Introduction to optimization

Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo

The plan

- 1. The basic concepts
- 2. Some useful tools
- 3. LP (linear programming = linear optimization)

Literature:

- Vanderbei: *Linear programming*, 2001 (2008).
- Bertsekas: Nonlinear programming, 1995.
- Boyd and Vandenberghe: Convex optimization, 2004.

└─1. The basic concepts

What we do in optimization!

- we study and solve optimization problems!
- The typical problem:
 - given a function $f : \mathbb{R}^n \to \mathbb{R}$
 - and a subset $S \subseteq \mathbb{R}^n$
 - find a point (vector) $x^* \in S$ which minimizes (or maximizes) f over this set S.
 - S is often the solution set of a system of linear, or nonlinear, equations and inequalities: this complicates things!

The work:

- find such x*
- construct a suitable algorithm
- analyze algorithm
- analyze problem: prove theorems on properties

Areas – depending on properties of f and S:

- linear optimization (LP=linear programming)
- nonlinear optimization
- discrete optimization (combinatorial opt.)
- stochastic optimization
- optimal control
- multicriteria optimization

Optimization: branch of applied mathematics, so

theory – algorithms – applications

-1. The basic concepts

The basic concepts

- feasible point: a point $x \in S$, and S is called the feasible set
- **global minimum (point):** a point $x^* \in S$, satisfying

 $f(x^*) = \min\{f(x) : x \in S\}$

■ local minimum (point): a point $x^* \in S$, satisfying $f(x^*) = \min\{f(x) : x \in N \cap S\}$

for some (suitable small) neighborhood N of x^* .

- local/global maximum (point): similar.
- *f*: objective function, cost function

Optimal: minimum or maximum

└─2. Some useful tools

Some useful tools

Tool 1: Existence:

- a minimum (or maximum) may not exist.
- how can we prove the existence?

Theorem

(*Extreme value theorem*) A continuous function on a compact (closed and bounded) subset of \mathbb{R}^n attains its (global) maximum and minimum.

very important result, but it does not tell us how to find an optimal solution.

Tool 2: local approximation - optimality criteria

• First order Taylor approximation:

$$f(x + h) = f(x) + \nabla f(x)^T h + ||h||O(h)$$

where $O(h) \rightarrow 0$ as $h \rightarrow 0$.

• Second order Taylor approximation:

 $f(x+h) = f(x) + \nabla f(x)^T h + (1/2)h^T H_f(x)h + ||h||^2 O(h)$

where $O(h) \rightarrow 0$ as $h \rightarrow 0$.

Linear optimization (LP)

- linear optimization is to maximize (or minimize) a linear function in several variables subject to constraints that are linear equations and linear inequalities.
- many applications

Example: production planning

maximize
$$3x_1 + 5x_2$$

subject to
 $x_1 \leq 4$
 $2x_2 \leq 12$
 $3x_1 + 2x_2 \leq 18$
 $x_1 \geq 0, x_2 \geq 0.$

∟_{3. LP}

Application: linear approximation

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Recall: ℓ_1 -norm; $||y||_1 = \sum_{i=1}^n |y_i|$. The linear approximation problem

 $\min\{\|Ax - b\|_1 : x \in \mathbb{R}^n\}$

may be solved as the following LP problem

```
min

\sum_{i=1}^{m} z_i
subject to

a_i^T x - b_i \leq z_i \quad (i \leq m)
-(a_i^T x - b_i) \leq z_i \quad (i \leq m)
```

LP problems in matrix form:

$$\begin{array}{rll} \max & c^T x \\ \text{subject to} & & \\ & & Ax & \leq & b \\ & & & x & \geq & O \end{array}$$

The inequality $Ax \le b$ is a vector inequality and means that \le holds componentwise (for every component).

Analysis/algorithm: based on linear algebra.

