
1ICT

Geir Hasle - eVITA Winter School 2009

Discrete Optimization - Heuristics

Geir Hasle
SINTEF ICT, Applied Mathematics, Oslo, Norway

University of Jyväskylä, Finland

eVITA Winter School 2009
Geilo, January 11.-16. 2009

2ICT

Geir Hasle - eVITA Winter School 2009

Summary (slide 1)

Discrete optimization problems are important
Discrete optimization problems are often computationally
hard
Exact methods may take too long, will give guarantees
Better to find a good solution to the real problem than the
optimal problem to an overly idealized problem
Local Search is a robust, simple and fast method
Local Search gives few and weak guarantees
Local Search is local, gets trapped in a local optimum

3ICT

Geir Hasle - eVITA Winter School 2009

Summary (slide 2)
Metaheuristics move on from local optima and explore
larger parts of the solution space
Metaheuristics are often based on local search
Different strategies, many variants
There is no free lunch
This area is a lot of fun, many challenges
Short road from theoretical to practical improvements

4ICT

Geir Hasle - eVITA Winter School 2009

Outline

2-slide talk (thanks, François!)
Background and Motivation
Definition of Discrete Optimization Problems (DOP)
Basic concepts
Local Search
Metaheuristics
GUT
No free lunch
Future directions
Summary

5ICT

Geir Hasle - eVITA Winter School 2009

Literature
H. H. Hoos, T. Stützle: Stochastic Local Search - Foundations and Applications, ISBN 1-55860-872-9. Elsevier 2005.
C.C. Ribeiro, P. Hansen (editors): Essays and Surveys in Metaheuristics. ISBN 0-4020-7263-5. Kluwer 2003
F. Glover, G.A. Kochenberger (editors): Handbook of Metaheuristics, ISBN 0-7923-7520-3. Kluwer 2002.
S. Voss, D. Woodruff (eds): Optimization Software Class libraries. ISBN 1-4020-7002-0. Kluwer 2002.
Z. Michalewicz, D. B. Fogel: How to Solve It: Modern Heuristics. ISBN 3540660615. Springer-Verlag 2000.
S. Voss, S. Martello, I.H: Osman, C. Roucairol (editors): Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization. Kluwer 1999.
D. Corne, M. Dorigo, F. Glover (editors): New Ideas in Optimization. ISBN 007 709506 5. McGraw-Hill 1999.
L. A. Wolsey: Integer Programming. ISBN 0-471-28366-5. Wiley 1998.
I.H. Osman, J.P. Kelly (editors): Meta-Heuristics: Theory & Applications. Kluwer 1996.
E. Aarts, J.K. Lenstra: Local Search in Combinatorial Optimization. ISBN 0-471-94822-5. Wiley 1997.
C. R. Reeves (editor): Modern Heuristic Techniques for Combinatorial Problems. ISBN 0-470-22079-1. Blackwell 1993.
M. R. Garey, D. S. Johnson: Computers and Intractability. A Guide to the Theory of NP-Completeness. ISBN-0-7167-1045-
5. Freeman 1979.

EU/ME The European chapter on metaheuristics http://webhost.ua.ac.be/eume/
Test problems

OR-LIBRARY http://www.brunel.ac.uk/depts/ma/research/jeb/info.html

http://webhost.ua.ac.be/eume/
http://www.brunel.ac.uk/depts/ma/research/jeb/info.html

6ICT

Geir Hasle - eVITA Winter School 2009

Background and motivation
Many real-world optimization problems involve discrete choices
Operations Research (OR), Artificial Intelligence (AI)
Discrete Optimization Problems are often computationally hard
Real world problems need to be ”solved”
Complexity Theory gives us bleak prospects regarding exact solutions
The quest for optimality may have to be relaxed
Having a good, approximate solution in time may be better than waiting
forever for an optimal solution
Modeling problem
Optimization not the only aspect
Response time requirements

Heuristic methods

7ICT

Geir Hasle - eVITA Winter School 2009

Real-life, important DOP

8ICT

Geir Hasle - eVITA Winter School 2009

The Knapsack Problem

n ”articles” {1,...,n} available for selection, weights ci utilities vi

Knapsack with capacity C
Find the selection of articles that maximizes total utility and obeys capacity

i

1
x

0
⎧

= ⎨
⎩

if article i is selected
otherwise

{ }

n

i i
i 1

n

i i
i 1

i

max v x s.t.

c x C

x 0,1 , i 1, ,n

=

=

≤

∈ =

∑

∑
…

9ICT

Geir Hasle - eVITA Winter School 2009

Example: – Selection of projects

You manage a large company
Your employees have suggested a large number of projects

resource requirements
utility

Fixed resource capacity
Select projects that will maximize utility

Strategic/tactical decision
Discrete optimization problem

The Knapsack problem

10ICT

Geir Hasle - eVITA Winter School 2009

Example: - Transportation

You have a courier company and a car
You know your orders for tomorrow, pickup and delivery points
You know the travel time between all points
You want to finish as early as possible

Operational decision
Discrete optimization problem
The Traveling Salesman Problem

11ICT

Geir Hasle - eVITA Winter School 2009

Traveling Salesman Problem (TSP)

Feasible

(candidate) solution:
1 2 7 3 4 5 6 1 ; objective

value

(cost): 143
”Nearest

neighbor”

–

example

of

a greedy

heuristic

-

O(n2)
Calculation

of

the

objective

is O(n)
No constraints, except

for the

round

trip

requirement
The number

of

distinct

round

trips is (n-1)! (in the

asymmetrical

case)

1 2 3 4 5 6 7
1 0 17 18 23 23 23 23

2 2 0 88 32 28 27 22

3 27 33 0 23 37 43 23

4 33 73 14 0 9 23 19

5 29 65 26 65 0 24 25

6 25 99 29 35 43 0 33

7 83 40 23 43 77 73 0

1

2 3

4
5

6

7

12ICT

Geir Hasle - eVITA Winter School 2009

Greed is good [Gordon Gekko 1987]

A greedy heuristic rarely gives the optimal solution
The Nearest Neighbor heuristic

13ICT

Geir Hasle - eVITA Winter School 2009

Problem (types) and problem instances

Example: TSP
A type of concrete problems (instances)
An instance is given by:

n: the number of cities
A: nxn-matrix of travel costs

14ICT

Geir Hasle - eVITA Winter School 2009

Optimization Problem
- Mathematical formulation

Decision variables with domains
Objective function
Constraints

Mathematical program

()
()
()

1

1

1

min , ,

, , 0 1, ,

, , 0 1, ,

1, ,

n

j n

j n

i

f x x

f x x j k

g x x j l

x i n

= =

≤ =

∈ =

…

… …

… …
…

()min f
∈

x
x S

15ICT

Geir Hasle - eVITA Winter School 2009

Linear Integer Program
n

j j
j 1

n

ij j i
j 1

j

max c x s.t.

a x b i 1, ,m

x 0 j 1, , n

=

=

ζ =

≤ =

≥ =

∑

∑ …

…

{ }

n

j j
j 1

n

ij j i
j 1

0

j

i

max c x s.t.

a x b i 1, ,m

x 0 j 1,

x i I 1,

,

,

n

n

=

=

ζ =

=

∈

≤ =

≥

∈ ⊆

∑

∑ …

…

…

N

Mixed Integer Programs – MIP

Pure Integer Programs – IP, PIP

0-1 programs

{ }i I 1, , n∈ ⊂ …

{ }i I 1, , n∈ = …

{ }ix 0,1 , i I∈ ∈

16ICT

Geir Hasle - eVITA Winter School 2009

(Linear) Integer Programming

Many problems may be modeled as LP with integrality constraints
Discrete choices, sequences, combinatorics, logic, ...
Planning, scheduling, ...

In general, IPs are computationally much more difficult to solve than LPs
Often, the computing time for exact methods grow ”exponentially” with the size of
the instance
But not always ...

