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Summary (slide 1)

Discrete optimization problems are important
Discrete optimization problems are often computationally 
hard
Exact methods may take too long, will give guarantees
Better to find a good solution to the real problem than the 
optimal problem to an overly idealized problem
Local Search is a robust, simple and fast method
Local Search gives few and weak guarantees
Local Search is local, gets trapped in a local optimum
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Summary (slide 2)
Metaheuristics move on from local optima and explore
larger parts of the solution space
Metaheuristics are often based on local search
Different strategies, many variants
There is no free lunch
This area is a lot of fun, many challenges
Short road from theoretical to practical improvements
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Outline

2-slide talk (thanks, François!)
Background and Motivation
Definition of Discrete Optimization Problems (DOP) 
Basic concepts
Local Search
Metaheuristics
GUT 
No free lunch
Future directions
Summary
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Background and motivation
Many real-world optimization problems involve discrete choices
Operations Research (OR), Artificial Intelligence (AI)
Discrete Optimization Problems are often computationally hard
Real world problems need to be ”solved”
Complexity Theory gives us bleak prospects regarding exact solutions
The quest for optimality may have to be relaxed
Having a good, approximate solution in time may be better than waiting 
forever for an optimal solution
Modeling problem
Optimization not the only aspect
Response time requirements

Heuristic methods
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Real-life, important DOP
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The Knapsack Problem

n ”articles” {1,...,n} available for selection, weights ci utilities vi

Knapsack with capacity C
Find the selection of articles that maximizes total utility and obeys capacity
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Example: – Selection of projects

You manage a large company
Your employees have suggested a large number of projects

resource requirements
utility

Fixed resource capacity
Select projects that will maximize utility

Strategic/tactical decision
Discrete optimization problem 

The Knapsack problem



10ICT

Geir Hasle - eVITA Winter School 2009

Example: - Transportation

You have a courier company and a car
You know your orders for tomorrow, pickup and delivery points
You know the travel time between all points
You want to finish as early as possible

Operational decision
Discrete optimization problem
The Traveling Salesman Problem



11ICT

Geir Hasle - eVITA Winter School 2009

Traveling Salesman Problem (TSP) 

Feasible

 

(candidate) solution: 
1 2 7 3 4 5 6 1 ; objective

 

value

 

(cost): 143
”Nearest

 

neighbor”

 

–

 

example

 

of

 

a greedy

 

heuristic

 

-

 

O(n2)
Calculation

 

of

 

the

 

objective

 

is O(n)
No constraints, except

 

for the

 

round

 

trip

 

requirement
The number

 

of

 

distinct

 

round

 

trips is (n-1)! (in the

 

asymmetrical

 

case)

1 2 3 4 5 6 7
1 0 17 18 23 23 23 23

2 2 0 88 32 28 27 22

3 27 33 0 23 37 43 23

4 33 73 14 0 9 23 19

5 29 65 26 65 0 24 25

6 25 99 29 35 43 0 33

7 83 40 23 43 77 73 0
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4
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Greed is good [Gordon Gekko 1987]

A greedy heuristic rarely gives the optimal solution
The Nearest Neighbor heuristic
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Problem (types) and problem instances

Example: TSP
A type of concrete problems (instances)
An instance is given by:

n: the number of cities
A: nxn-matrix of travel costs
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Optimization Problem 
- Mathematical formulation

Decision variables with domains
Objective function
Constraints

Mathematical program
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Linear Integer Program
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Mixed Integer Programs – MIP

Pure Integer Programs – IP, PIP

0-1 programs
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(Linear) Integer Programming

Many problems may be modeled as LP with integrality constraints
Discrete choices, sequences, combinatorics, logic, ...
Planning, scheduling, ...

In general,  IPs are computationally much more difficult to solve than LPs
Often, the computing time for exact methods grow ”exponentially” with the size of
the instance
But not always ...
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Definition – Discrete Optimization Problem

A Discrete
 

Optimization
 

Problem (DOP) is
either a minimization or maximization problem
specified by a set of problem instances
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Definition – DOP instance

A DOP instance is a pair 
where

 
is the

 
set

 
of

 
feasible solutions (the search 

space) and                       is the
 

objective (cost function).

The goal is to find
 

a global optimum: 

f : →S R

( ), fS

* *s : f (s ) f (s), s∈ ≤ ∀ ∈S S

S

* *f f (s )= (globally) optimal value
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Example 1: An asymmetrical TSP-instance

3 cities: 1, 2, 3

{ } { }1 6(2,1,3) (2,3,1) (3,1,2(1,2,3) ) (3,2, (1,3, 2), , , , s1) ,s, ,= ≡S …

1 2 3

1 0 15 32

2 13 0 3

3 2 17 0

1

2f (
f (

s ) 32 17 13
s ) 15 20

6
2

2
3

= + +
= +

=
+ =

( )min f s
s∈S

( ), fS
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Observations

In principle, the TSP is a very simple problem
All feasible solutions can be represented by a permutation
There is a finite number of solutions
The objective is easy to compute for a given solution
The British Museum algorithm: look everywhere
The number of feasible solutions for an n-city (asymmetric) 
TSP is (n-1)!
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Combinatorial explosion

933262154439441526816992388856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000100!

362880010! 106

243290200817664000020! 1019

30414093201713378043612608166064768844377641568966051200000000000050! 1065

10159

~ # atoms in our
 

galaxy
# atoms in the

 
universe

 
~1080 

# nanoseconds
 

since
 

Big Bang ~1026
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Example 2: The Knapsack Problem

n ”articles” {1,...,n} available for selection, weights ci utilities vi

Knapsack with capacity C
Find the selection of articles that maximizes total utility and obeys capacity
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Example 1: 0-1 Knapsack-instance

Knapsack
 

with
 

capacity
 

100
10  ”articles”

 
(projects, ...) 1,...,10

{ } { }1 10240000000000, ,1111111111 x , , x= ≡X … …

1

53

1

024

0f (x ) 1

f (x

f (x )

1

) 464

7

0

=

=

=

( )max f s
s∈S

( ), fS 1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

*
530f f (x ) 117= =

{ }*x 0100100001=
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Comments on the definition of DOP

S is rarely given explicitly, defined through constraints/relations
S is often (small) subset of the total search space X
f(s) is rarely given explicitly, must be computed by a procedure
there is often a compact representation of a problem instance and a 
(candidate) solution
modelling is important

mathematical modelling
conceptual modelling

a (candidate) solution is given by a valuation of the decision
variables (x1,v1), ..., (xn,vn)
often there are efficient (low polynomial) algorithms for
checking feasibility (S membership) and objective value for 
candidate solutions

x v⊥
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DOP Applications

Decision problems with discrete alternatives
Synthesis problems 

planning, scheduling
configuration, design

Limited resources
OR, AI
Logistics, design, planlegging, robotics
Geometry, Image analysis, Finance ...
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Solution methods for DOP

Exact methods that guarantee to find an (all) optimal 
solution(s)

generate and test, explicit enumeration
mathematical programming

Approximation methods
with quality guarantees
heuristics

Collaborative methods
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Computational Complexity Theory

Computing time (memory requirements) for problem types
“the best” algorithm
over all instances
as function of problem size

“Exponential” growth is cruel ...
Parallel computing and general speed increase does not help much
Problem type is considered tractable only of there is a polynomial time 
algorithm for it  

Worst case, pessimistic theory
One problem instance is enough to deem a problem type as 
computationally intractable
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Complexity classes of problem types

Complexity classes
P
NP
NP-complete

Cook’s conjecture: 

 or \≠ ≠ ∅P NP NP P

NPC P

NP

LP P
SAT NPC
TSP NPC
Knapsack NPC

∈
∈
∈

∈

Kachian
 

(1979)

Cook (1971)

Karp (1972)

Karp (1972)
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Motivation for heuristic DOP algorithms
Computational Complexity theory
Basic Computational Complexity Theory studies decision problems
Close relation between decision problem and optimization problem
The optimization equivalent is at least as hard as the decision variant
NP-complete decision problem -> NP-hard optimization problem
For NP-hard DOPs there exist no polynomial time exact algorithm, 
unless P=NP
For some NP-hard DOPs there exist pseudo-polynomial, exact 
algorithms

The one-dimensional Knapsack problem is weakly NP-hard
The multi-dimensional Knapsack problem is strongly NP-hard
The TSP is strongly NP-hard 

Alternatives
exact method
approximation method with performance guarantee
heuristic method (with no or weak a priori guarantees)
performance ratio of given approximation algorithm A

A(I)R (I)
OPT(I)

=
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Some messages (1)

Not all DOPs are NP-hard, e.g., the Assignment Problem
Even NP-hard problems may be effectively solved

small instances
special structure
weakly NP-hard

Even large instances of strongly NP-hard problems may be effectively
solved to optimality

TSPs with a few hundred cities in a few seconds
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Large TSPs

24,978 Cities in Sweden
2004, The Concorde TSP solver
84.8 CPU years on a single 
Intel Xeon 2.8 GHz processor

Largest TSP solved:
85,900 Locations in a VLSI Application
Challenge: World tour of 1,904,711 places
best solution within 0.076% of optimum
http://www.tsp.gatech.edu/

http://www.tsp.gatech.edu/
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VRP with Capacity Constraints (CVRP) 
Graph G=(N,A)

N={0,…,n+1} Nodes
0 Depot, i≠0 Customers 
A={(i,j): i,j∈N} Arcs
cij >0 Transportation Costs

Demand di for each Customer i
V set of identical Vehicles each with Capacity q
Goal

Design a set of Routes that start and finish at the Depot - with 
minimal Cost.
Each Customer to be visited only once (no order splitting)
Total Demand for all Customers not to exceed Capacity
Cost: weighted sum of Driving Cost and # Routes

DVRP – distance/time constraint on each route
VRPTW – VRP with time windows
Pickup and Delivery

