Introduction to optimization

Geir Dahl
CMA, Dept. of Mathematics and Dept. of Informatics
University of Oslo

The plan

- 1. The basic concepts

■ 2. Some useful tools

- 3. LP (linear programming $=$ linear optimization $)$

Literature:

■ Vanderbei: Linear programming, 2001 (2008).
■ Bertsekas: Nonlinear programming, 1995.
■ Boyd and Vandenberghe: Convex optimization, 2004.

What we do in optimization!

■ we study and solve optimization problems!
The typical problem:
■ given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
■ and a subset $S \subseteq \mathbb{R}^{n}$

- find a point (vector) $x^{*} \in S$ which minimizes (or maximizes) f over this set S.
■ S is often the solution set of a system of linear, or nonlinear, equations and inequalities: this complicates things!

The work:

- find such x^{*}
- construct a suitable algorithm
- analyze algorithm

■ analyze problem: prove theorems on properties

Areas - depending on properties of f and S :

- linear optimization ($\mathrm{LP}=$ linear programming)
- nonlinear optimization

■ discrete optimization (combinatorial opt.)

- stochastic optimization

■ optimal control

- multicriteria optimization

Optimization: branch of applied mathematics, so
theory - algorithms - applications

The basic concepts

- feasible point: a point $x \in S$, and S is called the feasible set
- global minimum (point): a point $x^{*} \in S$, satisfying

$$
f\left(x^{*}\right)=\min \{f(x): x \in S\}
$$

- local minimum (point): a point $x^{*} \in S$, satisfying

$$
f\left(x^{*}\right)=\min \{f(x): x \in N \cap S\}
$$

for some (suitable small) neighborhood N of x^{*}.
■ local/global maximum (point): similar.

- f : objective function, cost function

Optimal: minimum or maximum

Some useful tools

Tool 1: Existence:

- a minimum (or maximum) may not exist.

■ how can we prove the existence?

Theorem

(Extreme value theorem) A continuous function on a compact (closed and bounded) subset of \mathbb{R}^{n} attains its (global) maximum and minimum.

■ very important result, but it does not tell us how to find an optimal solution.

Tool 2: local approximation - optimality criteria

- First order Taylor approximation:

$$
f(x+h)=f(x)+\nabla f(x)^{T} h+\|h\| O(h)
$$

where $O(h) \rightarrow 0$ as $h \rightarrow 0$.

- Second order Taylor approximation:

$$
f(x+h)=f(x)+\nabla f(x)^{T} h+(1 / 2) h^{T} H_{f}(x) h+\|h\|^{2} O(h)
$$

where $O(h) \rightarrow 0$ as $h \rightarrow 0$.

Linear optimization (LP)

- linear optimization is to maximize (or minimize) a linear function in several variables subject to constraints that are linear equations and linear inequalities.
- many applications

Example: production planning

$$
\begin{aligned}
& \text { maximize } 3 x_{1}+5 x_{2} \\
& \text { subject to } \\
& \begin{aligned}
x_{1} & \leq 4 \\
2 x_{2} & \leq 12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{1} \geq 0, x_{2} & \geq 0 .
\end{aligned}
\end{aligned}
$$

Application: linear approximation

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$. Recall: ℓ_{1}-norm; $\|y\|_{1}=\sum_{i=1}^{n}\left|y_{i}\right|$. The linear approximation problem

$$
\min \left\{\|A x-b\|_{1}: x \in \mathbb{R}^{n}\right\}
$$

may be solved as the following LP problem min

$$
\sum_{i=1}^{m} z_{i}
$$

subject to

$$
\begin{array}{cll}
a_{i}^{T} x-b_{i} & \leq z_{i} \quad(i \leq m) \\
-\left(a_{i}^{T} x-b_{i}\right) & \leq z_{i} \quad(i \leq m)
\end{array}
$$

LP problems in matrix form:

$$
\begin{array}{ll}
\max \\
\text { subject to } & c^{T} x \\
& \\
& A x \\
x & \leq b \\
x
\end{array}
$$

The inequality $A x \leq b$ is a vector inequality and means that \leq holds componentwise (for every component).