17ICT

Geir Hasle - eVITA Winter School 2009

Definition – Discrete Optimization Problem

A Discrete

Optimization

Problem (DOP) is
either a minimization or maximization problem
specified by a set of problem instances

18ICT

Geir Hasle - eVITA Winter School 2009

Definition – DOP instance

A DOP instance is a pair
where

is the

set

of

feasible solutions (the search

space) and is the

objective (cost function).

The goal is to find

a global optimum:

f : →S R

(), fS

* *s : f (s) f (s), s∈ ≤ ∀ ∈S S

S

* *f f (s)= (globally) optimal value

{ }*s : f (s) f= ∈ =*S S (globally) optimal solutions

⊇X S the

solution space, also

including

infeasible

solutions

19ICT

Geir Hasle - eVITA Winter School 2009

Example 1: An asymmetrical TSP-instance

3 cities: 1, 2, 3

{ } { }1 6(2,1,3) (2,3,1) (3,1,2(1,2,3)) (3,2, (1,3, 2), , , , s1) ,s, ,= ≡S …

1 2 3

1 0 15 32

2 13 0 3

3 2 17 0

1

2f (
f (

s) 32 17 13
s) 15 20

6
2

2
3

= + +
= +

=
+ =

()min f s
s∈S

(), fS

20ICT

Geir Hasle - eVITA Winter School 2009

Observations

In principle, the TSP is a very simple problem
All feasible solutions can be represented by a permutation
There is a finite number of solutions
The objective is easy to compute for a given solution
The British Museum algorithm: look everywhere
The number of feasible solutions for an n-city (asymmetric)
TSP is (n-1)!

21ICT

Geir Hasle - eVITA Winter School 2009

Combinatorial explosion

933262154439441526816992388856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000100!

362880010! 106

243290200817664000020! 1019

30414093201713378043612608166064768844377641568966051200000000000050! 1065

10159

~ # atoms in our

galaxy
atoms in the

universe

~1080

nanoseconds

since

Big Bang ~1026

22ICT

Geir Hasle - eVITA Winter School 2009

Example 2: The Knapsack Problem

n ”articles” {1,...,n} available for selection, weights ci utilities vi

Knapsack with capacity C
Find the selection of articles that maximizes total utility and obeys capacity

i

1
x

0
⎧

= ⎨
⎩

if article i is selected
otherwise

{ }

n

i i
i 1

n

i i
i 1

i

max v x s.t.

c x C

x 0,1 , i 1, ,n

=

=

≤

∈ =

∑

∑
…

• how

to specify/represent

a problem instance?

• how

to represent

a solution?

• what

are

the

sets

X and S?

23ICT

Geir Hasle - eVITA Winter School 2009

Example 1: 0-1 Knapsack-instance

Knapsack

with

capacity

100
10 ”articles”

(projects, ...) 1,...,10

{ } { }1 10240000000000, ,1111111111 x , , x= ≡X … …

1

53

1

024

0f (x) 1

f (x

f (x)

1

) 464

7

0

=

=

=

()max f s
s∈S

(), fS 1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

*
530f f (x) 117= =

{ }*x 0100100001=

24ICT

Geir Hasle - eVITA Winter School 2009

Comments on the definition of DOP

S is rarely given explicitly, defined through constraints/relations
S is often (small) subset of the total search space X
f(s) is rarely given explicitly, must be computed by a procedure
there is often a compact representation of a problem instance and a
(candidate) solution
modelling is important

mathematical modelling
conceptual modelling

a (candidate) solution is given by a valuation of the decision
variables (x1,v1), ..., (xn,vn)
often there are efficient (low polynomial) algorithms for
checking feasibility (S membership) and objective value for
candidate solutions

x v⊥

25ICT

Geir Hasle - eVITA Winter School 2009

DOP Applications

Decision problems with discrete alternatives
Synthesis problems

planning, scheduling
configuration, design

Limited resources
OR, AI
Logistics, design, planlegging, robotics
Geometry, Image analysis, Finance ...

26ICT

Geir Hasle - eVITA Winter School 2009

Solution methods for DOP

Exact methods that guarantee to find an (all) optimal
solution(s)

generate and test, explicit enumeration
mathematical programming

Approximation methods
with quality guarantees
heuristics

Collaborative methods

27ICT

Geir Hasle - eVITA Winter School 2009

Computational Complexity Theory

Computing time (memory requirements) for problem types
“the best” algorithm
over all instances
as function of problem size

“Exponential” growth is cruel ...
Parallel computing and general speed increase does not help much
Problem type is considered tractable only of there is a polynomial time
algorithm for it

Worst case, pessimistic theory
One problem instance is enough to deem a problem type as
computationally intractable

28ICT

Geir Hasle - eVITA Winter School 2009

Complexity classes of problem types

Complexity classes
P
NP
NP-complete

Cook’s conjecture:

 or \≠ ≠ ∅P NP NP P

NPC P

NP

LP P
SAT NPC
TSP NPC
Knapsack NPC

∈
∈
∈

∈

Kachian

(1979)

Cook (1971)

Karp (1972)

Karp (1972)

29ICT

Geir Hasle - eVITA Winter School 2009

Motivation for heuristic DOP algorithms
Computational Complexity theory
Basic Computational Complexity Theory studies decision problems
Close relation between decision problem and optimization problem
The optimization equivalent is at least as hard as the decision variant
NP-complete decision problem -> NP-hard optimization problem
For NP-hard DOPs there exist no polynomial time exact algorithm,
unless P=NP
For some NP-hard DOPs there exist pseudo-polynomial, exact
algorithms

The one-dimensional Knapsack problem is weakly NP-hard
The multi-dimensional Knapsack problem is strongly NP-hard
The TSP is strongly NP-hard

Alternatives
exact method
approximation method with performance guarantee
heuristic method (with no or weak a priori guarantees)
performance ratio of given approximation algorithm A

A(I)R (I)
OPT(I)

=

30ICT

Geir Hasle - eVITA Winter School 2009

Some messages (1)

Not all DOPs are NP-hard, e.g., the Assignment Problem
Even NP-hard problems may be effectively solved

small instances
special structure
weakly NP-hard

Even large instances of strongly NP-hard problems may be effectively
solved to optimality

TSPs with a few hundred cities in a few seconds

31ICT

Geir Hasle - eVITA Winter School 2009

Large TSPs

24,978 Cities in Sweden
2004, The Concorde TSP solver
84.8 CPU years on a single
Intel Xeon 2.8 GHz processor

Largest TSP solved:
85,900 Locations in a VLSI Application
Challenge: World tour of 1,904,711 places
best solution within 0.076% of optimum
http://www.tsp.gatech.edu/

http://www.tsp.gatech.edu/

32ICT

Geir Hasle - eVITA Winter School 2009

VRP with Capacity Constraints (CVRP)
Graph G=(N,A)

N={0,…,n+1} Nodes
0 Depot, i≠0 Customers
A={(i,j): i,j∈N} Arcs
cij >0 Transportation Costs

Demand di for each Customer i
V set of identical Vehicles each with Capacity q
Goal

Design a set of Routes that start and finish at the Depot - with
minimal Cost.
Each Customer to be visited only once (no order splitting)
Total Demand for all Customers not to exceed Capacity
Cost: weighted sum of Driving Cost and # Routes

DVRP – distance/time constraint on each route
VRPTW – VRP with time windows
Pickup and Delivery

Backhaul – VRPB(TW)
Pickup and delivery VRPPD(TW)
PDP

I a
I b

I c

I d

I e
I f

I g

I h
Ii

Ij

2

3
Ik

IlIm
InIo

Ip 4
1

IlIm

Ik
InIo

IpI e

I d

I c

I aI b
I g

I h
Ii

IjI f
1

2

3

4

33ICT

Geir Hasle - eVITA Winter School 2009

A mathematical model for VRPTW
(Network Flow Formulation)

(,)

0

, 1

minimize (1)

subject to:
1, (2)