Backhaul – VRPB(TW)
Pickup and delivery VRPPD(TW)
PDP
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A mathematical model for VRPTW 
(Network Flow Formulation)
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Complexity of VRP(TW) and 
State-of-the-art: Exact Methods

Basic VRP (CVRP)
Strongly NP-hard
Branch & Bound + basic relaxations
Lagrange Relaxation
Set Partitioning, Column Generation
Branch & Cut
Consistently solve problem instances with 70 customers in reasonable time

VRPTW: finding feasible solution is NP-complete
Dantzig-Wolfe decomposition, CG

subproblem: SPP med capacities and time windows
Lagrange Relaxation
Consistently solve problem instances with 100 customers in reasonable time

Approximation Methods, Heuristics
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G-n262-k25: 5685 vs. 6119, 5767 CPU s 
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M-n200-k16: First known feasible solution
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Some messages (2)

DOPs should be analyzed
Try exact methods
Collaboration between exact and heuristic methods

a good, heuristic solution may jump-start and speed up an exact method
exact methods may give high quality bounds
true collaboration, asynchronous parallel algorithms
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Quality Assessment 
- upper and lower bounds (minimization)

Optimal
value

Upper
bounds

Lower
bounds

Heuristics

Relaxations
- LP
- Lagrange
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Further motivation - heuristics
In the real world

response requirements
instance size and response requirements may rule out exact methods
optimization is just one aspect
modelling challenges, what is the objective?
humans are satisficers, not optimizers [Herb Simon]
generic solver, all kinds of instances, robustness

Heuristic methods are generally robust, few drastic assumptions

Exact methods should not be disqualified a priori
Cultures

mathematicians vs. engineers/pragmatists
OR vs. AI animosity
reconciliation
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Exact methods for DOP
DOPs typically have a finite # solutions
Exact methods guarantee to find an optimal solution
Response time?

Good for solving limited size instances
May be good for the instances in question
Some (weakly) NP-hard problems are effectively solved, given 
assumptions on input data 
Basis for approximation methods
Subproblems, reduced or relaxed problems
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Heuristics - definitions
Wikipedia: “Heuristics stand for strategies using readily accessible, though
loosely applicable, information to control problem-solving in human beings and 
machines”.
Greek: (h)eureka – “I have found it”, Archimedes 3rd century BC
Psychology: Heuristics are simple, efficient rules, hard-coded by evolutionary 
processes or learned, which have been proposed to explain how people make 
decisions, come to judgments, and solve problems, typically when facing complex 
problems or incomplete information. Work well under most circumstances, but in 
certain cases lead to systematic cognitive biases.  
Mathematics: “How to solve it” [G. Polya 1957]. Guide to solution of mathematical 
problems.
AI: Techniques that improve the efficiency of a search process often by sacrificing 
completeness
Computing science: Algorithms that ignore whether the solution to the problem 
can be proven to be correct, but which usually produces a good solution or solves 
a simpler problem that contains, or intersects with, the solution of the more 
complex problem. Heuristics are typically used when there is no known way to find 
an optimal solution, or when it is desirable to give up finding the optimal solution 
for an improvement in run time.
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Heuristics in Discrete Optimization

Sacrificing the guarantee of finding the optimal solution
Strong guarantees regarding solution quality vs. response time 
typically cannot be given

General heuristics
strategies for traversing the Branch & Bound tree in MIP

Greedy heuristics
Special heuristics, exploiting problem structure
Basic method: Local Search
Better methods: Metaheuristics
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How to find a DOP solution?
Exact methods

Earlier solution
Trivial solution
Random solution
Constructive method

gradual build-up of solutions from scratch
greedy heuristic

Solve simpler problem
remove or change constraints
modify objective

Given a solution, modify it
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Local Search and Meta-Heuristics

Operate on a ”natural” representation of solutions
The combinatorial object
Search in the space of feasible solutions / all solutions
(search space, solution space)

Single solution: Trajectory based methods
Multiple solutions: Population based methods
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Local search for DOP

Dates back to late 1950ies, TSP work
Renaissance in the past 20 years
Heuristic method
Based on small modifications of given solution
Ingredients:

Initial solution
Operator(s), Neighborhood(s)
Search strategy
Stop criterion

Iterative method
Anytime method
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Example: TSP

Trivial solution:
1 2 3 4 5 6 7 (288)

Greedy
 

construction:
1 3 5 7 6 4 2 (160)

1 2 3 4 5 6 7
1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0
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Example: 0-1 Knapsack

Knapsack capacity 100
10  ”articles” (projects, ...) 1,...,10
Trivial solution: empty knapsack, utility 0
Greedy solution, add articles in descending utility sequence:

(0000010000), utility 85
Relative utility

1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

1 2 3 4 5 6 7 8 9 10
Utility/size 0.93 1.23 0.98 0.86 1.18 0.89 0.77 0.89 0.82 1.13
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Given a solution, how to find a better one?

Modification of given solution gives ”neighbor”
A certain type of operation gives a set of neighbors: a neighborhood
Evaluation

objective
feasibility
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Example: TSP

Operator: 2-opt
How many neighbors?
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Example: Knapsack

We have a solution 0010100000 with value 73
Simple operator (Flip): Change status of an element, i.e.,

if the article is in, take it out
if the article is out, put it in

Some neighbors:
0110100000 utility 105
1010100000 utility 152, non-feasible
0010000000 value 47

n neighbors
Other operators: 1-exchange, 2-exchange, ....

1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

0 0 1 0 1 0 0 0 0 0
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Definition: Neighborhood function

Let (S,f)
 

be a DOP-instance.  A neighborhood
 

function
 

is a 
mapping

that, for a given solution
 
defines

a neighborhood of
 

solutions
that

 
in some

 
sense

 
are

 
”close

 
to”

 is said
 

to be a neighbor
 

of
relative to 

: 2→N SS

∈s S
( ) ⊆sN S
s

( )∈t sN s
N
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Neighborhood operator

Neighborhood functions are often defined through certain generic
operations on a solution - operator
Normally rather simple operations on key structures in the
combinatorial object

removal of an element
addition of an element
exchange of two or more elements

Multiple neighborhood functions - qualification by operator ( ),N sσ σ∈Σ
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Local Search (Neighborhood Search)

Starting point: initial solution
Iterative search in neighborhoods for better solution
Sequence/path of solutions

Path is determined by
Initial solution
Neighborhood function
Acceptance strategy
Stop criterion

What happens when the neighborhood contains no better solution?
Local optimum

1 ( ), 0,k ks N s k+ σ∈ = …

0s
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Definition: Local optimum

Let (S,f)
 

be a DOP-instance, and let
N be a neighborhood

 
function. A solution

is a local optimum (minimum) w.r.t. N if:
ŝ

ˆ ˆ( ) ( ), ( )≤ ∀ ∈f s f t t sN

The set
 

of
 

locally
 

optimal solutions: Ŝ

NB! Local
 

optimality
 

is relative to the
 

neighborhood
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Example: TSP

Operator: 2-opt
Local minimum (2-optimal) solution
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Definition: Exact neighborhood

Let (S,f)
 

be a DOP-instance
 

and let
N be a neighborhood

 
function. N is exact if:

ˆ ⊆S S*

N is exact
 

if
 

local
 

optima for the
 

neighborhood
N are

 
also

 
global optima. 
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Local Search (Neighborhood Search)

Alternative strategies for exploring the neighborhood
Different strategies will give different paths in the search space
Accept the first (feasible) improving solution (”First Accept”)
Complete exploration of the neighborhood

move to the best improving solution
(”Steepest Descent”, ”Hill Climbing”, ”Iterative Improvement”)
always move to the best solution in the neighborhood, whether
improving or not (”Best Neighbor”)

Other strategies?
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Local_Search (S,f,N,strategy)

*/ strategy
 

is ”First Accept”
 

or ”Best Accept”
current:=Init_Solution(S,f)
incumbent:=current

 
*/ best solution

 
until

 
now

local_optimum:=false
while not local_optimum

 
do */ other

 
stop

 
criteria

 
may

 
be envisaged

(current,incumbent,local_optimum):=
 Search_the_Neighborhood

 
(current,N(current),f,strategy,incumbent)

if local_optimum
 

return incumbent
od
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Search_the_Neighborhood 
(current,Neighbors,f,strategy,incumbent)

best_neighbor:=current
for n

 

in Neighbors

 

do
if f(n)

 

< f(best_neighbor)

 

then best_neighbor:=n

 

fi */ minimization
if f(n) < f(incumbent) then

if strategy=”First

 

Accept”

 

then
return (n,n,false) else
incumbent:=n

 

*/ strategy

 

is ”Best Accept”
fi

fi
od
return (best_neighbor,incumbent,best_neighbor=current)
*/ Returns

 

multiple value

 

/ structure:      (current,incumbent,local_optimum)
*/    Assuming

 

that

 

Neighbors

 

are

 

feasible
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Observations and Structures
LS with either ”First Accept” or ”Steepest Descent” stops in a local optimum (unless there are
other stop criteria)
If the neighborhood N is exact, Local Search with these strategies are exact optimization
methods
The neighborhood function N induces a directed graph, the Neighborhood Graph 
GN = (X,AN) where nodes are the members of the search space, and N defines the arcs:

Many neighborhood functions are symmetric
A Local Search process defines a trajectory in the Neighborhood Graph

Associated with each node, there is a value that defines the ”topography”
defined by the objective (or, more generally, an evaluation function)  

Search Landscape (S,N,f)

( ){ }, : , ( )′ ′= ∈ ∈x x x x xNA X N

( ) ( ) ,′ ′ ′∈ ⇒ ∈ ∈x x x x x xN N X

1 ( ), 0,k ks N s k+ σ∈ = …

( )f x
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Traversing the Neighborhood Graph 

