The classical inverse ECG problem

Is it possible to compute the electrical potential at the surface of the heart from body surface measurements?

Why?

- Improve traditional ECG recordings
- Better qualitative and quantitative understanding of the heart
- Detect diseases and malfunctions

The Bidomain model

Outside the heart

$\ln T$ (torso):

$$
\begin{aligned}
\nabla \cdot(M \nabla u) & =0 \quad \text { in } T \\
(M \nabla u) \cdot n & =0 \quad \text { along } \partial T
\end{aligned}
$$

(Not a closed problem!)

- ...

$$
\begin{aligned}
& \chi C_{m} \frac{\partial v}{\partial t}+\chi I_{\mathrm{ion}}(v)=\nabla \cdot\left(\boldsymbol{M}_{i} \nabla v\right)+\nabla \cdot\left(\boldsymbol{M}_{i} \nabla u_{e}\right) \quad \text { in } H \\
& \nabla \cdot\left(\boldsymbol{M}_{i} \nabla v\right)+\nabla \cdot\left(\left(\boldsymbol{M}_{i}+\boldsymbol{M}_{e}\right) \nabla u_{e}\right)=0 \quad \text { in } H \\
& \nabla \cdot \boldsymbol{M} \nabla u=0 \quad \text { in } T
\end{aligned}
$$

- $v=u_{i}-u_{e}$: membrane potential
- $I_{i n}$: ionic current
- $\boldsymbol{M}_{i}, \boldsymbol{M}_{e}$: conductivity tensors

ECG (electrocardiogram)

- ECG recording $\rightarrow d=d(t)$ along $\Gamma \subset \partial T$
- Focus on one time instance $t=t^{*}, d=d\left(t^{*}\right)$
- Briefly about the time dependent problem

The Challenge, cont.

Operator $R(g)=\left.u(g)\right|_{\Gamma}$, where $u=u(g)$ solves

$$
\begin{aligned}
\nabla \cdot(M \nabla u) & =0 \quad \text { in } T \\
(M \nabla u) \cdot n & =0 \quad \text { along } \partial T \\
u & =g \quad \text { along } \partial H
\end{aligned}
$$

Find g such that

$$
R(g)=d
$$

where d is the data from the ECG recording

Outside the heart + ECG

$\ln T$ (torso):

```
\nabla\cdot(M\nablau)=0 in T,
(M\nablau)\cdotn=0 along }\partialT\mathrm{ ,
+ ECG recording of }u\mathrm{ along }\Gamma\subset\partialT\mathrm{ .
```

u along ∂H ?

Properties

Solve

$$
\begin{equation*}
R(g)=d \tag{1}
\end{equation*}
$$

for g.

- R is a linear operator
- (1) is ill-posed
- If $d \notin$ Range (R)

This lecture

- Fourier analysis on the unit square, stationary
- The general case, stationary
- The time dependent problem
- Numerical results

Fourier analysis

Unit square

Fourier analysis

Unit square

The direct problem

Find $u=u(g)$ satisfying

$$
\begin{aligned}
\Delta u & =0 \quad \text { in } T \\
\nabla u \cdot n & =0 \quad \text { along } \partial T \\
u & =g \quad \text { along } \partial H
\end{aligned}
$$

The direct problem, cont.

Separation of variables:

$$
N_{k}(x, y)=\cos (k \pi x) \cosh (k \pi y), \quad k=0,1, \ldots
$$

satisfies

$$
\begin{aligned}
\Delta u & =0 \quad \text { in } T \\
\nabla u \cdot n & =0 \quad \text { along } \partial T .
\end{aligned}
$$

The direct problem, cont.

Linearity:

$$
u(x, y)=\sum_{k=0}^{\infty} c_{k} \cos (k \pi x) \cosh (k \pi y)
$$

where $\left\{c_{k}\right\}$ are constants, satisfies

$$
\begin{aligned}
\Delta u & =0 \quad \text { in } T, \\
\nabla u \cdot n & =0 \quad \text { along } \partial T .
\end{aligned}
$$

The direct problem, cont.

Fourier cosine series of g :

$$
g(x)=\sum_{k=0}^{\infty} p_{k} \cos (k \pi x)
$$

Solution formula for the direct problem

$$
u(g)(x, y)=u(x, y)=\sum_{k=0}^{\infty} \frac{p_{k}}{\cosh (k \pi)} \cos (k \pi x) \cosh (k \pi y)
$$

The direct problem, cont.