, (3)

1, (4)

0, , (5)

1, (6)

() 0, (,) , (7)

∈ ∈

∈ ∈

∈ ∈

∈

∈ ∈

+
∈

= ∀ ∈

≤ ∀ ∈

= ∀ ∈

− = ∀ ∈ ∀ ∈

= ∀ ∈

+ − ≤ ∀ ∈ ∀ ∈

∑ ∑

∑∑
∑ ∑

∑

∑ ∑

∑

k
ij ij

k V i j A

k
ij

k V i N
k

i ij
i C j N

k
j

j N
k k
ih hj

i N j N
k
i n

i N
k k k
ij i ij j

i

c x

x j C

d x q k V

x k V

x x h C k V

x k V

x s t s i j A k V
a , , (8)

{0,1}, (,) , (9)
≤ ≤ ∀ ∈ ∀ ∈
∈ ∀ ∈ ∀ ∈

k
i i

k
ij

s b i N k V
x i j A k V

minimize

cost

each

customer

1 time

Capacity

k routes

out

of

depot

flow

balance

for each

customer

k routes

into

depot (redundant)

sequence

and driving time

arrival

time in time window
arc

(i,j) driven by vehicle

k
Arc Decision

variables

Variables
-arrival time

34ICT

Geir Hasle - eVITA Winter School 2009

Complexity of VRP(TW) and
State-of-the-art: Exact Methods

Basic VRP (CVRP)
Strongly NP-hard
Branch & Bound + basic relaxations
Lagrange Relaxation
Set Partitioning, Column Generation
Branch & Cut
Consistently solve problem instances with 70 customers in reasonable time

VRPTW: finding feasible solution is NP-complete
Dantzig-Wolfe decomposition, CG

subproblem: SPP med capacities and time windows
Lagrange Relaxation
Consistently solve problem instances with 100 customers in reasonable time

Approximation Methods, Heuristics

35ICT

Geir Hasle - eVITA Winter School 2009

G-n262-k25: 5685 vs. 6119, 5767 CPU s

36ICT

Geir Hasle - eVITA Winter School 2009

M-n200-k16: First known feasible solution

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

37ICT

Geir Hasle - eVITA Winter School 2009

Some messages (2)

DOPs should be analyzed
Try exact methods
Collaboration between exact and heuristic methods

a good, heuristic solution may jump-start and speed up an exact method
exact methods may give high quality bounds
true collaboration, asynchronous parallel algorithms

38ICT

Geir Hasle - eVITA Winter School 2009

Quality Assessment
- upper and lower bounds (minimization)

Optimal
value

Upper
bounds

Lower
bounds

Heuristics

Relaxations
- LP
- Lagrange

39ICT

Geir Hasle - eVITA Winter School 2009

Further motivation - heuristics
In the real world

response requirements
instance size and response requirements may rule out exact methods
optimization is just one aspect
modelling challenges, what is the objective?
humans are satisficers, not optimizers [Herb Simon]
generic solver, all kinds of instances, robustness

Heuristic methods are generally robust, few drastic assumptions

Exact methods should not be disqualified a priori
Cultures

mathematicians vs. engineers/pragmatists
OR vs. AI animosity
reconciliation

40ICT

Geir Hasle - eVITA Winter School 2009

Exact methods for DOP
DOPs typically have a finite # solutions
Exact methods guarantee to find an optimal solution
Response time?

Good for solving limited size instances
May be good for the instances in question
Some (weakly) NP-hard problems are effectively solved, given
assumptions on input data
Basis for approximation methods
Subproblems, reduced or relaxed problems

41ICT

Geir Hasle - eVITA Winter School 2009

Heuristics - definitions
Wikipedia: “Heuristics stand for strategies using readily accessible, though
loosely applicable, information to control problem-solving in human beings and
machines”.
Greek: (h)eureka – “I have found it”, Archimedes 3rd century BC
Psychology: Heuristics are simple, efficient rules, hard-coded by evolutionary
processes or learned, which have been proposed to explain how people make
decisions, come to judgments, and solve problems, typically when facing complex
problems or incomplete information. Work well under most circumstances, but in
certain cases lead to systematic cognitive biases.
Mathematics: “How to solve it” [G. Polya 1957]. Guide to solution of mathematical
problems.
AI: Techniques that improve the efficiency of a search process often by sacrificing
completeness
Computing science: Algorithms that ignore whether the solution to the problem
can be proven to be correct, but which usually produces a good solution or solves
a simpler problem that contains, or intersects with, the solution of the more
complex problem. Heuristics are typically used when there is no known way to find
an optimal solution, or when it is desirable to give up finding the optimal solution
for an improvement in run time.

42ICT

Geir Hasle - eVITA Winter School 2009

Heuristics in Discrete Optimization

Sacrificing the guarantee of finding the optimal solution
Strong guarantees regarding solution quality vs. response time
typically cannot be given

General heuristics
strategies for traversing the Branch & Bound tree in MIP

Greedy heuristics
Special heuristics, exploiting problem structure
Basic method: Local Search
Better methods: Metaheuristics

43ICT

Geir Hasle - eVITA Winter School 2009

How to find a DOP solution?
Exact methods

Earlier solution
Trivial solution
Random solution
Constructive method

gradual build-up of solutions from scratch
greedy heuristic

Solve simpler problem
remove or change constraints
modify objective

Given a solution, modify it

44ICT

Geir Hasle - eVITA Winter School 2009

Local Search and Meta-Heuristics

Operate on a ”natural” representation of solutions
The combinatorial object
Search in the space of feasible solutions / all solutions
(search space, solution space)

Single solution: Trajectory based methods
Multiple solutions: Population based methods

45ICT

Geir Hasle - eVITA Winter School 2009

Local search for DOP

Dates back to late 1950ies, TSP work
Renaissance in the past 20 years
Heuristic method
Based on small modifications of given solution
Ingredients:

Initial solution
Operator(s), Neighborhood(s)
Search strategy
Stop criterion

Iterative method
Anytime method

46ICT

Geir Hasle - eVITA Winter School 2009

Example: TSP

Trivial solution:
1 2 3 4 5 6 7 (288)

Greedy

construction:
1 3 5 7 6 4 2 (160)

1 2 3 4 5 6 7
1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0

47ICT

Geir Hasle - eVITA Winter School 2009

Example: 0-1 Knapsack

Knapsack capacity 100
10 ”articles” (projects, ...) 1,...,10
Trivial solution: empty knapsack, utility 0
Greedy solution, add articles in descending utility sequence:

(0000010000), utility 85
Relative utility

1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

1 2 3 4 5 6 7 8 9 10
Utility/size 0.93 1.23 0.98 0.86 1.18 0.89 0.77 0.89 0.82 1.13

48ICT

Geir Hasle - eVITA Winter School 2009

Given a solution, how to find a better one?

Modification of given solution gives ”neighbor”
A certain type of operation gives a set of neighbors: a neighborhood
Evaluation

objective
feasibility

49ICT

Geir Hasle - eVITA Winter School 2009

Example: TSP

Operator: 2-opt
How many neighbors?