1 ( ), 0,k ks N s k+ σ∈ = …

0s 1s

0( )N sσ

1s

0s

1( )N sσ

2s
1s

A move
 

is
 

the
 

process
 

of
 

selecting
 

a given solution
 

in 
the

 
neighborhood

 
of

 
the

 
current

 
solution, hence

 
making it the

current
 

solution
 

for the
 

next
 

iteration
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Local Optimum 

ks

( )kN sσ

1ks +

ks
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Search Landscapes 
- Local and global optima

Objective value

Solution space
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Simplex algorithm for LP as Local Search

Simplex Phase I gives initial, feasible solution (if it exists)
Phase II gives iterative improvement towards optimal solution (if it exists)
The neighborhood is defined by the polyhedron
The strategy is ”Iterative Improvement”
The concrete moves are determined by pivoting rules
The neighborhood is exact, i.e., Simplex is an exact optimization algorithm
(for certain pivoting rules)
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Local Search
Main challenges

feasible region only, or the whole solution space? 
design good neighborhoods
size, scalability, search landscape
initial solution
strategy
efficient evaluation of the neighborhoods

incremental evaluation of constraints
incremental evaluation of the objective (evaluation function)

stop criteria
performance guarantees

The performance is typically much better than greedy heuristics
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Design of neighborhood operators

Based on natural attributes
Neighborhood size, scalability
Diameter: maximum # moves to get from one solution to another
Connectivity

Search complexity depends on Search Landscape

Distance metrics
Hamming distance, Edit distance
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Example: Symmetric TSP and 2-opt

Solution space cardinality (n-1)!/2
Neighborhood cardinality n(n-1)/2
Connected
Diameter between n/2 and n-1 (still open)
Simple move representation
Objective Difference (delta evaluation) is simple and efficient
Feasibility is no problem ...
Generalization: k-opt
n-opt is an exact neighborhood, Diameter is 1, but ... 
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Diameter of 0-1 Knapsack problem with the 
”Flip” neighborhood

One is never more than n moves away from the optimal solution
but the landscape you have to move through may be very bumpy ...

=X n2
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Knapsack instance Idaho20

{ }

n

i i
i 1

n

i i
j

i

1

max v x s.t.

c

x

x C

0,1

=

=

∈

≤

∑

∑

Idaho20
n 20 C 2.5 f* 5.949363 s* 00110010101101001010 (slack 0.02)
v 0.751231 0.0562173 0.586932 0.695919 0.10468 0.242555 0.832725 0.00696871 0.828839 0.513085 0.704328 
0.63044 0.556193 0.507427 0.159593 0.30589 0.573253 0.016571 0.5895 0.320655
c 0.703562 0.658012 0.194159 0.50693 0.372415 0.0674343 0.467352 0.132051 0.336674 0.790007 0.0390611 
0.295304 0.530008 0.180224 0.116737 0.740043 0.440325 0.522951 0.0189656 0.725904

• 6810 local
 

optima, value
 

from 0.732882(1) to 5.949363(176) 
• ”basin

 
of

 
attraction”

 
size

 
varies

 
from 1 to 464
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Search landscape for Idaho20
LO Value

0

1

2

3

4

5

6

7

1 272 543 814 1085 1356 1627 1898 2169 2440 2711 2982 3253 3524 3795 4066 4337 4608 4879 5150 5421 5692 5963 6234 6505 6776

LO Value

Frequency

0
50

100
150
200
250
300
350
400
450
500

1 278 555 832 1109 1386 1663 1940 2217 2494 2771 3048 3325 3602 3879 4156 4433 4710 4987 5264 5541 5818 6095 6372 6649

Frequency



71ICT

Geir Hasle - eVITA Winter School 2009

Knapsack-instance Idaho20ex

{ }

n

i i
i 1

n

i i
j

i

1

max v x s.a.

c

x

x C

0,1

=

=

∈

≤

∑

∑

Idaho20ex
n 20 C 2.5 f* 4.911716 s* 01001001010010011101 (slack 0.03)
v 0.703562 0.658012 0.194159 0.50693 0.372415 0.0674343 0.467352 0.132051 0.336674 0.790007 0.0390611 
0.295304 0.530008 0.180224 0.116737 0.740043 0.440325 0.522951 0.0189656 0.725904
c 0.751231 0.0562173 0.586932 0.695919 0.10468 0.242555 0.832725 0.00696871 0.828839 0.513085 0.704328 
0.63044 0.556193 0.507427 0.159593 0.30589 0.573253 0.016571 0.5895 0.320655

• 2644 local
 

optima, value
 

from 0.745181(1) to 4.911716(288) 
• ”basin

 
of

 
attraction”

 
size

 
varies

 
from 1 to 1024
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Search Landscape Idaho20ex

Frequency

0

200

400

600

800

1000

1200

1 108 215 322 429 536 643 750 857 964 1071 1178 1285 1392 1499 1606 1713 1820 1927 2034 2141 2248 2355 2462 2569

LO Value

0

1

2

3

4

5

6

1 114 227 340 453 566 679 792 905 1018 1131 1244 1357 1470 1583 1696 1809 1922 2035 2148 2261 2374 2487 2600
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Local Search
Old idea, new developments over the past two decades
Popular method for solving hard DOPs
Generic and flexible
No strong assumptions

”Anytime”-method
Efficient, good quality solution quickly
Performance depending on initial solution, neighborhood operator 
and strategy

Exact methods preferable, if they solve the problem
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Local Search

The search landscape is typically complex
Local optima may be far from global optima
Local search is a local method
Solution quality depends on initial solution, neighborhood, strategy

”Blind” and ”headstrong” method, no learning during search, no
randomness

No strong performance guarantees
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What
 

to do to move
 

on
 

from a local
 optimum to cover a larger

 
part of

 the
 

search
 

space? 
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How to escape local optima in LS 
- some strategies

Restart
Random choice of move
Allow moves to lower quality solutions

deterministic
prababilistic

Memory
which solutions have been visited before?
diversify the search
(parts of) good solutions
intensify the search

Change the search landscape
Change neighborhood
Change evaluation function
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Metaheuristics (General heuristics)

search strategies that escape local optima
introduced early 1980ies
considerable success in solving hard DOPs
analogies from physics, biology, human brain, human 
problem solving
a large number of variants
some religions
some confusion in the literature
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Some metaheuristics
Simulated Annealing (SA)
Threshold Accepting (TA)
Genetic Algorithms (GA) 
Memetic Algorithms (MA)
Evolutionary Algorithms (EA)
Differential Evolution (DE)
Ant Colony Optimization (ACO)
Particle Swarm Optimization (PSO)
Immune Systems (IS)
Tabu Search (TS)
Scatter Search (SS)
Path Relinking (PR)
Guided Local Search (GLS)
Greedy Randomized Adaptive Search (GRASP)
Iterated Local Search (ILS)
Very Large Neighborhood Search (VLNS)
Variable Neighborhood Descent / Search (VND/VNS)
Neural Networks (NN)
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”Definition” of metaheuristics 
(Osman & Kelly)

A metaheuristic is 
an iterative generation

 
process

that
 

guides an underlying
 

heuristic
by combining

(in an intelligent way) 
different

 
strategies

 
for exploring

 
and exploiting

 
solution

 
spaces

(and learning
 

strategies) 
to find

 
near-optimal

 
solutions

 
in an effective

 
way
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”Definition” of metaheuristics 
(Glover & Kochenberger)

Solution
 

methods
 

that
 

utilize
 

interaction between
 

local 
improvement procedures (local

 
search) and higher

 level
 

strategies to escape local optima and ensure
 robust search in a solution

 
space



81ICT

Geir Hasle - eVITA Winter School 2009

Variant of LS: Random Search (RS) 
”Brownian motion” - A borderline metaheuristic

Procedure Random_Search(f,N,Stop,initial)
begin

current:=incumbent:=initial;
while not Stop() do
begin

current:=Random_Solution(N(current))
if f(current) < f(incumbent) then
begin

incumbent:=current;
end

end
return incumbent;

end

Stop
 

criteria?
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Variant of RS: Random Descent 
A borderline metaheuristic
Procedure Random_Descent(f,N,Stop,initial)
begin

new_solution:=current:=incumbent:=initial
while not Stop() do
begin

Neighbors:=N(current)
while not Stop()

 

and f(new_solution) >=f(current)

 

do
begin

new_solution:=Random_Solution(Neighbors)
end
current:=new_solution
if f(current) < f(incumbent) then incumbent:=current

end
return incumbent

end
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Metaheuristic strategies

Goals
escape local optima
avoid loops

Accept worse solutions
Randomness

Simulated Annealing (SA) utilizes these strategies
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Simulated Annealing (SA) 
Kirkpatrick et al. 1983 / Cerny 1985

Inspired by work on statistical thermodynamics
the Metropolis algorithm 1953
simulation of energy changes in physical systems under cooling

Used for DOP
Built on LS (variant of Random Search/Random Descent)
Trajectory-based method
Simple to implement
A lot of literature
Used a lot, outside the metaheuristic community, probably
too much ... 
Converges to a global optimum under weak assumptions
Very slowly ....
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SA - Analogies

Thermodynamics
System state
Energy
State change
Temperature
Final state

DOP
Solution
Cost
Move
Control parameter
Final solution
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Simulated Annealing (SA)

Procedure Local_Search(Init_Sol,N,f,Strategy,Stop_Criterion)
*/ Strategy

 
= SA

incumbent:=current:= Init_Sol()
Repeat

current:=Select_SA_Neighbor(f,current,N(current),Stop_Criterion)
if f(current)< f(incumbent) then incumbent

 
:=current

Until Stop_Criterion()
return incumbent

May be expressed
 

as strategy
 

for move
 

selection
in basic

 
LS:
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Move selection in SA

• Modified
 

”Random
 

Descent”
• Select

 
random

 
solution

 
in neighborhood

• Accept
• unconditionally, if

 
better

• with
 

a non-zero
 

probability, if
 

worse
•

 
Probability

 
determined

 
by control

 
parameter 

(temperature)

• Avoids
 

getting
 

stuck
 

in local
 

optimum
• Avoids

 
looping
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Move selection in SA

Procedure Select_SA_Neighbor
 (f,current,Neighbors,Stop_Criterion)

*/ Strategy
 

is Simulated
 

Annealing
begin

i:=Random_Element(Neighbors)
delta

 
:= f(i) -

 
f(current) */ Could

 
be improved

 
...

if delta
 

< 0 or Random(0,1)
 

< exp(-delta/t)
 

then 
return i

else
return current

end
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SA 
Acceptance of worse solutions

Random
 

Search

Local
 

Search

t = ∞

te
Δ

−

0t →

1
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SA – higher level strategy
initial control variable t0 (high value)
”inner” stop criterion: # iterations with the same temperature
temperature reduction
”cooling schedule”
stop criteria

minimum temperature
# iterations (without improvement)
time
user

the procedure may be iterated
efficiency is depending on parameters (optimization problem)

experiments, experience, (witch)craft, ...
over-fitting
self-adaptive, parameter-free methods ...

selection of neighborhood is still important ... 