LP is closely tied to theory/methods for solving systems of linear inequalities. Such systems have the form

$$Ax \leq b.$$

└─3. LP

└─ Simplex algorithm

The simplex algorithm

- the simplex method is a general method for solving LP problems.
- developed by George B. Dantzig around 1947 in connection with the investigation of transportation problems for the U.S. Air Force.
- discussions on duality with John von Neumann
- the work was published in 1951.

Example

First, we convert to equations by introducing slack variables for every \leq -inequality, so e.g. the first ineq. is replaced by

$$w_1 = 5 - 2x_1 - 3x_2 - x_3, \quad w_1 \ge 0.$$

Introduction to optimization

└─3. LP

Simplex algorithm

Problem rewritten as a "dictionary":

 $\begin{array}{rcl} \max & \eta & = & 5x_1 + 4x_2 + 3x_3 \\ \text{subj. to} & & \end{array}$

V	v ₁	= 5	—	$2x_1$	_	3 <i>x</i> ₂	—	<i>x</i> 3
V	<i>v</i> ₂	= 11	—	4 <i>x</i> ₁	—	<i>x</i> ₂	—	2 <i>x</i> ₃
V	V3	= 8	_	3 <i>x</i> ₁	_	4 <i>x</i> ₂	_	2 <i>x</i> ₃
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0.$								

■ left-hand side: dependent variables = basic variables.

■ right-hand side: independent variables = nonbasic variables.

Initial solution: Let $x_1 = x_2 = x_3 = 0$, so $w_1 = 5$, $w_2 = 11$, $w_3 = 8$.

We always let the nonbasic variables be equal to zero. The basic variables are then *uniquely* determined. ("Basis property" in matrix version).

Not optimal! For instance, we can increase x_1 while keeping $x_2 = x_3 = 0$. Then

- η (the value of the objective function) will increase
- new values for the basic variables, determined by x_1
- the more we increase x_1 , the more η increases!
- but, careful! The w_i's approach 0!

Maximum increase of x_1 : avoid the basic variables to become negative. From $w_1 = 5 - 2x_1$, $w_2 = 11 - 4x_1$ and $w_3 = 8 - 3x_1$ we get $x_1 \le 5/2$, $x_1 \le 11/4$, $x_1 \le 8/3$ so we can increase x_1 to the smallest value, namely 5/2.

This gives the new solution $x_1 = 5/2$, $x_2 = x_3 = 0$ and therefore $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$. And now $\eta = 25/2$. Thus: an improved solution!!

LAIP

How to proceed? The dictonary is well suited for testing optimality, so we must transform to a new dictionary.

- We want x₁ and w₁ to "switch sides". So: x₁ should go *into* the basis, while w₁ goes *out* of the basis. This can be done by using the w₁-equation in order to eliminate x₁ from all other equations.
- Equivalent: we may use elementary row operations on the system in order to eliminate x₁: (i) solve for x₁:
 x₁ = 5/2 (1/2)w₁ (3/2)x₂ (1/2)x₃, and (ii) add a suitable multiple of this equation to the other equations so that x₁ disappears and is replaced by twerms with w₁.

Remember: elementary row operations do not change the solution set of the linear system of equations.

Result:

η	= 12.5	—	2.5 <i>w</i> 1	—	3.5 <i>x</i> ₂	+	0.5 <i>x</i> ₃
<i>x</i> ₁	= 2.5	_	0.5 <i>w</i> ₁	_	$1.5x_2$	_	0.5 <i>x</i> ₃
<i>w</i> ₂	= 1	+	$2w_1$	+	5 <i>x</i> ₂		
W3	= 0.5	+	$1.5w_{1}$	+	0.5 <i>x</i> ₂	_	0.5 <i>x</i> ₃

We have performed a pivot: the use of elementary row operations (or elimination) to switch two variables (one into and one out of the basis).

Repeat the process: not optimal solution as we can increase η by increasing x_3 from zero! May increase to $x_3 = 1$ and then $w_3 = 0$ (while the other basic variables are nonnegative). So, pivot: x_3 goes into the basis, and w_3 leaves the basis.