Analysis/algorithm: based on linear algebra.
LP is closely tied to theory/methods for solving systems of linear inequalities. Such systems have the form

$$
A x \leq b
$$

LSimplex algorithm

The simplex algorithm

- the simplex method is a general method for solving LP problems.
- developed by George B. Dantzig around 1947 in connection with the investigation of transportation problems for the U.S.
Air Force.
- discussions on duality with John von Neumann
- the work was published in 1951.

Example

$$
\begin{aligned}
& \max \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{gathered}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{gathered}
$$

First, we convert to equations by introducing slack variables for every \leq-inequality, so e.g. the first ineq. is replaced by

$$
w_{1}=5-2 x_{1}-3 x_{2}-x_{3}, \quad w_{1} \geq 0 .
$$

Problem rewritten as a "dictionary":

$$
\begin{array}{ll}
\max & \eta
\end{array} \begin{aligned}
& \text { mabj. to } \\
& \text { sub }
\end{aligned}
$$

- left-hand side: dependent variables $=$ basic variables.

■ right-hand side: independent variables $=$ nonbasic variables.
Initial solution: Let $x_{1}=x_{2}=x_{3}=0$, so $w_{1}=5, w_{2}=11, w_{3}=8$.
We always let the nonbasic variables be equal to zero. The basic variables are then uniquely determined. ("Basis property" in matrix version).

Not optimal! For instance, we can increase x_{1} while keeping $x_{2}=x_{3}=0$. Then

- η (the value of the objective function) will increase
- new values for the basic variables, determined by x_{1}
- the more we increase x_{1}, the more η increases!
- but, careful! The w_{j} 's approach 0!

Maximum increase of x_{1} : avoid the basic variables to become negative. From $w_{1}=5-2 x_{1}, w_{2}=11-4 x_{1}$ and $w_{3}=8-3 x_{1}$ we get $x_{1} \leq 5 / 2, x_{1} \leq 11 / 4, x_{1} \leq 8 / 3$ so we can increase x_{1} to the smallest value, namely $5 / 2$.

This gives the new solution $x_{1}=5 / 2, x_{2}=x_{3}=0$ and therefore $w_{1}=0, w_{2}=1, w_{3}=1 / 2$. And now $\eta=25 / 2$. Thus: an improved solution!!

How to proceed? The dictonary is well suited for testing optimality, so we must transform to a new dictionary.

- We want x_{1} and w_{1} to "switch sides". So: x_{1} should go into the basis, while w_{1} goes out of the basis. This can be done by using the w_{1}-equation in order to eliminate x_{1} from all other equations.
- Equivalent: we may use elementary row operations on the system in order to eliminate x_{1} : (i) solve for x_{1} : $x_{1}=5 / 2-(1 / 2) w_{1}-(3 / 2) x_{2}-(1 / 2) x_{3}$, and (ii) add a suitable multiple of this equation to the other equations so that x_{1} disappears and is replaced by twerms with w_{1}.

Remember: elementary row operations do not change the solution set of the linear system of equations.

Result:

$$
\begin{aligned}
& \eta=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& \hline x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1 \\
& w_{3}=0.5+2 w_{1}+5 x_{2} \\
& \\
&+1.5 w_{1}+0.5 x_{2}-0.5 x_{3}
\end{aligned}
$$

We have performed a pivot: the use of elementary row operations (or elimination) to switch two variables (one into and one out of the basis).

Repeat the process: not optimal solution as we can increase η by increasing x_{3} from zero! May increase to $x_{3}=1$ and then $w_{3}=0$ (while the other basic variables are nonnegative). So, pivot: x_{3} goes into the basis, and w_{3} leaves the basis.