1 ( )i it t+ = α
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SA – overall procedure
Procedure Simulated_Annealing

 (f,N,Stop_Criterion,t0,Nrep,Cool)
incumbent:=current:= Find_Initial_Solution()
t:=t0
Repeat

for i:=1
 

to Nrep
 

do */ Several
 

iterations
 

with
 

one
 

t value
begin

current
 

:=Select_SA_Neighbor(f, current,N(sol),incumbent,t)
if

 
f(current) < f(incumbent) then incumbent:= current

end

t:=Cool(t)
 

*/ Cooling
Until Stop_Criterion()
return incumbent
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Statistical analysis of SA

Model: state transitions in search space
Transition probabilities [pij], only dependent on states
Homogeneous Markov chain

When all transition probabilities are finite, 
SA will converge to a stationary distribution
that is independent of the initial solution. When the temperature goes to
zero, the distribution converges to a uniform distribution over
the global optima.

Statistical guarantee
In practice: exponential computing time needed to guarantee optimum
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SA i practice

heuristic approximation algorithm
performance strongly dependent on cooling schedule
rules of thumb

large # iterations, few temperatures
small # iterations, many temperatures



94ICT

Geir Hasle - eVITA Winter School 2009

SA in practice – Cooling schedule

geometric sequence often works well

1 , 0, , 1 (0.8 0.99)i it at i K a+ = = < −…

vary # repetitions and a, adaptation
computational experiments
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SA – Cooling schedule

# repetitions and reduction rate should reflect search landscape  
Tuned to maximum difference between solution values
Adaptive # repetitions

more repetitions for lower temperatures
acceptance rate, maximum limit

Very low temperatures are unnecessary (Local Search)
Overall cooling rate more important than the specific cooling function
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SA – Decisions

Goal: High quality solution in short time
Search space: only feasible solutions?
Neighborhood
Evaluation function
Cooling schedule
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SA – Computational efficiency aspects

Random choice of neighbor
neighborhood reduction, good candidates

Evaluation of objective (evaluation function)
difference without full calculation
approximation

Evaluation of constraints (evaluation function)
Move acceptance

calculating the exponential function takes time
drawing random numbers take time

Parallel computing
fine-grained, in Local Search
coarse-grained: multiple SA searches
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SA – Modifications and extensions

Probabilistic
Acceptance probability
Approximation of (exponential) function / table
Approximation of cost function
Few temperatures
Restart

Deterministic
Threshold Accepting (TA), Dueck and Scheuer 1990
Record-to-Record Travel (RTR), The Great Deluge
Algorithm (GDA), Dueck 1993
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Deterministic Annealing 
- Threshold Accepting (TA)

Procedure Select_TA_Neighbor
 

(f,current,Neighbors,incumbent,theta1)
*/ Strategy

 
is Threshold

 
Accepting

begin
i:=Random_Element(Neighbors)
delta

 
:= f(i) -

 
f(current)

*/ SA: if delta
 

< 0 or Random(0,1)
 

< exp(-delta/t)
if delta < theta1 */ Positive Threshold

 
w.r.t. current

then return i
end



100ICT

Geir Hasle - eVITA Winter School 2009

Deterministic Annealing 
- Record-to-Record Travel (RRT)

Procedure Select_RRT_Neighbor
 (f,current,Neighbors,incumbent,theta2)

*/ Strategy
 

is Record-to-Record
 

Travel
begin

i:=Random_Element(Neighbors)
*/ SA, TA:  delta

 
:= f(i) -

 
f(current)

*/ SA:
 

if delta
 

< 0 or Random(0,1)
 

< exp(-delta/t)
if f(i) < theta2*f(incumbent) */ theta2 > 1
then return i

end
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TA, RTR: Cooling schedule of tolerance

Random
 

Search

Local
 

Search

θ
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Tabu Search (TS) 
F. Glover / P. Hansen 1986

Fred Glover 1986: ”Future paths for integer programming and links to 
artificial intelligence”
Pierre Hansen 1986: ”The Steepest Ascent/Mildest Descent Heuristic
for Combinatorial Optimization”
DOP research – OR and AI
Barrier methods, search in infeasible space
Surrogate constraints
Cutting plane methods
Automated learning, cognitive science
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Tabu (Taboo)

”Banned
 

because
 

of
 

moral, taste, or risk”
Tabu Search: Search

 
guidance

 
towards

 
otherwise

 
inaccessible

 
areas of

 the
 

search
 

space
 

by use
 

of
 

restrictions

Principles for intelligent problem solving
Structures that exploit history (”learning”)
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Tabu Search – Main ideas

Trajectory-based method, based on Local Search
Seeks to allow local optima by allowing non-improving moves
Aggressive: Always move to best solution in neighborhood
Looping problem, particularly for symmetric neighborhoods
Use of memory to 

avoid loops (short term memory) 
diversify the search (long term memory) 
intensify the search (long term memory) 
General strategy to control ”inner” heuristics (LS, ...)

Metaheuristic (Glover)  
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Basic Tabu Search

LS with ”Best Neighbor” strategy
Always move to new neighbor (”aggressive LS”)
But: some neighbors are tabu
Tabu status defined by tabu-criteria
However: some tabu moves are admissible

admissibility criteria
typical example: new incumbent

Short term memory: Tabu List
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Tabu Restrictions

defined on properties of solutions or moves – attributes
how often – or how recent (frequency, recency) has the
attribute been involved in (generating) a solution
data structure: tabu list 
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Local_Search (S,f,N,strategy)

incumbent:=current=Init_Solution(S)
local_optimum:=false
while not local_optimum

 
do

(current,incumbent,local_optimum):=
 Search_the_Neighborhood

 
(current,N,f,strategy,incumbent)

if local_optimum
 

return incumbent
od
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Search_the_Neighborhood 
(current,N,f,strategy,incumbent)

best_neighbor:=current
neighbors=N(current)
for i

 

in neighbors

 

do
if f(i)

 

< f(best_neighbor)

 

then best_neighbor:=i
if f(i) < f(incumbent) then

if strategy=”First

 

Accept”

 

then
return (i,i,false) else
incumbent:=i

 

*/ strategy

 

is ”Best Accept”
fi

fi
od
return (best_neighbor,incumbent,best_neighbor=current)
*/         (current,incumbent,local_optimum)
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Traversing the Neighborhood Graph 

1 ( ), 0,k ks N s k+ σ∈ = …

0s 1s

0( )N sσ

1s

0s

1( )N sσ

2s
1s

A move
 

is
 

the
 

process
 

of
 

selecting
 

a given solution
 

in 
the

 
neighborhood

 
of

 
the

 
current

 
solution, hence

 
making it the

current
 

solution
 

for the
 

next
 

iteration
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Local_Search (S,f,N,’Basic_Tabu_Search’)

incumbent:=current:=Init_Solution(S)
*/ best solution

 
until

 
now, ”champion”

*/ local_optimum:=false
while not Stopping_Criterion()

 
do

current:=Search_the_Neighborhood
 (current,N,f,Basic_Tabu_Search,incumbent)

if f(current) < f(incumbent) then incumbent:=current
*/ if local_optimum

 
return incumbent

od
return incumbent
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Search_the_Neighborhood 
(current,N,f,strategy,incumbent)

*/ Strategy=Basic_Tabu_Search
*/ best_neighbor:=current
best_acceptable_neighbor:=Really_Bad_Solution()
Neighbors=N(current) 
for i

 
in Neighbors

 
do

if f(i)
 

< f(best_acceptable_neighbor)
and (not Tabu(i,Tabu_List)

 
or Admissible(i))

 
then 

best_acceptable_neighbor:=i
od
Update_Tabu_List(best_acceptable_neighbor,Tabu_List)
return best_acceptable_neighbor
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Example: TSP

Representation: permutation vector
Operator: pairwise exchange

4

1

6

5

7

2 3

1 2 3 4 5 6 7

( ) [ ], , 1,i j i j i j n< ∈
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TSP-example 
1-exchange in permutation vector

4

1

6

5

7

2 3

2 5 7 3 4 6 1

2 6 7 3 4 5 1

4

1

6

5

7

2 3

Move: Exchange(5,6)
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TSP-example 1-exchange

Neighborhood cardinality:

For every move: move value

Choice of tabu restriction
attribute: city involved in move
tabu to perform moves that involve cities that have recently have been involved
for the past k iterations
k=3 (”tabu tenure”)

Choice of aspiration criterion
the classical one ...