LAIP

This gives the new dictionary:

η	= 13	—	w_1	_	3 <i>x</i> ₂	—	W3
<i>x</i> ₁	= 2	_	2 <i>w</i> ₁	_	$2x_2$	+	W3
<i>w</i> ₂	= 1	+	2 <i>w</i> ₁	+	5 <i>x</i> ₂		
<i>x</i> 3	= 1	+	3 <i>w</i> 1	+	<i>x</i> ₂	_	2 <i>w</i> 3

Here we see that all coefficients of the nonbasic variables are nonpositive in the η -equation. Then every increase of one or more nonbasic variables will result in a solution where $\eta \leq 13$.

Conclusion: we have found an optimal solution! It is $w_1 = x_2 = w_3 = 0$ and $x_1 = 2, w_2 = 1, x_3 = 1$. The corresponding value of η is 13, and this is called the optimal value.

└─3. LP

Simplex algorithm

The simplex method – comments

- geometry: from vertex to adjacent vertex
- phase 1 problem: first feasible solution
- the dictionary approach good for understanding
- in practice: the revised simplex method used
- relies on numerical linear algebra techniques
- main challenges: (degeneracy), pivot rule, update basis efficiently
- commercial systems like CPLEX routinely solves large-scale problems in a few seconds

Matrix version: basis B: $A = \begin{bmatrix} B & N \end{bmatrix}$, Ax = b becomes $Bx_B + Nx_N = b$ so $x_B = B^{-1}b - B^{-1}Nx_N$.

└─3. LP

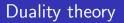
└─ The fundamental theorem

The fundamental theorem of LP

Theorem

For every LP problem the following is true:

- If there is no optimal solution, then the problem is either nonfeasible or unbounded.
- If the problem is feasible, there exist a basic feasible solution.
- If the problem has an optimal solution, then there exist an optimal basic solution.



- associated to every LP problem there is another, related, LP problem called the the dual problem
- so primal (P) and dual problem (D).
- the dual may be used to, easily, find bounds on the optimal value in (P)
- may find optimal solution of (P) by solving (D)!

L Duality theory

The dual problem

Consider the LP problem (P), the primal problem, given by $\max\{c^{T}x : Ax \leq b, x \geq 0\}.$

We define the dual problem (D) like this:

 $\min\{b^T y: A^T y \ge c, y \ge 0\}.$

max and min

- y associated with the constraints in (P)
- constraint ineq. reversed
- c and b switch roles

Lemma

(*Weak duality*) If $x = (x_1, ..., x_n)$ is feasible in (P) and $y = (y_1, ..., y_m)$ is feasible in (D) we have

 $c^T x \leq b^T y.$

Proof: From the constraints in (P) and (D) we have

$$c^T x \leq (A^T y)^T x = y^T A x \leq y^T b = b^T y.$$

└─3. LP └─Duality theory

The duality theorem

Theorem

If (P) has an optimal solution x^* , then (D) has an optimal solution and

$$\max\{c^T x : Ax \le b, x \ge 0\} = \min\{b^T y : A^T y \ge c, y \ge 0\}$$

Comments:

- (P) and (D) have the same optimal value when (P) has an optimal solution.
- If (P) (resp. (D)) is unbounded, then (D) (resp. (P)) has no feasible solution.

LAIP

Interior point methods

Interior point methods

- these are alternatives to simplex methods
- may be faster for certain problem instances
- roots in nonlinear optimization

Main idea (in primal-dual int. methods):

- based on duality: solve both (P) and (D) at once
- a special treatment of the optimality property called complementary slack: x_jz_j = 0 etc., relaxed compl. slack: x_jz_j = µ etc.
- solution parameterized by $\mu > 0$, e.g. $x(\mu)$
- convergence: $x(\mu) \rightarrow x^*$ as $\mu \rightarrow 0$.
- Newton's method etc. , efficient, polynomial method
- more on this in Nonlinear optimization lectures