50ICT

Geir Hasle - eVITA Winter School 2009

Example: Knapsack

We have a solution 0010100000 with value 73
Simple operator (Flip): Change status of an element, i.e.,

if the article is in, take it out
if the article is out, put it in

Some neighbors:
0110100000 utility 105
1010100000 utility 152, non-feasible
0010000000 value 47

n neighbors
Other operators: 1-exchange, 2-exchange,

1 2 3 4 5 6 7 8 9 10

Utility 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

0 0 1 0 1 0 0 0 0 0

51ICT

Geir Hasle - eVITA Winter School 2009

Definition: Neighborhood function

Let (S,f)

be a DOP-instance. A neighborhood

function

is a
mapping

that, for a given solution

defines

a neighborhood of

solutions
that

in some

sense

are

”close

to”

 is said

to be a neighbor

of
relative to

: 2→N SS

∈s S
() ⊆sN S
s

()∈t sN s
N

52ICT

Geir Hasle - eVITA Winter School 2009

Neighborhood operator

Neighborhood functions are often defined through certain generic
operations on a solution - operator
Normally rather simple operations on key structures in the
combinatorial object

removal of an element
addition of an element
exchange of two or more elements

Multiple neighborhood functions - qualification by operator (),N sσ σ∈Σ

53ICT

Geir Hasle - eVITA Winter School 2009

Local Search (Neighborhood Search)

Starting point: initial solution
Iterative search in neighborhoods for better solution
Sequence/path of solutions

Path is determined by
Initial solution
Neighborhood function
Acceptance strategy
Stop criterion

What happens when the neighborhood contains no better solution?
Local optimum

1 (), 0,k ks N s k+ σ∈ = …

0s

54ICT

Geir Hasle - eVITA Winter School 2009

Definition: Local optimum

Let (S,f)

be a DOP-instance, and let
N be a neighborhood

function. A solution

is a local optimum (minimum) w.r.t. N if:
ŝ

ˆ ˆ() (), ()≤ ∀ ∈f s f t t sN

The set

of

locally

optimal solutions: Ŝ

NB! Local

optimality

is relative to the

neighborhood

55ICT

Geir Hasle - eVITA Winter School 2009

Example: TSP

Operator: 2-opt
Local minimum (2-optimal) solution

56ICT

Geir Hasle - eVITA Winter School 2009

Definition: Exact neighborhood

Let (S,f)

be a DOP-instance

and let
N be a neighborhood

function. N is exact if:

ˆ ⊆S S*

N is exact

if

local

optima for the

neighborhood
N are

also

global optima.

57ICT

Geir Hasle - eVITA Winter School 2009

Local Search (Neighborhood Search)

Alternative strategies for exploring the neighborhood
Different strategies will give different paths in the search space
Accept the first (feasible) improving solution (”First Accept”)
Complete exploration of the neighborhood

move to the best improving solution
(”Steepest Descent”, ”Hill Climbing”, ”Iterative Improvement”)
always move to the best solution in the neighborhood, whether
improving or not (”Best Neighbor”)

Other strategies?

58ICT

Geir Hasle - eVITA Winter School 2009

Local_Search (S,f,N,strategy)

*/ strategy

is ”First Accept”

or ”Best Accept”
current:=Init_Solution(S,f)
incumbent:=current

*/ best solution

until

now

local_optimum:=false
while not local_optimum

do */ other

stop

criteria

may

be envisaged

(current,incumbent,local_optimum):=
 Search_the_Neighborhood

(current,N(current),f,strategy,incumbent)

if local_optimum

return incumbent
od

59ICT

Geir Hasle - eVITA Winter School 2009

Search_the_Neighborhood
(current,Neighbors,f,strategy,incumbent)

best_neighbor:=current
for n

in Neighbors

do
if f(n)

< f(best_neighbor)

then best_neighbor:=n

fi */ minimization
if f(n) < f(incumbent) then

if strategy=”First

Accept”

then
return (n,n,false) else
incumbent:=n

*/ strategy

is ”Best Accept”
fi

fi
od
return (best_neighbor,incumbent,best_neighbor=current)
*/ Returns

multiple value

/ structure: (current,incumbent,local_optimum)
*/ Assuming

that

Neighbors

are

feasible

60ICT

Geir Hasle - eVITA Winter School 2009

Observations and Structures
LS with either ”First Accept” or ”Steepest Descent” stops in a local optimum (unless there are
other stop criteria)
If the neighborhood N is exact, Local Search with these strategies are exact optimization
methods
The neighborhood function N induces a directed graph, the Neighborhood Graph
GN = (X,AN) where nodes are the members of the search space, and N defines the arcs:

Many neighborhood functions are symmetric
A Local Search process defines a trajectory in the Neighborhood Graph

Associated with each node, there is a value that defines the ”topography”
defined by the objective (or, more generally, an evaluation function)

Search Landscape (S,N,f)

(){ }, : , ()′ ′= ∈ ∈x x x x xNA X N

() () ,′ ′ ′∈ ⇒ ∈ ∈x x x x x xN N X

1 (), 0,k ks N s k+ σ∈ = …

()f x

61ICT

Geir Hasle - eVITA Winter School 2009

Traversing the Neighborhood Graph

1 (), 0,k ks N s k+ σ∈ = …

0s 1s

0()N sσ

1s

0s

1()N sσ

2s
1s

A move

is

the

process

of

selecting

a given solution

in
the

neighborhood

of

the

current

solution, hence

making it the

current

solution

for the

next

iteration

62ICT

Geir Hasle - eVITA Winter School 2009

Local Optimum

ks

()kN sσ

1ks +

ks

63ICT

Geir Hasle - eVITA Winter School 2009

Search Landscapes
- Local and global optima

Objective value

Solution space

64ICT

Geir Hasle - eVITA Winter School 2009

Simplex algorithm for LP as Local Search

Simplex Phase I gives initial, feasible solution (if it exists)
Phase II gives iterative improvement towards optimal solution (if it exists)
The neighborhood is defined by the polyhedron
The strategy is ”Iterative Improvement”
The concrete moves are determined by pivoting rules
The neighborhood is exact, i.e., Simplex is an exact optimization algorithm
(for certain pivoting rules)

65ICT

Geir Hasle - eVITA Winter School 2009

Local Search
Main challenges

feasible region only, or the whole solution space?
design good neighborhoods
size, scalability, search landscape
initial solution
strategy
efficient evaluation of the neighborhoods

incremental evaluation of constraints
incremental evaluation of the objective (evaluation function)

stop criteria
performance guarantees

The performance is typically much better than greedy heuristics

66ICT

Geir Hasle - eVITA Winter School 2009

Design of neighborhood operators

Based on natural attributes
Neighborhood size, scalability
Diameter: maximum # moves to get from one solution to another
Connectivity

Search complexity depends on Search Landscape

Distance metrics
Hamming distance, Edit distance

67ICT

Geir Hasle - eVITA Winter School 2009

Example: Symmetric TSP and 2-opt

Solution space cardinality (n-1)!/2
Neighborhood cardinality n(n-1)/2
Connected
Diameter between n/2 and n-1 (still open)
Simple move representation
Objective Difference (delta evaluation) is simple and efficient
Feasibility is no problem ...
Generalization: k-opt
n-opt is an exact neighborhood, Diameter is 1, but ...

68ICT

Geir Hasle - eVITA Winter School 2009

Diameter of 0-1 Knapsack problem with the
”Flip” neighborhood

One is never more than n moves away from the optimal solution
but the landscape you have to move through may be very bumpy ...

=X n2

69ICT

Geir Hasle - eVITA Winter School 2009

Knapsack instance Idaho20

{ }

n

i i
i 1

n

i i
j

i

1

max v x s.t.

c

x

x C

0,1

=

=

∈

≤

∑

∑

Idaho20
n 20 C 2.5 f* 5.949363 s* 00110010101101001010 (slack 0.02)
v 0.751231 0.0562173 0.586932 0.695919 0.10468 0.242555 0.832725 0.00696871 0.828839 0.513085 0.704328
0.63044 0.556193 0.507427 0.159593 0.30589 0.573253 0.016571 0.5895 0.320655
c 0.703562 0.658012 0.194159 0.50693 0.372415 0.0674343 0.467352 0.132051 0.336674 0.790007 0.0390611
0.295304 0.530008 0.180224 0.116737 0.740043 0.440325 0.522951 0.0189656 0.725904

• 6810 local

optima, value

from 0.732882(1) to 5.949363(176)
• ”basin

of

attraction”

size

varies

from 1 to 464

70ICT

Geir Hasle - eVITA Winter School 2009

Search landscape for Idaho20
LO Value

0

1

2

3

4

5

6

7

1 272 543 814 1085 1356 1627 1898 2169 2440 2711 2982 3253 3524 3795 4066 4337 4608 4879 5150 5421 5692 5963 6234 6505 6776