2
n⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1 1( ) ( ), ( )k k k k kf i f i i N i+ + +Δ = − ∈
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Tabu criterion and tabu list 
- TSP-example

• Tabu Attribute: the
 

pair of
 

cities
 

involved
 

in a move
• Tabu Criterion: move

 
that

 
involves

 
the

 
same pair

• Tabu tenure: 3
•

 
Data structure: triangular

 
table, # iterations

 
until

 
move

 becomes
 

legal
• Update

 
after

 
each

 
move

2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0
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Alternative tabu criteria / attributes 
- TSP-example

1 2 3 4 5 6 7
2 4 7 3 5 6 1

4

1

6

5

7

2 3

Do not operate on given cities
Do not operate on cities in certain positions in vector
Edge/Arc based criteria

Edge has often occured in good solutions
Edge lengths
Edge in/out

For permutation problems:
attributes related to previous/next
relations often work well
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Candidate list of moves 
- TSP-example

1 2 3 4 5 6 7
2 4 7 3 5 6 1 Current

 
solution

Move Value
1,3 -2
2,3 -1
3,6 1
1,7 2
1,6 4

Cost: 200

Candidate
 

list
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TSP-example 1-exchange 
- Iteration 0/1

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 0 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 5 7 3 4 6 1 Current

 
solution

Cost: 234

Move Value
4,5 -34
4,7 -4
3,6 -2
2,3 0
1,4 4

Candidate
 

list

Select
 

move (4,5)
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TSP-example 
- Iteration 1 (after Exchange (4,5))

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 3 5 6 1 New Current

Cost: 200

Move Value
4,5 -34
4,7 -4
3,6 -2
2,3 0
4,1 4

Candidate
 

list with
 

selected
 move
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TSP-example 
- Iteration 2

Tabu list 2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 3 5 6 1

Current
 

solution
Cost: 200

Move Value
1,3 -2
2,3 -1
3,6 1
1,7 2
1,6 4 New candidate

 
list

Select
 

move
 

(1,3)

1 2 3 4 5 6 7
2 4 7 1 5 6 3 Cost: 198
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TSP-example 
- Iteration 3

1 2 3 4 5 6 7
4 2 7 1 5 6 3

Tabu list 2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 1 5 6 3

Current
Cost: 198

Select
 

move
 

(2,4) (deteriorating)
Tabu!Move Value

4,5 2
2,4 4
6,7 6
4,5 7
3,5 9

Cost: 202

Tabu list 2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0
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TSP-example 
- Iteration 4

1 2 3 4 5 6 7
5 2 7 1 4 6 3

Tabu list 2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

1 2 3 4 5 6 7
4 2 7 1 5 6 3

Current
Cost: 202

Tabu, but
 

Aspiration
 

Criterion
 

says
 OK. Select

 
(4,5)

Move Value
4,5 -6
5,3 -2
7,1 0
1,3 3
2,6 6

Cost: 196

Tabu list 2 3 4 5 6 7
1 0 1 0 0 0 0

2 0 2 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0
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Observations

In the example 3 of 21 moves are tabu
Stronger tabu criteria are achieved by

increasing tabu tenure
strengthening the tabu restriction

Dynamic tabu tenure (“Reactive Tabu Search”) often works better 
than static
Tabu-list requires space (why not store full solutions instead of 
attributes?)  
In the example: the tabu criterion is based on recency, short term 
memory
Long term memory: normally based on frequency
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TSP-example 
- Frequency based long term memory

1 2 3 4 5 6 7
1 2
2 3
3 3
4 1 5 1
5 4 4
6 1 2
7 4 3

Tabu status (recency)

Frequency of moves

Typically utilized to diversify search 
Is often activated when the search stagnates (no improving moves for a long time)
Typical mechanism for long-term diversification strategies: Penalty for moves that have 

been frequently used
Augmented move evaluation
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Tabu Search - Main Ideas
Less use of randomization (than SA)
“Intelligent” search must be based on more systematic guidance
Emphasis on flexible memory structures
Neighborhoods are in effect modified on the basis of short term memory (one 
excludes solutions that are tabu)
Memory of good solutions (or parts of them), e.g. good local optima, 
particularly in long term strategies
Use of search history to modify evaluation of solutions/moves
TS may be combined with penalties for constraint violations
(a la Lagrange-relaxation) 
Strategic oscillation

intensification and diversification
feasible space and infeasible space
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Tabu Search – More ideas, and practice

“Aggressive search”: move on – select good neighbor
Computational effort and scalability remedies (general)

delta-evaluation
approximation of cost function
identify good candidates in neighborhood 
candidate list of moves, extensions

Most TS-implementations are deterministic
Probabilistic Tabu Search

moves are chosen probabilistically, but based on TS principles

Most TS-implementations are simple
basic TS with short term memory, static tabu tenure
potential for improvement ... 
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Tabu Search - Generic procedure

Find initial solution x
Initialize memory H
While not Stop_Criterion()

Find (with limited resources) 
Candidate_List_N(x) in N(x)
Select (with limited resources) 
x’ = argmin(c(H,x), x in Candidate_List_N(x))
x= x’
H=Update(H)

end
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Tabu Search – Attributes 

Attribute: Property of solution or move
May be based on any aspect of the solution or move
Basis for definition of tabu restrictions
A move may change more than one attribute
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Example: TSP
Attribute based on edges in tour

A1: Edge is added to solution
A2: Edge is removed from solution

Exchange-move in permutation vector:
4 edges are removed
4 edges are added
Exchange(5,6)

A1:(2,5),(5,7),(4,6),(6,1)
A2:(2,6),(6,7),(4,5),(5,1)

Exchange is O(n2) segment of
the O(n4) 4-opt neighborhood

4

1

6

5

7

2 3

4

1

6

5

7

2 3
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Use of attributes in tabu restrictions

Assume that the move x(k)-> x(k+1) involves the attribute A
Normal tabu restriction: 
Tabu to perform move that reverses the status of A
TSP-example:

the attributes are edges
current move introduces edge (2,5): y2,5(0->1)
moves that remove edge (2,5): y2,5(1->0) are tabu ( for some iterations)
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Tabu tenure – the (witch)craft
Static

t=7
t=√n where n is a measure of problem size

Dynamic (and randomized)
t ∈ [5,11]
t ∈ [ .9√n, 1.1√n]

Depending on attribute
TSP
edge-attribute, tabu criterion both on edge in / edge out
fewer edges in than out (n vs. n2-n)
same tabu tenure would be unbalanced

Self-adaptation
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Aspiration criteria
Classical aspiration criterion: 
Accept tabu move that will give a new incumbent
Other relevant criteria are based on:

solution quality
degree of feasibility
strength of tabu
degree of change: Influence of move

High influence move may be important to follow when close to local 
optimum, search stagnates

Distance metrics for solutions
Hamming-distance between strings

h(1011101,1001001) = 2 
h(2173896,2233796) = 3 
h("toned”,"roses”) = 3 

More general, sequences: Edit Distance (Levenshtein) 
insertion, removal, transposition
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Frequency based memory
Complementary to short term memory
Long term strategies
Frequency measures

residence-based
transition-based

TSP-example
how often has a given edge (triplet, ...) been included in the current solution? 
(residence-based)
how often has the in/out status of the edge been changed? 
(transition-based)
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Intensification and diversification

Intensification: Aggressive prioritization of good solution 
attributes

short term: based directly on attributes
long term: use of elite solutions, parts of elite solutions (vocabularies)

Diversification: Spreading of search, prioritization of moves 
that give solutions with new composition of attributes

Strategic oscillation 
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Intensification and diversification 
- basic mechanisms

use of frequency based memory
select solution from subset R of S (or X)
diversification:

R is chosen to contain a large part of the solutions generated so far (e.g., all local 
optima)

intensification :
R is chosen as a small set of elite solutions that 

to a large degree have identical attributes
have a small distance in solution space
cluster analysis
path relinking
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Path relinking

Assuming that new good solutions are found on the path between two 
good solutions
Select two elite solutions x’ and x’’
Find (shortest) path in the solution graph between them 
x’ -> x’(1)-> ... x’(r)= x’’
Select one or more of the intermediate solutions as end points for path 
relinking
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Punishment and encouragement 
Whip and carrot

Augmented move evaluation, in addition to objective
Carrot for intensification is whip for diversification, and vice
versa

Diversification
moves to solutions that have attributes with high frequency are 
penalized
TSP-example: g(x)=f(x)+w1Σωij

Intensification
moves to solutions that have attributes that are frequent among 
elite solutions are encouraged
TSP-example: g(x)=f(x)-w2Σγij
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Candidate list

Strategy to limit computational effort in evaluating neighborhoods
Limited subset of moves that seem promising

approximate move evaluation (evaluation function, constraints) 
heuristic selection based on attributes (TSP edges)
randomness

Candidate list may be expanded
Candidate list may be reused

Parallel processing is another strategy ...

General idea in Local Search
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Tabu Search - Summary
Inspired from math. progr., AI/cognitive science
Focus on memory/learning rather than random choice
A lot of ideas, more a framework than a concrete metaheuristic
Based on “aggressive” local search, acceptance of worse solutions
Candidate list strategies for cheaper neighborhood evaluation
Short term memory

avoid reversal of moves and repetition
attributes, tabu criteria, tabu list

Aspiration criteria - tabus are there to be broken ...
Long term, frequency based memory for diversification and intensification
Path relinking
Strategic oscillation
Complexity?