R : heart surface \rightarrow body surface

$$
\begin{aligned}
R(g) & =R\left(\sum_{k=0}^{\infty} p_{k} \cos (k \pi x)\right)=u(g)(x, 0) \\
& =\sum_{k=0}^{\infty} \frac{p_{k}}{\cosh (k \pi)} \cos (k \pi x)
\end{aligned}
$$

The direct problem, cont.

- Fourier coeff.: $p_{k} \rightarrow \frac{p_{k}}{\cosh (k \pi)}$
- Large k

$$
\left|\frac{p_{k}}{\cosh (k \pi)}\right| \ll\left|p_{k}\right|
$$

strong damping effect

- R has a strong smoothing effect

The direct problem, cont.

The inverse problem, cont

- Consequently

$$
R(\cos (k \pi x))=\frac{1}{\cosh (k \pi)} \cos (k \pi x)
$$

- Eigenvalues

$$
\lambda_{k}=\frac{1}{\cosh (k \pi)} \quad k=1,2, \ldots
$$

- Zero is a cluster point for $\left\{\lambda_{k}\right\}$
- R not continuously invertible, R^{-1} not "well-behaved"

The inverse problem, cont.

Fourier expansion

$$
d(x)=d_{k=0}^{\infty} d_{k} \cos (k \pi x)
$$

Can Easy solve $R(g)=d$ for $g=\sum_{k=0}^{\infty} p_{k} \cos (k \pi x)$:

$$
R(g)={ }_{k=0}^{\infty} \frac{p_{k}}{\cosh (k \pi)} \cos (k \pi x)=d_{k=0}^{\infty} d_{k} \cos (k \pi x)
$$

yields

$$
p_{k}=d_{k} \cosh (k \pi) \quad \text { for } k=0,1, \ldots
$$

Example 1

- Exact data, $d(x)=\cosh ^{-1}(\pi) \cos (\pi x)$
- Error-prone data, $d_{\delta}(x)=d(x)+\delta \cos (5 \pi x)$
- Then

$$
R^{-1}\left(d_{\delta}\right)-R^{-1}(d) \approx 3.32 \cdot 10^{6} \delta \cos (5 \pi x)
$$

- For example, $\left\|d_{\delta}-d\right\|_{L^{\infty}}=O\left(10^{-3}\right)$ implies that

$$
\left\|R^{-1}\left(d_{\delta}\right)-R^{-1}(d)\right\|_{L^{\infty}}=O\left(10^{3}\right)
$$

The inverse problem, cont.

Consequently

$$
\begin{aligned}
g(x) & =R^{-1}(d(x))=R^{-1} \quad d_{k=0}^{\infty} \cos (k \pi x) \\
& ={ }_{k=0}^{\infty} d_{k} \cosh (k \pi) \cos (k \pi x)
\end{aligned}
$$

긍 Fourier coeff.: $d_{k} \rightarrow d_{k} \cosh (k \pi)$

- Even for small $k, \cosh (k \pi)$ is large, e.g.

$$
\cosh (5 \pi) \approx 3.32 \cdot 10^{6}
$$

Regularization

- Output least squares, minimize

$$
J(g)=\|R(g)-d\|_{L^{2}(\Gamma)}^{2}
$$

- Tikhonov regularization

$$
J_{\epsilon}(g)=\|R(g)-d\|_{L^{2}(\Gamma)}^{2}+\epsilon\|g\|_{L^{2}(\partial H)}^{2}
$$

- Second order Tikhonov regularization

$$
J_{2, \epsilon}(g)=\|R(g)-d\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|g_{x x}\right\|_{L^{2}(\partial H)}^{2}
$$

- Approximations

$$
R_{\epsilon}^{-1} \approx R^{-1} \quad \text { and } \quad R_{2, \epsilon}^{-1} \approx R^{-1}
$$

(derived from $\nabla J_{\epsilon}=0$ and $\nabla J_{2, \epsilon}=0$)

Regularization, cont.

