithm

a) Pick n linearly independent functions

 $g_1,\ldots,g_n:\partial H\to \mathbb{R},$

defined at the surface ∂H of the heart H

b) For i = 1, ..., n, set $g = g_i$ in the direct problem and solve it for $u = u(g_i)$

c) Compute

$$r_i = u(g_i)|_{\Gamma}, \quad i = 1, \dots, n$$

Discretization, cont.

Which may be written on the form

$$B_{\epsilon}p=c,$$

where

$$B_{\epsilon} = [b_{\epsilon,ij}] \in \mathbf{R}^{n \times n}, \quad b_{\epsilon,ij} = \int_{\Gamma} r_j r_i \, dx + \epsilon \int_{\partial H} g_j g_i \, dx$$
$$p = (p_1, \dots, p_n)^T \in \mathbf{R}^n,$$
$$c = \left(\int_{\Gamma} dr_1 \, dx, \dots, \int_{\Gamma} dr_n \, dx\right)^T \in \mathbf{R}^n,$$

37/48

simula - research laboratory]

Inner

An algorithm, cont.

- d) Compute the matrix B_{ϵ}
- e) Compute the right hand side c
- f) Solve the linear system $B_{\epsilon}p = c$ for p
- g) Compute the potential g at the heart surface by

$$g = \sum_{i=1}^{n} p_i g_i$$

For each new observation *d*, only steps e)-g) have to be carried out. (Important for the time dependent problem)

Example 2

research laboratory

simula . research laboratory

Example 2, cont.

Second order Tikhonov, 1% noise, $\epsilon=1$

simula . research laboratory

lower

41/48

Example 2, cont.

Second order Tikhonov, $\epsilon = 10^{-8}$

44

The time dependent problem

• Time instances t_0, \ldots, t_M with data

 $d^0, \ldots, d^M \in L^2(\Gamma)$

defined at the body surface

 Compute the corresponding potentials at the heart surface

 g^0,\ldots,g^M

Brute force: Solve

$$B_{\epsilon}p^{\tau} = c^{\tau}$$
 for $\tau = 0, \dots, M$

The time dependent problem, cont.

 Ensure that the change in the epicardial potential is small from one time step to the next

 $\min_{q^{\tau} \in V_n} \left[\|R_n(g^{\tau}) - d^{\tau}\|_{L^2(\Gamma)}^2 + \epsilon \|g^{\tau} - g^{\tau-1}\|_{L^2(\partial H)}^2 \right]$

for
$$\tau = 1, \ldots, M$$

Hybrid scheme

$$\min_{g^{\tau} \in V_n} \left[\|R_n(g^{\tau}) - d^{\tau}\|_{L^2(\Gamma)}^2 + \epsilon \|g^{\tau} - g^{\tau-1}\|_{L^2(\partial H)}^2 + \beta \|\Delta_{\partial H} g^{\tau}\|_{L^2(\partial H)}^2 \right]$$

 $(\Delta_{\partial H}g^{\tau} = \operatorname{curl}_{\partial H} \operatorname{curl}_{\partial H} g^{\tau}$ - Laplace-Beltrami operator)

More advanced schemes (F. Greensite)

Example 3, cont.

$$\min_{g^{\tau} \in V_n} \left[\|R_n(g^{\tau}) - d^{\tau}\|_{L^2(\Gamma)}^2 + \epsilon \|g^{\tau} - g^{\tau-1}\|_{L^2(\partial H)}^2 + \beta \|\Delta_{\partial H} g^{\tau}\|_{L^2(\partial H)}^2 \right]$$

 $\epsilon=0.01$ and $\beta=1$

Example 3

$$\min_{g^{\tau} \in V_n} \left[\|R_n(g^{\tau}) - d^{\tau}\|_{L^2(\Gamma)}^2 + \epsilon \|g^{\tau} - g^{\tau-1}\|_{L^2(\partial H)}^2 \right]$$

 $\epsilon = 0.01$

simula - research laboratory]

Inner

simula . research laboratory]

45/48

Summary

<u>Aim:</u> To compute the potential at the heart surface from body surface measurements (ECGs)

- Leads to a linear problem R(g) = d
- Ill-posed
- From a mathematical point of view, fairly simple
- Second order Tikhonov regularization works well
- Main practical problems:
 - Noisy ECG data
 - High quality geometrical models of the body required

simula - research laboratory

research laboratory