Good results for many hard DOPs
Worshippers, as for most other metaheuristics, communities and congregations
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Guided Local Search (GLS) 
(E. Tsang, C. Voudouris 1995)

Project for solving Constraint Satisfaction Problems (CSP), early 90ies
(E. Tsang, C. Voudouris, A. Davenport)
GENET (neural network)
Development of GENET from CSP to ‘Partial CSP’
satisfaction ⇒ optimization
the Tunnelling Algorithm’ (94) -> GLS (95)
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GLS - Main ideas
General strategy for guidance of local search/”inner” heuristics: 
metaheuristic

Local search (trajectory based)

Penalizes undesired properties (‘features’) of solutions

Focuses on promising parts of the solution space
Seeks to escape local optima through a dynamic, augmented
evaluation function (objective + penalty term)
Memory
Changing the search landscape
LS to local minimum, update of penalty term, LS to local
minimum, update of penalty term, ...
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GLS focuses on characteristic (non-trivial) solution features
Features are problem dependent
Features have a cost
Costly features will be avoided
Indicator function

Features

1 , if   has feature ( ) ,
0 , otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

= ∈i

s iI s s S   
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A solution consists of a number of edges
Edge is a good choice as a basic feature structure

Either in or out
Cost: edge cost (length)

Feature set

Feature example: TSP

{ }, 1... , 1,..., ,= = = + ≠e i N j i N i jijE    

Feature costs given by distance matrix

= [d ], i=1,...,N, j=1,...,NijC

4

1

6

5

7

2

3
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Feature set E={ ei }, i=1,…,G
Indicator function

Augmented objective

Penalty vector p=[pi ], i=1…G, # times feature ei has been penalized
Penalty factor λ

1
'( ) ( ) ( )

G

i i
i

f s f s I s pλ
=

= + ∑

1  if   contains e
( ) ,

0  otherwise
⎧

= ∈⎨
⎩

i
i

s
I s s S   

Cost vector c=[ci ], ci > 0, i=1…G, cost of feature ei
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Augmented objective - Comments

1
'( ) ( ) ( )

G

i i
i

f s f s I s pλ
=

= + ∑

λ determines influence of penalty
Low value: intensification
High value: diversification

Initially, pi=0 ∀ i
In local minima, the feature(s) with maximum utility are penalized

ui(smin , ei ) = Ii* ci /(1+pi )

These feature(s) are penalised: pi = pi+1
Diversification: different features are penalized
high cost features are penalized more often

Note: Only

 

local

 

minimum features are

 

penalized
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{
int

 
k := 0; // number

 
of

 
GLS-iterations

s*  := sk

 

:= InitialSolution(S); // get
 

initial solution
set

 
all pi

 

:= 0; // set
 

all penalties
 

to zero
while

 
(stopCriterion

 
not satisfied) do {

f’
 

:= f + λ*

 

∑(Ii
 

*

 

pi

 

);
sk+1 :

 

= Local_Search
 

(sk

 

, f’, N,
 

“best accept”);  local
 

minimum
for (i:=1 to G)

ui :

 

= Ii
 

(sk+1

 

)* ci

 

/(1+pi

 

);
for each

 
i such

 
that

 
ui

 

is maximum
 

do
pi

 

:= pi

 

+ 1;
k = k+1;
if

 
(f(sk+1

 

) < f(s*))
s* := sk+1

 

; // save new
 

incumbent
}
return

 
s*;

}

GLS(S, f, λ, I, c, G, stopCriterion, N)
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Comments
Augmented objective in Local Search

sk+1 := Local_Search (sk, f’, N, “best accept”);
Local Search strategy may well be ”first accept”, ..
Variants of Local_Search may be used
Delta-evaluation of moves must take penalties into account
If all features are penalized equally many times f’(s) gives the same 
landscape as f(s)
Resetting penalty vectors

Avoids bad features, how about encouragement of good features?
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λ
 

Values
GLS seems to be rather robust regarding λ values
General advice: fraction of value of local minimum
Tsang & Voudouris:

TSP : λ = a*f(smin)/n , a∈[0,1] problem dependent
QAP: λ = a*f(smin)/n2 , a∈[0.2,1] problem dependent
For other problems they report absolute values depending on
problem size
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GLS - example : TSP
Feature: edge
Feature cost: length
e26 will be punished:
Augmented objective is f(s) if e26 is out, 
f(s)+λ if e26 is in 

4

1

6

5

7

2

3

1 2 3 4 5 6 7
1 0 0 0
2 0 0 0
3 0 0 0

0 0

0

0
01

4 0 0
5 0 0
6 0

0
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GLS - example : TSP

After next LS, e34 will be penalized

1 2 3 4 5 6 7
1 0 0 0
2 0 0 0
3 1 0 0

0 0

0

0
01

4 0 0
5 0 0
6 0

0

4

1

6

5

7

2

3

( )
'( )

∉⎧
⎪= ∈ ∈⎨
⎪ ∈⎩

26 34

26 34

26 34

f s , e ,e   s
f s f(s)+ , e  s or e  s

f(s)+2 , e ,e   s 
λ
λ
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GLS vs. SA

SA 
Local optima avoided by uphill moves
Looping avoided by randomness
High temperatures give bad solutions
Low temperatures: convergence to local minimum
The cooling schedule is critical and problem dependent

GLS visits local minima, but will escape
No uphill moves, but changes landscape
Deterministic (but probabilistic elements are easily added) 
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GLS vs. Tabu Search
Similarities ...
Some arguments, from the GLS community ...
TS utilizes frequency based (long term) memory used to penalize
features that are often present (for diversification)
GLS utilizes memory (pi) throughout the search, not in phases
GLS penalizes on the basis of both cost and frequency
TS penalizes only on the basis of frequency, may avoid “good”
features
GLS avoids this by utilizing domain knowledge (ci) 
In GLS the probability for a feature to be penalized is reduced
according to the number of times it has been penalized before
ui(smin , ei ) = Ii* ci /(1+pi )
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Fast Local Search
Heuristic limitation of neighborhoods (a la Candidate Lists)
Idea

partition of neighborhood into sub-neighborhoods
Status sub-neighborhoods: active or non-active
Only search in active sub-neighborhoods
Association of properties to sub-neighborhoods

property ⇔ neighborhood that change status of this property

General idea, particularly well suited for GLS
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GLS for continuous, nonlinear optimization

Extensions

Limited duration of penalties
Decreasing penalties
Rewards
Automatic setting of λ
Alternative utility-functions that determine
which features will be penalized

2 2 2

22 2

sin 0.56( , ) 0.5
1 0.001( )

x yF x y
x y
+ −

= +
+ +⎡ ⎤⎣ ⎦

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -50 0 50 100

0.5+( sin(sqrt(x*x))*sin(sqrt(x*x)) -0.5)/((1+0.001*(x*x)) * (1+0.001*(x*x)))
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Genetic Algorithms (GA)

Rechenberg, Schwefel 1960-1970
Holland et al. 1970ies
Function optimization
AI (games, pattern matching, ...)
OR
Basic idea 

intelligent exploration of search spaces based on randomness
parallelism
analogies from evolutionary biology 
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GA – Analogies with biology

Representation of complex objects
by vector of simple elements
Chromosomes
Selective breeding
Darwinistic evolution

Classical GA for DOP: Binary encoding
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Classical GA: Binary chromosomes

1 2 3 4 5 6 7
1 0 1 0 0 1 0

Chromosome, (component) vector, string, solution,
 individual  x=(x1

 

, ... , x7

 

)

Gene, Component, Variable, x3

Locus, position Allele, value
x3

 

∈{0,1}

Alleles, domain
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Genotype, Phenotype, Population

Genotype
chromosome
collection of chromosomes
coded string, collection of coded strings

Phenotype
the physical expression
attributes of a (collection of) solutions

Population – a set of solutions
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Genetic operators

Manipulate chromosomes/solutions
Mutation: Unary operator
Crossover: Binary (or n-ary) operator
Inversion
...
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Assessment of individuals

”Fitness”
Related to objective for DOP
Maximized
Used in selection (”Survival of the fittest”)
Fitness is normally normalized

[ ]f : → 0,1S
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GA - Evolution

N generations of populations
For each generation (step in evolution)

selection of individuals for genetic operators
formation of new individuals
selection of individuals that will survive

Population size (typically fixed) M
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GA - Evolution
Generation

 
X Generation

 
X+1

Crossover

Mutation

Selection
M=10
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Classical GA for DOP: Binary chromosomes

Function optimization
chromosome reflects binary encoding of real number 

DOP, e.g. TSP
binary encoding of solution 
more direct representation often better  
(e.g. sequential representation)

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1
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GA - Mutation

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
1 0 1 1 0 1 0
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1 2 3 4 5 6 7
0 1 1 0 0 1 0 Offspring

 
2

1 2 3 4 5 6 7
1 0 1 1 0 0 1 Offspring

 
1

GA - Classical crossover (1-point, 2 individuals)

One parent selected on the basis of fitness
The other parent selected randomly
Random choice of crossover point

1 2 3 4 5 6 7
1 0 1 0 0 1 0 Parent

 
1

1 2 3 4 5 6 7
0 1 1 1 0 0 1 Parent

 
2

Crossover
 

point
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GA - Classical crossover cont’d.

Random individual in population exchanged for one of the
offspring
Reproduction as long as you have energy
Sequence of almost equal populations
More elitist alternative

the most fit individual selected as one parent
crossover until M offspring have been born
change the whole population

Lots of other alternatives ...
Basic GA with classical crossover and mutation often works well
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GA – standard reproduction plan

Fixed polulation size
Standard 1-point 2-individual crossover
Mutation

standard: offspring are mutated
a certain (small) probability that a certain gene is mutated
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Theoretical analysis of GA 
(Holland)

Schema/ schemata: subsets of similar chromosomes
same alleles (values) in certain loci (variables)
wildcards

A given chromosome belongs to multiple schema
How many?