R : heart surface \rightarrow body surface

- No regularization

$$
R^{-1} \quad d_{k} \cos (k \pi x)=d_{k=0}^{\infty} d_{k} \cosh (k \pi) \cos (k \pi x)
$$

- Tikhonov

$$
R_{\epsilon}^{-1} d_{k=0}^{\infty} d_{k} \cos (k \pi x)=d_{k=0}^{\infty} \frac{\cosh (k \pi)}{1+\epsilon \cosh ^{2}(k \pi)} \cos (k \pi x)
$$

- Second order Tikhonov
$R_{2, \epsilon}^{-1} \quad d_{k=0} \cos (k \pi x)=d_{k=0}^{\infty} d_{k} \frac{\cosh (k \pi)}{1+\epsilon(k \pi)^{4} \cosh ^{2}(k \pi)} \cos (k \pi x)$

Example 1, revisited

- Exact data, $d(x)=\cosh ^{-1}(\pi) \cos (\pi x)$
- Error-prone data, $d_{\delta}(x)=d(x)+\delta \cos (5 \pi x)$
- Tikhonov, error

$$
E(\epsilon, \delta)=\left\|R^{-1}(d)-R_{\epsilon}^{-1}\left(d_{\delta}\right)\right\|_{L^{2}(\partial H)}^{2}
$$

Example 1, revisited - cont.

L^{2} error on the heart surface

- No regularization

$$
e(\delta) \approx 2.35 \cdot 10^{6} \delta
$$

- Tikhonov (optimal regularization)

$$
E(\delta) \approx 4.05 \cdot 10^{-5} \delta
$$

- Second order Tikhonov (optimal regularization)

$$
E_{2}(\delta) \approx 6.48 \cdot 10^{-8} \delta
$$

Example 1, revisited - cont.

- Second order works better than plain Tikhonov regularization
- In general, difficult to find an optimal value for the regularization parameter ϵ

The general case

R : heart surface \rightarrow (part of the) body surface

- Complex geometry
- Non-constant conductivity M
- Fourier analysis impossible

Linearity

R is a linear operator:

$$
R\left(a_{1} g_{1}+a_{2} g_{2}\right)=a_{1} R\left(g_{1}\right)+a_{2} R\left(g_{2}\right),
$$

for any scalars a_{1} and a_{2} and functions g_{1} and g_{2} defined on ∂H.

We will use this fact to discretize our inverse problem

Find g such that

$$
R(g)=d
$$

Discretization

Linearly independent functions

$$
g_{1}, \ldots, g_{n}: \partial H \rightarrow \mathbb{R}
$$

and

$$
\begin{aligned}
V_{n} & =\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \\
R_{n} & =\left.R\right|_{V_{n}}
\end{aligned}
$$

Discretization, cont.

$g \in V_{n}:$

$$
g=p_{i=1} p_{i},
$$

where $\left\{p_{i}\right\}$ are scalars.
Consequently, if

$$
r_{i}=R_{n}\left(g_{i}\right) \quad \text { for } i=1, \ldots, n
$$

then the linearity of R_{n} implies that

$$
R_{n}(g)={ }_{i=1}^{n} p_{i} r_{i}
$$

Discretization, cont.

$g={ }_{i=1}^{n} p_{i} g_{i}$, thus

$$
\begin{aligned}
J_{\epsilon}(g) & =J_{\epsilon}\left(p_{1}, \ldots, p_{n}\right) \\
& =\left\|R_{n}(g)-d\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\|g\|_{L^{2}(\partial H)}^{2} \\
& =\left\|{ }_{i=1}^{n} p_{i} r_{i}-d\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|{ }_{i=1}^{n} p_{i} g_{i}\right\|_{L^{2}(\partial H)}^{2},
\end{aligned}
$$

- Tikhonov

$$
\min _{g \in V_{n}}\left\{\left\|R_{n}(g)-d\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\|g\|_{L^{2}(\partial H)}^{2}\right\}
$$

[simula. research laboratory]

Discretization, cont.

The condition

$$
\frac{\partial J_{\epsilon}}{\partial p_{i}}=0 \quad \text { for } i=1, \ldots, n,
$$

gives the $n \times n$ system

$$
{ }_{j=1}^{n}\left[\int_{\Gamma} r_{j} r_{i} d x+\epsilon \int_{\partial H} g_{j} g_{i} d x\right] p_{j}=\int_{\Gamma} d r_{i} d x \quad \text { for } i=1, \ldots, n .
$$

An algorithm

a) Pick n linearly independent functions

$$
g_{1}, \ldots, g_{n}: \partial H \rightarrow \mathbb{R},
$$

defined at the surface ∂H of the heart H
b) For $i=1, \ldots, n$, set $g=g_{i}$ in the direct problem and solve it for $u=u\left(g_{i}\right)$
c) Compute

$$
r_{i}=\left.u\left(g_{i}\right)\right|_{\Gamma}, \quad i=1, \ldots, n
$$

Discretization, cont.