LO Value

Frequency

0
50

100
150
200
250
300
350
400
450
500

1 278 555 832 1109 1386 1663 1940 2217 2494 2771 3048 3325 3602 3879 4156 4433 4710 4987 5264 5541 5818 6095 6372 6649

Frequency

71ICT

Geir Hasle - eVITA Winter School 2009

Knapsack-instance Idaho20ex

{ }

n

i i
i 1

n

i i
j

i

1

max v x s.a.

c

x

x C

0,1

=

=

∈

≤

∑

∑

Idaho20ex
n 20 C 2.5 f* 4.911716 s* 01001001010010011101 (slack 0.03)
v 0.703562 0.658012 0.194159 0.50693 0.372415 0.0674343 0.467352 0.132051 0.336674 0.790007 0.0390611
0.295304 0.530008 0.180224 0.116737 0.740043 0.440325 0.522951 0.0189656 0.725904
c 0.751231 0.0562173 0.586932 0.695919 0.10468 0.242555 0.832725 0.00696871 0.828839 0.513085 0.704328
0.63044 0.556193 0.507427 0.159593 0.30589 0.573253 0.016571 0.5895 0.320655

• 2644 local

optima, value

from 0.745181(1) to 4.911716(288)
• ”basin

of

attraction”

size

varies

from 1 to 1024

72ICT

Geir Hasle - eVITA Winter School 2009

Search Landscape Idaho20ex

Frequency

0

200

400

600

800

1000

1200

1 108 215 322 429 536 643 750 857 964 1071 1178 1285 1392 1499 1606 1713 1820 1927 2034 2141 2248 2355 2462 2569

LO Value

0

1

2

3

4

5

6

1 114 227 340 453 566 679 792 905 1018 1131 1244 1357 1470 1583 1696 1809 1922 2035 2148 2261 2374 2487 2600

73ICT

Geir Hasle - eVITA Winter School 2009

Local Search
Old idea, new developments over the past two decades
Popular method for solving hard DOPs
Generic and flexible
No strong assumptions

”Anytime”-method
Efficient, good quality solution quickly
Performance depending on initial solution, neighborhood operator
and strategy

Exact methods preferable, if they solve the problem

74ICT

Geir Hasle - eVITA Winter School 2009

Local Search

The search landscape is typically complex
Local optima may be far from global optima
Local search is a local method
Solution quality depends on initial solution, neighborhood, strategy

”Blind” and ”headstrong” method, no learning during search, no
randomness

No strong performance guarantees

75ICT

Geir Hasle - eVITA Winter School 2009

What

to do to move

on

from a local
 optimum to cover a larger

part of

 the

search

space?

76ICT

Geir Hasle - eVITA Winter School 2009

How to escape local optima in LS
- some strategies

Restart
Random choice of move
Allow moves to lower quality solutions

deterministic
prababilistic

Memory
which solutions have been visited before?
diversify the search
(parts of) good solutions
intensify the search

Change the search landscape
Change neighborhood
Change evaluation function

77ICT

Geir Hasle - eVITA Winter School 2009

Metaheuristics (General heuristics)

search strategies that escape local optima
introduced early 1980ies
considerable success in solving hard DOPs
analogies from physics, biology, human brain, human
problem solving
a large number of variants
some religions
some confusion in the literature

78ICT

Geir Hasle - eVITA Winter School 2009

Some metaheuristics
Simulated Annealing (SA)
Threshold Accepting (TA)
Genetic Algorithms (GA)
Memetic Algorithms (MA)
Evolutionary Algorithms (EA)
Differential Evolution (DE)
Ant Colony Optimization (ACO)
Particle Swarm Optimization (PSO)
Immune Systems (IS)
Tabu Search (TS)
Scatter Search (SS)
Path Relinking (PR)
Guided Local Search (GLS)
Greedy Randomized Adaptive Search (GRASP)
Iterated Local Search (ILS)
Very Large Neighborhood Search (VLNS)
Variable Neighborhood Descent / Search (VND/VNS)
Neural Networks (NN)

79ICT

Geir Hasle - eVITA Winter School 2009

”Definition” of metaheuristics
(Osman & Kelly)

A metaheuristic is
an iterative generation

process

that

guides an underlying

heuristic
by combining

(in an intelligent way)
different

strategies

for exploring

and exploiting

solution

spaces

(and learning

strategies)
to find

near-optimal

solutions

in an effective

way

80ICT

Geir Hasle - eVITA Winter School 2009

”Definition” of metaheuristics
(Glover & Kochenberger)

Solution

methods

that

utilize

interaction between

local
improvement procedures (local

search) and higher

 level

strategies to escape local optima and ensure
 robust search in a solution

space

81ICT

Geir Hasle - eVITA Winter School 2009

Variant of LS: Random Search (RS)
”Brownian motion” - A borderline metaheuristic

Procedure Random_Search(f,N,Stop,initial)
begin

current:=incumbent:=initial;
while not Stop() do
begin

current:=Random_Solution(N(current))
if f(current) < f(incumbent) then
begin

incumbent:=current;
end

end
return incumbent;

end

Stop

criteria?

82ICT

Geir Hasle - eVITA Winter School 2009

Variant of RS: Random Descent
A borderline metaheuristic
Procedure Random_Descent(f,N,Stop,initial)
begin

new_solution:=current:=incumbent:=initial
while not Stop() do
begin

Neighbors:=N(current)
while not Stop()

and f(new_solution) >=f(current)

do
begin

new_solution:=Random_Solution(Neighbors)
end
current:=new_solution
if f(current) < f(incumbent) then incumbent:=current

end
return incumbent

end

83ICT

Geir Hasle - eVITA Winter School 2009

Metaheuristic strategies

Goals
escape local optima
avoid loops

Accept worse solutions
Randomness

Simulated Annealing (SA) utilizes these strategies

84ICT

Geir Hasle - eVITA Winter School 2009

Simulated Annealing (SA)
Kirkpatrick et al. 1983 / Cerny 1985

Inspired by work on statistical thermodynamics
the Metropolis algorithm 1953
simulation of energy changes in physical systems under cooling

Used for DOP
Built on LS (variant of Random Search/Random Descent)
Trajectory-based method
Simple to implement
A lot of literature
Used a lot, outside the metaheuristic community, probably
too much ...
Converges to a global optimum under weak assumptions
Very slowly

85ICT

Geir Hasle - eVITA Winter School 2009

SA - Analogies

Thermodynamics
System state
Energy
State change
Temperature
Final state

DOP
Solution
Cost
Move
Control parameter
Final solution

86ICT

Geir Hasle - eVITA Winter School 2009

Simulated Annealing (SA)

Procedure Local_Search(Init_Sol,N,f,Strategy,Stop_Criterion)
*/ Strategy

= SA

incumbent:=current:= Init_Sol()
Repeat

current:=Select_SA_Neighbor(f,current,N(current),Stop_Criterion)
if f(current)< f(incumbent) then incumbent

:=current

Until Stop_Criterion()
return incumbent

May be expressed

as strategy

for move

selection
in basic

LS:

87ICT

Geir Hasle - eVITA Winter School 2009

Move selection in SA

• Modified

”Random

Descent”
• Select

random

solution

in neighborhood

• Accept
• unconditionally, if

better

• with

a non-zero

probability, if

worse
•

Probability

determined

by control

parameter

(temperature)

• Avoids

getting

stuck

in local

optimum
• Avoids

looping

88ICT

Geir Hasle - eVITA Winter School 2009

Move selection in SA

Procedure Select_SA_Neighbor
 (f,current,Neighbors,Stop_Criterion)

*/ Strategy

is Simulated

Annealing
begin

i:=Random_Element(Neighbors)
delta

:= f(i) -

f(current) */ Could

be improved

...

if delta

< 0 or Random(0,1)

< exp(-delta/t)

then
return i

else
return current

end

89ICT

Geir Hasle - eVITA Winter School 2009

SA
Acceptance of worse solutions

Random

Search

Local

Search

t = ∞

te
Δ

−

0t →

1

90ICT

Geir Hasle - eVITA Winter School 2009

SA – higher level strategy
initial control variable t0 (high value)
”inner” stop criterion: # iterations with the same temperature
temperature reduction
”cooling schedule”
stop criteria

minimum temperature
iterations (without improvement)
time
user

the procedure may be iterated
efficiency is depending on parameters (optimization problem)

experiments, experience, (witch)craft, ...
over-fitting
self-adaptive, parameter-free methods ...

selection of neighborhood is still important ...