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
* * 1 * 0 * *
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Schema - fitness

Every time we evaluate fitness to a chromosome, information on
average fitness to each of the associated schemata is gathered
A populasjon may contain M 2n schemata
In practice: overlap
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GA – Intrinsic parallelism

A number of schemata are evaluated in parallel
How many?
Under reasonable assumptions: O(M3)
Application of genetic operators will change the fitness of the
schemata that are represented in the population
Schema theorem
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Length and order of schema

Length: Distance between first and last defined position
Order: # defined position
Example has both length and order 2

1 2 3 4 5 6 7
* * 1 * 0 * *
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Fitness-ratio

Ratio between
 

average
 

fitness
 

of
 

a scheme
 

e(S)
 

and average
 

fitness
 of

 
the

 
population

 
P

( )

( )

( )
( )

s S

s P

f s

N Se S
f s

M

∈

∈

=

∑

∑
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Lemma 1

Under a reproduction
 

plan where
 

a parent
 

is selected
 

by fitness, the
 expected

 
# instances

 
of

 
a schema

 
S

 
in generation

 
t+1 is

E(S,t+1)=e(S,t)N(S,t)

where
 

e(S,t)
 

is the
 

fitness-ratio
 

for schema
 

S
 

and N(S,t)
 

is # instances
 of

 
S

 
in generation

 
t
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Probability
that the other 

parent
does not belong to 

schema S

Probability
that S is

destroyed by 
crossover

Lemma 2

If
 

crossover
 

is used in generation
 

t
 

with
 

probability
 

Pc

 

for a 
schema

 
S

 
of

 
length

 
l(S), then

 
the

 
probability

 
P(S,t+1)

 that
 

S
 

will
 

be  represented
 

in generation
 

t+1
 

is bounded
 by 

( ) ( )( ), 1 1 1 ( , )
1c

l SP S t P P S t
n

+ ≥ − −
−
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Probability
that S survives 

mutation

Lemma 3

If
 

mutation
 

is used in generation
 

t,
 

with
 

probability
 

Pm

 

that
 

an 
arbitrary

 
bit is mutated, for a  schema

 
S

 
with

 
order k(S),

 then
 

the
 

probability
 

that
 

S
 

will
 

be represented
 

in 
generation

 
t+1

 
will

 
be bounded

 
by: 

( ) ( ), 1 (1 ) 1 ( )k S
m mP S t P P k S+ = − ≥ −
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The schema theorem
In GA with

 
standard reproduction

 
plan, where

 
the

 
probability

 
for 

crossover
 

and mutation
 

is Pc

 

og Pm

 

, respectively, and schema
 

S
 with

 
order k(S)

 
and length

 
l(S)

 
has a fitness-ratio

 
e(S,t)

 
in 

generation
 

t, then
 

the
 

expected
 

# representantives
 

for schema
 

S
 in generation

 
t+1

 
is bounded

 
by:

( ) ( )( ), 1 1 1 ( , ) ( ) ( , ) ( , )
1c m

l SE S t P P S t P k S e S t N S t
n

⎡ ⎤+ ≥ − − −⎢ ⎥−⎣ ⎦

S survives 
crossover and 

mutation
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Corollary
The

 
representation

 
of

 
schema

 
S will

 
increase

 
on

 average
 

if

( )( , ) 1 ( )
1c m

l Se S t P P k S
n

≥ + +
−

Short, low
 

order schemata
 

will
 

increase
 

their
 representation, assuming

 
that

 
their

 
fitness-ratio

 
is 

somewhat
 

larger
 

than
 

1, while
 

longer, high-order
 schemata

 
have to work

 
harder

 
to survive.
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GA – Building block hypothesis

Goldberg (1989)
Short, low order schemata are combined to increasingly
better solutions
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Later development of theory

Schema theorem for
uniform choice of parents in crossover
selection of both parents based on fitness

Exact expressions in the schema theorem
Analysis by Walsh-functions (from signal analysis)
Generalization of schema – form

design of desired operators

Fitness landscape analysis
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GA – Observations, Extensions, and Modifications

many knobs to turn
a lot of literature, chaotic
somewhat unclear terminology
modifications

population
encoding
operators
hybridization
parallelization
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GA – Evaluation of performance

3 important measures
based on objective f(x)
index t (”time”) indicates when solution has been generated

Best solution so far 

On-line

Off-line

*( )tf x

1
( )

( )

T

t
online t

f x
f T

T
==
∑

*

1
( )

( )

T

t
offline t

f x
f T

T
==
∑
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GA – Population size

Small populations – low coverage
Large populations – computationally demanding
Optimal size increases exponentially with string length in 
binary encodings
Rule of thumb: 30
between n and 2n (Alander)
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GA – Initial population

normal: random solutions
alternative: ”seeds”: high quality solutions

quicker convergence
premature convergence
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GA – Selection mechanisms

Generation gap/overlap vs total exchange of population
Incremental selection works well in many applications

Alternative setup
A part of the population is selected for reproduction
Offspring replace randomly selected individuals
May work better

Duplication of solution should be avoided
The incumbent should survive
Elitisme/Selective death
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GA – Fitness

Objective function untouched rarely the perfect choice
Naive measure tends to give convergence to similar
solutions, premature convergence
Scaling

limited competition in early generations
increasing competition over time

( ) ( )f x g x= α +β
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GA – Fitness/Selection

Use ranks rather than objective
Tournament selection

random selection of groups
the most fit in each group are selected
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GA – Operators

Mutation – keeps diversity
mutation rate normally not so critical

Crossover – essential
effective, particularly in the early phase
selective choice of crossover point

Multi-point crossover
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GA – Generalized crossover

1 2 3 4 5 6 7
1 1 1 0 0 1 0

•
 

Bit-string
 

determines
 

where
 

genes
 

should
 

be 
fetched

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
1 0 1 1 0 1 1

P1

P0

Offspring
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GA – Inversion

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
1 0 0 0 1 1 0
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GA – Encoding and representation

Non-binary encoding
Sequence representation
PMX (Partially Mapped Crossover)

2-point, identifies segment for definition of permutation
parents define exchanges
permutation of each parent gives two children

1 2 3 4 5 6 7
2 1 3 4 5 6 7

1 2 3 4 5 6 7
4 3 1 2 5 7 6

1 2 3 4 5 6 7
3 4 2 1 5 6 7

3 ↔1
4 ↔2
5 ↔5

1 2 3 4 5 6 7
1 2 4 3 5 7 6

P1

P2

O1

O2
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GA - Hybridization

Strength and weakness of GA: domain independence
Constraints may be a challenge - penalties
Hybridization

Seeding, good individuals in initial population
”Local search” on individuals
Combination with other metaheuristics
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GA - parallelization

Fitness-evaluation
Fine grained parallelization

every solution its own process
(a)synchronous parallelization

Coarse grained parallelization
sub-populations
the island model
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GA - Summary

Inspired by biological evolution
Population of solutions that evolves
Genetic operators
Randomness
Domain independence – encoding
Lacks utilization of problem structure
Intrinsic parallelism – schema, vocabularies
Robust, but danger of premature convergence
Good diversification, lacks somewhat in intensification
Hybrid with local search: Memetic algorithms
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Memetic - meme

Introduced by Richard Dawkins (1976): ”The Selfish Gene”
Analogous to gene, in cultural evolution

”Examples
 

of
 

memes are
 

tunes, ideas, catch-phrases, clothes
 

fashions, 
ways

 
of

 
making pots or building

 
arches.”



195ICT

Geir Hasle - eVITA Winter School 2009

Trends 
GA –> Evolutionary Algorithms

More direct representation of solution
more natural encoding of solutions
specialized crossover- and mutation operators

More intensification
local search (”special mutation operators”) to local optimum
hybridization of e.g. SA or TA to get deeper
Memetic algorithms

Parallel computing

1-population, no crossover EA ...
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Ant Colony Optimization – ACO 
(Marco Dorigo 1992, Marc Reimann)

Population based method
Inspirered by the”collective learning” and communication of ants 
through pheromones, i.e. chemicals released by an organism into
its environment enabling it to communicate with other members of its
own species

Multiple ”agents” (ants) construct solutions by:
construction heuristics
random choice
information from other agents
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Ants (cont´d.)
Social insects
Self organizing collective behavior
Complex dynamics emerges from simple individuals

„emergent behaviour“
„swarm intelligence“

Interesting social phenomena (Work sharing, Allocation of tasks, 
Organization of „graveyards“)
Transport management, finding food (e.g. Lasius niger)
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Ants and paths

Formation and following of paths by simple, local rules
Every ant legger lays a pheromone trail from nest to food source and back
Pheromone evaporates
Ants follow pheromone trails of other ants, according to intensity
Strong paths get stronger, weak paths get weaker
Positive feedback, reinforcement learning
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Ants – Path creation and path following

„Binary bridge“-experiment
Transportation optimization

nest

food

nest

food

nest

food
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Ant Colony Optimization (ACO) for DOP

Introduced by Dorigo, Maniezzo & Colorni 1992
Population based metaheuristic
Every „ant“ in the population constructs a solution
When they all are finished, a memory (artificial
pheromone) is updated
Construction and memory update is repeated until stop
criterion is satisfied
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Ant Colony Optimization (ACO) for DOP 
- Ant System (AS)

First ACO-method (Dorigo 1992)
Construction (for every ant)
Greedy heuristic
Probabilistic decisions
e.g. TSP (first problem)
Construction mechanism

„Nearest neighbor“
randomness

Depot

B1

B2

B6
B3

B4

B5

B7

45c
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Ant System - Construction

Local
 

decisions
 

under
 

construction
 

are
 

based
 

on:
a constructive heuristic (greedy) rule
a local quality criterion σ (a priori heuristic information)
an adaptive memory (a dynamic, global quality criterionτ )
randomness

[ ] [ ]
if

[ ] [ ]
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∈Ω

⎧ ⋅
∈Ω⎪⎪ ⋅= ⎨

⎪
⎪⎩

∑
i

ij ij
i

ih ihij h

h
p

β α

β α

σ τ
σ τ

where
 

Ω i

 

is
 

the
 

set
 

of feasible
 

alternatives

1
ij

ij

for TSP
c

σ =



203ICT

Geir Hasle - eVITA Winter School 2009

TSP-example: All edges
 

are
 

updated
 

for
 

each
 

iteration, for
 

each
 

ant

Ant System 
Update of dynamic informasjon (pheromone)

( )(1 ) , 0 1m
ij

m M
ijij ρ τ ττ ρΔ

∈
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(i,j) after
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on edge
 

(i,j)
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Ant System - developments
Performance of AS not impressive ...
Biological analogy partly abandoned
3 main developments

Ant Colony System (ACS)
Max-Min Ant System
Rank Based Ant System

All include local search for intensification
Convergence proofs

ACS
Modified global and local update
Global and local pheromone
Elitism: only „the best ant“ gets to update global pheromone
Different randomization, two-step probabilistic choice

greedy
probabilistic among feasible alternatives
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Constructive heuristics