This gives the new dictionary:

η	$=13$	$-w_{1}-3 x_{2}$	-	w_{3}
x_{1}	$=2$	$-2 w_{1}$	$-2 x_{2}$	+
w_{3}				
w_{2}	$=1$	$+2 w_{1}+5 x_{2}$		
$x_{3}=1$	$+3 w_{1}+x_{2}-2 w_{3}$			

Here we see that all coefficients of the nonbasic variables are nonpositive in the η-equation. Then every increase of one or more nonbasic variables will result in a solution where $\eta \leq 13$.

Conclusion: we have found an optimal solution! It is $w_{1}=x_{2}=w_{3}=0$ and $x_{1}=2, w_{2}=1, x_{3}=1$. The corresponding value of η is 13 , and this is called the optimal value.

The simplex method - comments

- geometry: from vertex to adjacent vertex
- phase 1 problem: first feasible solution
- the dictionary approach good for understanding
- in practice: the revised simplex method used
- relies on numerical linear algebra techniques

■ main challenges: (degeneracy), pivot rule, update basis efficiently
■ commercial systems like CPLEX routinely solves large-scale problems in a few seconds

Matrix version: basis $B: A=\left[\begin{array}{ll}B & N\end{array}\right], A x=b$ becomes
$B x_{B}+N x_{N}=b$ so $x_{B}=B^{-1} b-B^{-1} N x_{N}$.

The fundamental theorem of LP

Theorem

For every LP problem the following is true:

- If there is no optimal solution, then the problem is either nonfeasible or unbounded.

■ If the problem is feasible, there exist a basic feasible solution.

- If the problem has an optimal solution, then there exist an optimal basic solution.

Duality theory

■ associated to every LP problem there is another, related, LP problem called the the dual problem

- so primal (P) and dual problem (D).
- the dual may be used to, easily, find bounds on the optimal value in (P)
- may find optimal solution of (P) by solving (D)!

The dual problem

Consider the LP problem (P), the primal problem, given by

$$
\max \left\{c^{\top} x: A x \leq b, x \geq O\right\}
$$

We define the dual problem (D) like this:

$$
\min \left\{b^{T} y: A^{T} y \geq c, y \geq 0\right\}
$$

- max and min
- y associated with the constraints in (P)
- constraint ineq. reversed

■ c and b switch roles

Lemma

(Weak duality) If $x=\left(x_{1}, \ldots, x_{n}\right)$ is feasible in (P) and $y=\left(y_{1}, \ldots, y_{m}\right)$ is feasible in (D) we have

$$
c^{T} x \leq b^{T} y
$$

Proof: From the constraints in (P) and (D) we have

$$
c^{T} x \leq\left(A^{T} y\right)^{T} x=y^{T} A x \leq y^{T} b=b^{T} y .
$$

The duality theorem

Theorem

If (P) has an optimal solution x^{*}, then (D) has an optimal solution and

$$
\max \left\{c^{\top} x: A x \leq b, x \geq O\right\}=\min \left\{b^{\top} y: A^{\top} y \geq c, y \geq O\right\}
$$

Comments:

- (P) and (D) have the same optimal value when (P) has an optimal solution.
- If (P) (resp. (D)) is unbounded, then (D) (resp. (P)) has no feasible solution.

Interior point methods

- these are alternatives to simplex methods
- may be faster for certain problem instances
- roots in nonlinear optimization

Main idea (in primal-dual int. methods):

- based on duality: solve both (P) and (D) at once
- a special treatment of the optimality property called complementary slack: $x_{j} z_{j}=0$ etc., relaxed compl. slack: $x_{j} z_{j}=\mu$ etc.
■ solution parameterized by $\mu>0$, e.g. $x(\mu)$
■ convergence: $x(\mu) \rightarrow x^{*}$ as $\mu \rightarrow 0$.
■ Newton's method etc. , efficient, polynomial method
■ more on this in Nonlinear optimization lectures