1 ()i it t+ = α

91ICT

Geir Hasle - eVITA Winter School 2009

SA – overall procedure
Procedure Simulated_Annealing

 (f,N,Stop_Criterion,t0,Nrep,Cool)
incumbent:=current:= Find_Initial_Solution()
t:=t0
Repeat

for i:=1

to Nrep

do */ Several

iterations

with

one

t value
begin

current

:=Select_SA_Neighbor(f, current,N(sol),incumbent,t)
if

f(current) < f(incumbent) then incumbent:= current

end

t:=Cool(t)

*/ Cooling
Until Stop_Criterion()
return incumbent

92ICT

Geir Hasle - eVITA Winter School 2009

Statistical analysis of SA

Model: state transitions in search space
Transition probabilities [pij], only dependent on states
Homogeneous Markov chain

When all transition probabilities are finite,
SA will converge to a stationary distribution
that is independent of the initial solution. When the temperature goes to
zero, the distribution converges to a uniform distribution over
the global optima.

Statistical guarantee
In practice: exponential computing time needed to guarantee optimum

93ICT

Geir Hasle - eVITA Winter School 2009

SA i practice

heuristic approximation algorithm
performance strongly dependent on cooling schedule
rules of thumb

large # iterations, few temperatures
small # iterations, many temperatures

94ICT

Geir Hasle - eVITA Winter School 2009

SA in practice – Cooling schedule

geometric sequence often works well

1 , 0, , 1 (0.8 0.99)i it at i K a+ = = < −…

vary # repetitions and a, adaptation
computational experiments

95ICT

Geir Hasle - eVITA Winter School 2009

SA – Cooling schedule

repetitions and reduction rate should reflect search landscape
Tuned to maximum difference between solution values
Adaptive # repetitions

more repetitions for lower temperatures
acceptance rate, maximum limit

Very low temperatures are unnecessary (Local Search)
Overall cooling rate more important than the specific cooling function

96ICT

Geir Hasle - eVITA Winter School 2009

SA – Decisions

Goal: High quality solution in short time
Search space: only feasible solutions?
Neighborhood
Evaluation function
Cooling schedule

97ICT

Geir Hasle - eVITA Winter School 2009

SA – Computational efficiency aspects

Random choice of neighbor
neighborhood reduction, good candidates

Evaluation of objective (evaluation function)
difference without full calculation
approximation

Evaluation of constraints (evaluation function)
Move acceptance

calculating the exponential function takes time
drawing random numbers take time

Parallel computing
fine-grained, in Local Search
coarse-grained: multiple SA searches

98ICT

Geir Hasle - eVITA Winter School 2009

SA – Modifications and extensions

Probabilistic
Acceptance probability
Approximation of (exponential) function / table
Approximation of cost function
Few temperatures
Restart

Deterministic
Threshold Accepting (TA), Dueck and Scheuer 1990
Record-to-Record Travel (RTR), The Great Deluge
Algorithm (GDA), Dueck 1993

99ICT

Geir Hasle - eVITA Winter School 2009

Deterministic Annealing
- Threshold Accepting (TA)

Procedure Select_TA_Neighbor

(f,current,Neighbors,incumbent,theta1)
*/ Strategy

is Threshold

Accepting

begin
i:=Random_Element(Neighbors)
delta

:= f(i) -

f(current)

*/ SA: if delta

< 0 or Random(0,1)

< exp(-delta/t)
if delta < theta1 */ Positive Threshold

w.r.t. current

then return i
end

100ICT

Geir Hasle - eVITA Winter School 2009

Deterministic Annealing
- Record-to-Record Travel (RRT)

Procedure Select_RRT_Neighbor
 (f,current,Neighbors,incumbent,theta2)

*/ Strategy

is Record-to-Record

Travel
begin

i:=Random_Element(Neighbors)
*/ SA, TA: delta

:= f(i) -

f(current)

*/ SA:

if delta

< 0 or Random(0,1)

< exp(-delta/t)
if f(i) < theta2*f(incumbent) */ theta2 > 1
then return i

end

101ICT

Geir Hasle - eVITA Winter School 2009

TA, RTR: Cooling schedule of tolerance

Random

Search

Local

Search

θ

102ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search (TS)
F. Glover / P. Hansen 1986

Fred Glover 1986: ”Future paths for integer programming and links to
artificial intelligence”
Pierre Hansen 1986: ”The Steepest Ascent/Mildest Descent Heuristic
for Combinatorial Optimization”
DOP research – OR and AI
Barrier methods, search in infeasible space
Surrogate constraints
Cutting plane methods
Automated learning, cognitive science

103ICT

Geir Hasle - eVITA Winter School 2009

Tabu (Taboo)

”Banned

because

of

moral, taste, or risk”
Tabu Search: Search

guidance

towards

otherwise

inaccessible

areas of

 the

search

space

by use

of

restrictions

Principles for intelligent problem solving
Structures that exploit history (”learning”)

104ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search – Main ideas

Trajectory-based method, based on Local Search
Seeks to allow local optima by allowing non-improving moves
Aggressive: Always move to best solution in neighborhood
Looping problem, particularly for symmetric neighborhoods
Use of memory to

avoid loops (short term memory)
diversify the search (long term memory)
intensify the search (long term memory)
General strategy to control ”inner” heuristics (LS, ...)

Metaheuristic (Glover)

105ICT

Geir Hasle - eVITA Winter School 2009

Basic Tabu Search

LS with ”Best Neighbor” strategy
Always move to new neighbor (”aggressive LS”)
But: some neighbors are tabu
Tabu status defined by tabu-criteria
However: some tabu moves are admissible

admissibility criteria
typical example: new incumbent

Short term memory: Tabu List

106ICT

Geir Hasle - eVITA Winter School 2009

Tabu Restrictions

defined on properties of solutions or moves – attributes
how often – or how recent (frequency, recency) has the
attribute been involved in (generating) a solution
data structure: tabu list

107ICT

Geir Hasle - eVITA Winter School 2009

Local_Search (S,f,N,strategy)

incumbent:=current=Init_Solution(S)
local_optimum:=false
while not local_optimum

do

(current,incumbent,local_optimum):=
 Search_the_Neighborhood

(current,N,f,strategy,incumbent)

if local_optimum

return incumbent
od

108ICT

Geir Hasle - eVITA Winter School 2009

Search_the_Neighborhood
(current,N,f,strategy,incumbent)

best_neighbor:=current
neighbors=N(current)
for i

in neighbors

do
if f(i)

< f(best_neighbor)

then best_neighbor:=i
if f(i) < f(incumbent) then

if strategy=”First

Accept”

then
return (i,i,false) else
incumbent:=i

*/ strategy

is ”Best Accept”
fi

fi
od
return (best_neighbor,incumbent,best_neighbor=current)
*/ (current,incumbent,local_optimum)

109ICT

Geir Hasle - eVITA Winter School 2009

Traversing the Neighborhood Graph

1 (), 0,k ks N s k+ σ∈ = …

0s 1s

0()N sσ

1s

0s

1()N sσ

2s
1s

A move

is

the

process

of

selecting

a given solution

in
the

neighborhood

of

the

current

solution, hence

making it the

current

solution

for the

next

iteration

110ICT

Geir Hasle - eVITA Winter School 2009

Local_Search (S,f,N,’Basic_Tabu_Search’)

incumbent:=current:=Init_Solution(S)
*/ best solution

until

now, ”champion”