Greedy construction
degree of locality in the decisions
informed choice vs. computing time

Sequence based construction
Criticality
Static vs. dynamic evaluation of criticality

Parallel vs. sequential construction
Seeds
Combination with search

local search
systematic

”Squeaky Wheel” optimization
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Simple remedy to continue from local 
optima

Restart from a new solution
Multi-start methods
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Simplest multi-start method

Random Restart, RR
Local search (e.g. with Steepest Descent) to local optimum
Choose random start solution
Iterate

Simple metaheuristic
Blindfolded helicopter skiing
Embarassingly parallel

Distance metric may be useful
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Alternative pseudo code 
LS with ”Steepest Descent”

Procedure Local_Search_SD(init_sol,N,f)
current:=init_sol
new_current:=Best_Neighbor(current,N,f)
*/ Assuming

 
Best_Neighbor

 
returns

 
current

*/ if
 

there
 

is no
 

improving
 

move
while not f(new_current)=f(current) do

current:=new_current
new_current:= Best_Neighbor(current,N,f)

od
return current

 
; Local

 
optimum
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Random Restart – RR

Procedure Random_Restart
 

(S,N,f,Stop_Criterion)
current:=Init_Solution(S)
incumbent:=current

 
*/ best solution

 
until

 
now

while not Stop_Criterion() do
local_optimum:=Local_Search_SD(current,N,f)
if f(local_optimum) < f(incumbent) then

incumbent:= local_optimum
fi
current:=Random_Init_Solution(S)

od
return incumbent

 
*/ best solution until now 
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Greedy Randomized Adaptive Search (GRASP)

Variant of Random Restart
Construction with random choice
Somewhat similar to Ant Colony Optimization, but 
trajectory based
Limited  candidate list for extension of partial solution
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GRASP 

Procedure GRASP (Max_Iterations)
incumbent:=Bad_Solution()
for k:=1

 
to Max_Iterations

 
do

current:=Local_Search(.....
Greedy_Randomized_Construction(...))

if f(current) < f(incumbent) then
incumbent:= current

fi
od
return incumbent

 
*/ best solution until now 
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GRASP – Randomized Construction

Procedure Greedy_Randomized_Construction(...)
partial_solution

 
:= Empty_Solution()

while not Complete(solution) do
Restricted_Candidate_List

:=Evaluate_Incremental_Costs(solution) 
partial_solution:=Extend_Solution(partial_solution,Random_Element(Restricte

 d_Candidate_List))
od
return solution
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GRASP – Restricted Candidate List

Restrictions may be
Rank based (”the 10 best alternatives”)
Value based (”all elements with incremental cost no greater than threshhold”)

( ) [ ]min min max minc(e) c ,c c c , 0,1⎡ ⎤∈ + α − α∈⎣ ⎦

Reactive (self-adaptive) GRASP: automatic adjustment
Perturbation of cost function (noising)
Extension with Path Relinking
Preprosessor to GA
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”Squeaky Wheel Optimization” 
D. Joslin and D. Clements 1999

In a squeaking machine you first lubricate the squeaking
parts
Based on constructive heuristic where

Solution is built by successive augmentation of partial solution with
new elements with a (greedy) heuristic
The sequence of unserviced elements is important (priority of
elements)
There is a measure of how ”pleased” an element is in the final 
solution

Change the priority sequence of elements
Repetition
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Squeaky Wheel Optimization

Procedure Squeaky_Wheel_Optimization(f)
Element_Priority_List

:=Determine_Element_Priorities() ; Static

 

prioritization
incumbent:=Some_Feasible_Solution()
while not Stop_Criterion() do

solution:= Empty_Solution()
while not Complete(solution) do

solution:=Augment_Solution(solution,
Element_Priority_List)

od
if f(solution)< f(incumbent) then incumbent:=solution
Element_Priority_List

:=Update_Element_Priorities(Element_Priority_List,solution)
od
return solution
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Variable Neighborhood Search (VNS) 
P. Hansen and N. Mladenovic 1999

Local optimum is relative to neighborhood
A local optimum w.r.t. one neighborhood is not necessarily a local optimum 
w.r.t. another
A globalt optimum is a et lokal optimum for all neighborhoods
Local optima may be close to one another
Basic idea in VNS:

Systematic variation of neighborhoods
Structure of neighborhoods, often ordered by size

k max, k 1, k= …N
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Variable Neighborhood Descent (VND)

Procedure VND (N[1..kmax])
incumbent:=Initial_Solution() ; best solution

 
until

 
now

while not Stop() do
restart: for k:=1

 

to kmax

 

do
local_optimum:=Some_Local_Search(N(k),incumbent)
; Variants: First Improve, Best Neighbor, SA, TS ...
if f(local_optimum)< f(incumbent) then

incumbent:=local_optimum
if not Stop() goto restart

 

fi
fi

od
od
return incumbent
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Variable Neighborhood Search (VNS)

Procedure VNS (N[1..kmax])
incumbent:=Initial_Solution()
while not Stop() do

restart: for k:=1

 

to kmax

 

do
current:=Random_Element(N(k),incumbent)
local_optimum:=Some_Local_Search(N(k),current)
; Variants: First Improve, Best Neighbor, SA, TS, VND ...
if f(local_optimum)< f(incumbent) then

incumbent:=local_optimum
if not Stop() goto restart

fi
od

od
return incumbent
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VNS

”Local search” in VNS may be VND
VNS is computationally demanding for large instances
Reduced local search: VNDS
Hybridization

Tabu search
GRASP
...
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Iterated Local Search 
(Lourenço et al.)

Based on (variant of) local search
Lokal search gives a mapping 

ˆLS: →S S

Different initial solutions gives different local optima 
(not really, the mapping is surjective)
Random restart will eventually find a global optimum ...
To speed up things, it would be nice to use recursion 

ˆˆ ˆLS: →S S
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Iterated Local Search

Try to iterate in such a way that we do not enter the same 
”Basin of attraction”
Perturbation of the current solution
Diversification
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Iterated Local Search
Procedure Iterated_Local_Search(N,f)
incumbent:=current:=Local_Search(Initial_Solution(),N,f)
while not Stop_Criterion() do

new_start:=Perturbation(current,history)
new_local_optimum:= Local_Search(new_start,N,f)
if f(new_local_optimum)<f(incumbent) then

incumbent:=new_local_optimum
fi
if Accept(new_local_optimum,incumbent,history) then

current:= new_local_optimum
fi

od
return incumbent
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Iterated Local Search - Perturbation

Move in higher order neighborhood
Ruin and recreate
Random perturbation
Focused perturbation
”Noising” – change problem data, find local optimum
Distance measures to cut off search
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Iterated Local Search - Perturbation

How big?
Too small: same ”Basin of attraction”
Too big: ”Random restart”
Varying size
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(Very) Large Neighborhood Search 
(P. Shaw 1999) 

Local Search based methods are often too local
Good diversification is essential
Large Neigborhood Search
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Find a good, complete solution
Take away a substantial number of commitments (5%-40%)

Alternative “ruiners”
Randomly
“Similar” commitments

Reconstruct 
Alternative recreators
Cheapest insertion
Regret-based insertion

Accept new solution if
better
Threshold Acceptance
Simulated Annealing

Iterate, until no progress
Learning, self-adaptation

Ruin and Recreate 
(Schrimpf et al. 2000)
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Categorization of metaheuristics

Trajectory vs. population
Stochastic vs. deterministic
Memoryless vs. ”memorable”
Restart vs. one shot
Penalty-based
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”GUT” of Metaheuristics?
Which mechanisms work well?
local search
restart
randomness
uphill moves
memory
penalty
diversification
ruin and recreate

populasjon
.... 
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”No Free Lunch”-theorem 
(Wolpert & MacReady, 1995)

Informal
 

description:
When

 
we

 
average

 
over all instances

 
of

 
a given problem, all 

search
 

algorithms
 

have the
 

same average
 

performance.

For any search algorithm, you have to pay for any performance 
superiority for a given set of instances with a performance 

inferiority in others.
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”No Free Lunch”-theorem 
(Wolpert & MacReady, 1995)

When we average the performance of a search algorithm
over all possible search landscapes, it has no better
performance than random search. 
To achieve high performance, a search algorithm needs
to utilize domain knowledge
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GUT for metaheuristics

”Beauty contest” of different search algorithms
Working mechanisms
Analysis, learning, opportunistic reasoning

investigation of search space
analyse of problem solving history / status
choice of appropriate technique
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Hyperheuristics

Metaheuristics are not generic
There is no globally best metaheuristic
Hyperheuristics

General search techniques
Based on (meta)heuristics
Use of (meta)heuristics to select (meta)heuristic during search
no use of domain knowledge
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Hyperheuristics

h1

Evaluation function

h2 h3 h4 h5 h6

Domain barrier

Hyperheuristic
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Hyperheuristics

General information to hyperheuristic from each
(meta)heuristic
CPU time
Merit, improvement of objective over time
How long since last active
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Topics for future research

Hybrid methods
Combination of exact and heuristic methods
Parallel algorithms
Collaborating solvers
Self-adaptive methods, hyperheuristics

Theoretical understanding of search algorithms
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Summary (slide 1)

Discrete optimization problems are important
Discrete optimization problems are often computationally
hard
Exact methods may take too long, will give guarantees
Better to find a good solution to the real problem than the
optimal problem to an overly idealized problem
Local Search is a robust, simple and fast method
Local Search gives few and weak guarantees
Local Search is local, gets trapped in a local optimum
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Summary (slide 2)
Metaheuristics move on from local optima and explore larger parts of
the solution space
Metaheuristics are often based on local search
Different strategies

stochastic search
allow uphill moves
memory structures
penalties, changing the landscape
combining vocabularies of good solutions
vary between neighborhoods
restart
ruin and recreate

There is no free lunch
This area is a lot of fun, many challenges
Short road from theoretical to practical improvements
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