Which may be written on the form

$$
B_{\epsilon} p=c,
$$

where

$$
\begin{aligned}
B_{\epsilon} & =\left[b_{\epsilon, i j}\right] \in \mathbf{R}^{n \times n}, \quad b_{\epsilon, i j}=\int_{\Gamma} r_{j} r_{i} d x+\epsilon \int_{\partial H} g_{j} g_{i} d x \\
p & =\left(p_{1}, \ldots, p_{n}\right)^{T} \in \mathbf{R}^{n}, \\
c & =\left(\int_{\Gamma} d r_{1} d x, \ldots, \int_{\Gamma} d r_{n} d x\right)^{T} \in \mathbf{R}^{n},
\end{aligned}
$$

An algorithm, cont.

d) Compute the matrix B_{ϵ}
e) Compute the right hand side c
f) Solve the linear system $B_{\epsilon} p=c$ for p
g) Compute the potential g at the heart surface by

$$
g={ }_{i=1}^{n} p_{i} g_{i}
$$

For each new observation d, only steps e)-g) have to be carried out. (Important for the time dependent problem)

Example 2

Tikhonov, $\epsilon=10^{-3}$

Example 2, cont.

Second order Tikhonov, 1% noise, $\epsilon=1$

Example 2, cont.

Second order Tikhonov, $\epsilon=10^{-8}$

The time dependent problem

- Time instances t_{0}, \ldots, t_{M} with data

$$
d^{0}, \ldots, d^{M} \in L^{2}(\Gamma)
$$

defined at the body surface

- Compute the corresponding potentials at the heart surface

$$
g^{0}, \ldots, g^{M}
$$

Brute force: Solve

$$
B_{\epsilon} p^{\tau}=c^{\tau} \quad \text { for } \tau=0, \ldots, M
$$

The time dependent problem, cont.

- Ensure that the change in the epicardial potential is small from one time step to the next

$$
\min _{g^{\tau} \in V_{n}}\left[\left\|R_{n}\left(g^{\tau}\right)-d^{\tau}\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|g^{\tau}-g^{\tau-1}\right\|_{L^{2}(\partial H)}^{2}\right]
$$

for $\tau=1, \ldots, M$

- Hybrid scheme

$$
\min _{g^{\tau} \in V_{n}}\left[\left\|R_{n}\left(g^{\tau}\right)-d^{\tau}\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|g^{\tau}-g^{\tau-1}\right\|_{L^{2}(\partial H)}^{2}+\beta\left\|\Delta_{\partial H} g^{\tau}\right\|_{L^{2}(\partial)}^{2}\right.
$$

$\left(\Delta_{\partial H} g^{\tau}=\operatorname{curl}_{\partial H} \operatorname{curl}_{\partial H} g^{\tau}\right.$ - Laplace-Beltrami operator)

- More advanced schemes (F. Greensite)

Example 3, cont.

$$
\begin{aligned}
& \min _{g^{\tau} \in V_{n}}\left[\left\|R_{n}\left(g^{\tau}\right)-d^{\tau}\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|g^{\tau}-g^{\tau-1}\right\|_{L^{2}(\partial H)}^{2}+\beta\left\|\Delta_{\partial H} g^{\tau}\right\|_{L^{2}(\partial H)}^{2}\right] \\
& \epsilon=0.01 \text { and } \beta=1
\end{aligned}
$$

Example 3

$$
\min _{g^{\tau} \in V_{n}}\left[\left\|R_{n}\left(g^{\tau}\right)-d^{\tau}\right\|_{L^{2}(\Gamma)}^{2}+\epsilon\left\|g^{\tau}-g^{\tau-1}\right\|_{L^{2}(\partial H)}^{2}\right]
$$

Summary

Aim: To compute the potential at the heart surface from body surface measurements (ECGs)

- Leads to a linear problem $R(g)=d$
- III-posed
- From a mathematical point of view, fairly simple
- Second order Tikhonov regularization works well
- Main practical problems:
- Noisy ECG data
- High quality geometrical models of the body required