*/ local_optimum:=false
while not Stopping_Criterion()

do

current:=Search_the_Neighborhood
 (current,N,f,Basic_Tabu_Search,incumbent)

if f(current) < f(incumbent) then incumbent:=current
*/ if local_optimum

return incumbent

od
return incumbent

111ICT

Geir Hasle - eVITA Winter School 2009

Search_the_Neighborhood
(current,N,f,strategy,incumbent)

*/ Strategy=Basic_Tabu_Search
*/ best_neighbor:=current
best_acceptable_neighbor:=Really_Bad_Solution()
Neighbors=N(current)
for i

in Neighbors

do

if f(i)

< f(best_acceptable_neighbor)
and (not Tabu(i,Tabu_List)

or Admissible(i))

then

best_acceptable_neighbor:=i
od
Update_Tabu_List(best_acceptable_neighbor,Tabu_List)
return best_acceptable_neighbor

112ICT

Geir Hasle - eVITA Winter School 2009

Example: TSP

Representation: permutation vector
Operator: pairwise exchange

4

1

6

5

7

2 3

1 2 3 4 5 6 7

() [], , 1,i j i j i j n< ∈

113ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
1-exchange in permutation vector

4

1

6

5

7

2 3

2 5 7 3 4 6 1

2 6 7 3 4 5 1

4

1

6

5

7

2 3

Move: Exchange(5,6)

114ICT

Geir Hasle - eVITA Winter School 2009

TSP-example 1-exchange

Neighborhood cardinality:

For every move: move value

Choice of tabu restriction
attribute: city involved in move
tabu to perform moves that involve cities that have recently have been involved
for the past k iterations
k=3 (”tabu tenure”)

Choice of aspiration criterion
the classical one ...

2
n⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1 1() (), ()k k k k kf i f i i N i+ + +Δ = − ∈

115ICT

Geir Hasle - eVITA Winter School 2009

Tabu criterion and tabu list
- TSP-example

• Tabu Attribute: the

pair of

cities

involved

in a move
• Tabu Criterion: move

that

involves

the

same pair

• Tabu tenure: 3
•

Data structure: triangular

table, # iterations

until

move

 becomes

legal
• Update

after

each

move

2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

116ICT

Geir Hasle - eVITA Winter School 2009

Alternative tabu criteria / attributes
- TSP-example

1 2 3 4 5 6 7
2 4 7 3 5 6 1

4

1

6

5

7

2 3

Do not operate on given cities
Do not operate on cities in certain positions in vector
Edge/Arc based criteria

Edge has often occured in good solutions
Edge lengths
Edge in/out

For permutation problems:
attributes related to previous/next
relations often work well

117ICT

Geir Hasle - eVITA Winter School 2009

Candidate list of moves
- TSP-example

1 2 3 4 5 6 7
2 4 7 3 5 6 1 Current

solution

Move Value
1,3 -2
2,3 -1
3,6 1
1,7 2
1,6 4

Cost: 200

Candidate

list

118ICT

Geir Hasle - eVITA Winter School 2009

TSP-example 1-exchange
- Iteration 0/1

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 0 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 5 7 3 4 6 1 Current

solution

Cost: 234

Move Value
4,5 -34
4,7 -4
3,6 -2
2,3 0
1,4 4

Candidate

list

Select

move (4,5)

119ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
- Iteration 1 (after Exchange (4,5))

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 3 5 6 1 New Current

Cost: 200

Move Value
4,5 -34
4,7 -4
3,6 -2
2,3 0
4,1 4

Candidate

list with

selected
 move

120ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
- Iteration 2

Tabu list 2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

Tabu list 2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 3 5 6 1

Current

solution
Cost: 200

Move Value
1,3 -2
2,3 -1
3,6 1
1,7 2
1,6 4 New candidate

list

Select

move

(1,3)

1 2 3 4 5 6 7
2 4 7 1 5 6 3 Cost: 198

121ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
- Iteration 3

1 2 3 4 5 6 7
4 2 7 1 5 6 3

Tabu list 2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 1 5 6 3

Current
Cost: 198

Select

move

(2,4) (deteriorating)
Tabu!Move Value

4,5 2
2,4 4
6,7 6
4,5 7
3,5 9

Cost: 202

Tabu list 2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

122ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
- Iteration 4

1 2 3 4 5 6 7
5 2 7 1 4 6 3

Tabu list 2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

1 2 3 4 5 6 7
4 2 7 1 5 6 3

Current
Cost: 202

Tabu, but

Aspiration

Criterion

says
 OK. Select

(4,5)

Move Value
4,5 -6
5,3 -2
7,1 0
1,3 3
2,6 6

Cost: 196

Tabu list 2 3 4 5 6 7
1 0 1 0 0 0 0

2 0 2 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

123ICT

Geir Hasle - eVITA Winter School 2009

Observations

In the example 3 of 21 moves are tabu
Stronger tabu criteria are achieved by

increasing tabu tenure
strengthening the tabu restriction

Dynamic tabu tenure (“Reactive Tabu Search”) often works better
than static
Tabu-list requires space (why not store full solutions instead of
attributes?)
In the example: the tabu criterion is based on recency, short term
memory
Long term memory: normally based on frequency

124ICT

Geir Hasle - eVITA Winter School 2009

TSP-example
- Frequency based long term memory

1 2 3 4 5 6 7
1 2
2 3
3 3
4 1 5 1
5 4 4
6 1 2
7 4 3

Tabu status (recency)

Frequency of moves

Typically utilized to diversify search
Is often activated when the search stagnates (no improving moves for a long time)
Typical mechanism for long-term diversification strategies: Penalty for moves that have

been frequently used
Augmented move evaluation

125ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search - Main Ideas
Less use of randomization (than SA)
“Intelligent” search must be based on more systematic guidance
Emphasis on flexible memory structures
Neighborhoods are in effect modified on the basis of short term memory (one
excludes solutions that are tabu)
Memory of good solutions (or parts of them), e.g. good local optima,
particularly in long term strategies
Use of search history to modify evaluation of solutions/moves
TS may be combined with penalties for constraint violations
(a la Lagrange-relaxation)
Strategic oscillation

intensification and diversification
feasible space and infeasible space

126ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search – More ideas, and practice

“Aggressive search”: move on – select good neighbor
Computational effort and scalability remedies (general)

delta-evaluation
approximation of cost function
identify good candidates in neighborhood
candidate list of moves, extensions

Most TS-implementations are deterministic
Probabilistic Tabu Search

moves are chosen probabilistically, but based on TS principles

Most TS-implementations are simple
basic TS with short term memory, static tabu tenure
potential for improvement ...

127ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search - Generic procedure

Find initial solution x
Initialize memory H
While not Stop_Criterion()

Find (with limited resources)
Candidate_List_N(x) in N(x)
Select (with limited resources)
x’ = argmin(c(H,x), x in Candidate_List_N(x))
x= x’
H=Update(H)

end

128ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search – Attributes

Attribute: Property of solution or move
May be based on any aspect of the solution or move
Basis for definition of tabu restrictions
A move may change more than one attribute

129ICT

Geir Hasle - eVITA Winter School 2009

Example: TSP
Attribute based on edges in tour

A1: Edge is added to solution
A2: Edge is removed from solution

Exchange-move in permutation vector:
4 edges are removed
4 edges are added
Exchange(5,6)

A1:(2,5),(5,7),(4,6),(6,1)
A2:(2,6),(6,7),(4,5),(5,1)

Exchange is O(n2) segment of
the O(n4) 4-opt neighborhood

4

1

6

5

7

2 3

4

1

6

5

7

2 3

130ICT

Geir Hasle - eVITA Winter School 2009

Use of attributes in tabu restrictions

Assume that the move x(k)-> x(k+1) involves the attribute A
Normal tabu restriction:
Tabu to perform move that reverses the status of A
TSP-example:

the attributes are edges
current move introduces edge (2,5): y2,5(0->1)
moves that remove edge (2,5): y2,5(1->0) are tabu (for some iterations)

131ICT

Geir Hasle - eVITA Winter School 2009

Tabu tenure – the (witch)craft
Static

t=7
t=√n where n is a measure of problem size

Dynamic (and randomized)
t ∈ [5,11]
t ∈ [.9√n, 1.1√n]

Depending on attribute
TSP
edge-attribute, tabu criterion both on edge in / edge out
fewer edges in than out (n vs. n2-n)
same tabu tenure would be unbalanced

Self-adaptation

132ICT

Geir Hasle - eVITA Winter School 2009

Aspiration criteria
Classical aspiration criterion:
Accept tabu move that will give a new incumbent
Other relevant criteria are based on:

solution quality
degree of feasibility
strength of tabu
degree of change: Influence of move

High influence move may be important to follow when close to local
optimum, search stagnates

Distance metrics for solutions
Hamming-distance between strings

h(1011101,1001001) = 2
h(2173896,2233796) = 3
h("toned”,"roses”) = 3

More general, sequences: Edit Distance (Levenshtein)
insertion, removal, transposition

133ICT

Geir Hasle - eVITA Winter School 2009

Frequency based memory
Complementary to short term memory
Long term strategies
Frequency measures

residence-based
transition-based

TSP-example
how often has a given edge (triplet, ...) been included in the current solution?
(residence-based)
how often has the in/out status of the edge been changed?
(transition-based)

134ICT

Geir Hasle - eVITA Winter School 2009

Intensification and diversification

Intensification: Aggressive prioritization of good solution
attributes

short term: based directly on attributes
long term: use of elite solutions, parts of elite solutions (vocabularies)

Diversification: Spreading of search, prioritization of moves
that give solutions with new composition of attributes

Strategic oscillation

135ICT

Geir Hasle - eVITA Winter School 2009

Intensification and diversification
- basic mechanisms

use of frequency based memory
select solution from subset R of S (or X)
diversification:

R is chosen to contain a large part of the solutions generated so far (e.g., all local
optima)

intensification :
R is chosen as a small set of elite solutions that

to a large degree have identical attributes
have a small distance in solution space
cluster analysis
path relinking

136ICT

Geir Hasle - eVITA Winter School 2009

Path relinking

Assuming that new good solutions are found on the path between two
good solutions
Select two elite solutions x’ and x’’
Find (shortest) path in the solution graph between them
x’ -> x’(1)-> ... x’(r)= x’’
Select one or more of the intermediate solutions as end points for path
relinking

137ICT

Geir Hasle - eVITA Winter School 2009

Punishment and encouragement
Whip and carrot

Augmented move evaluation, in addition to objective
Carrot for intensification is whip for diversification, and vice
versa

Diversification
moves to solutions that have attributes with high frequency are
penalized
TSP-example: g(x)=f(x)+w1Σωij

Intensification
moves to solutions that have attributes that are frequent among
elite solutions are encouraged
TSP-example: g(x)=f(x)-w2Σγij

138ICT

Geir Hasle - eVITA Winter School 2009

Candidate list

Strategy to limit computational effort in evaluating neighborhoods
Limited subset of moves that seem promising

approximate move evaluation (evaluation function, constraints)
heuristic selection based on attributes (TSP edges)
randomness

Candidate list may be expanded
Candidate list may be reused

Parallel processing is another strategy ...

General idea in Local Search

139ICT

Geir Hasle - eVITA Winter School 2009

Tabu Search - Summary
Inspired from math. progr., AI/cognitive science
Focus on memory/learning rather than random choice
A lot of ideas, more a framework than a concrete metaheuristic
Based on “aggressive” local search, acceptance of worse solutions
Candidate list strategies for cheaper neighborhood evaluation
Short term memory

avoid reversal of moves and repetition
attributes, tabu criteria, tabu list

Aspiration criteria - tabus are there to be broken ...
Long term, frequency based memory for diversification and intensification
Path relinking
Strategic oscillation
Complexity?

Good results for many hard DOPs
Worshippers, as for most other metaheuristics, communities and congregations

140ICT

Geir Hasle - eVITA Winter School 2009

Guided Local Search (GLS)
(E. Tsang, C. Voudouris 1995)

Project for solving Constraint Satisfaction Problems (CSP), early 90ies
(E. Tsang, C. Voudouris, A. Davenport)
GENET (neural network)
Development of GENET from CSP to ‘Partial CSP’
satisfaction ⇒ optimization
the Tunnelling Algorithm’ (94) -> GLS (95)

141ICT

Geir Hasle - eVITA Winter School 2009

GLS - Main ideas
General strategy for guidance of local search/”inner” heuristics:
metaheuristic

Local search (trajectory based)

Penalizes undesired properties (‘features’) of solutions

Focuses on promising parts of the solution space
Seeks to escape local optima through a dynamic, augmented
evaluation function (objective + penalty term)
Memory
Changing the search landscape
LS to local minimum, update of penalty term, LS to local
minimum, update of penalty term, ...

142ICT

Geir Hasle - eVITA Winter School 2009

GLS focuses on characteristic (non-trivial) solution features
Features are problem dependent
Features have a cost
Costly features will be avoided
Indicator function

Features

1 , if has feature () ,
0 , otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

= ∈i

s iI s s S

143ICT

Geir Hasle - eVITA Winter School 2009

A solution consists of a number of edges
Edge is a good choice as a basic feature structure

Either in or out
Cost: edge cost (length)

Feature set

Feature example: TSP

{ }, 1... , 1,..., ,= = = + ≠e i N j i N i jijE

Feature costs given by distance matrix

= [d], i=1,...,N, j=1,...,NijC

4

1

6

5

7

2

3

144ICT

Geir Hasle - eVITA Winter School 2009

Feature set E={ ei }, i=1,…,G
Indicator function

Augmented objective

Penalty vector p=[pi], i=1…G, # times feature ei has been penalized
Penalty factor λ

1
'() () ()

G

i i
i

f s f s I s pλ
=

= + ∑

1 if contains e
() ,

0 otherwise
⎧

= ∈⎨
⎩

i
i

s
I s s S

Cost vector c=[ci], ci > 0, i=1…G, cost of feature ei

145ICT

Geir Hasle - eVITA Winter School 2009

Augmented objective - Comments

1
'() () ()

G

i i
i

f s f s I s pλ
=

= + ∑

λ determines influence of penalty
Low value: intensification
High value: diversification

Initially, pi=0 ∀ i
In local minima, the feature(s) with maximum utility are penalized

ui(smin , ei) = Ii* ci /(1+pi)

These feature(s) are penalised: pi = pi+1
Diversification: different features are penalized
high cost features are penalized more often

Note: Only

local

minimum features are

penalized

146ICT

Geir Hasle - eVITA Winter School 2009

{
int

k := 0; // number

of

GLS-iterations

s* := sk

:= InitialSolution(S); // get

initial solution
set

all pi

:= 0; // set

all penalties

to zero
while

(stopCriterion

not satisfied) do {

f’

:= f + λ*

∑(Ii

*

pi

);
sk+1 :

= Local_Search

(sk

, f’, N,

“best accept”); local

minimum
for (i:=1 to G)

ui :

= Ii

(sk+1

)* ci

/(1+pi

);
for each

i such

that

ui

is maximum

do
pi

:= pi

+ 1;
k = k+1;
if

(f(sk+1

) < f(s*))
s* := sk+1

; // save new

incumbent
}
return

s*;

}

GLS(S, f, λ, I, c, G, stopCriterion, N)

147ICT

Geir Hasle - eVITA Winter School 2009

Comments
Augmented objective in Local Search

sk+1 := Local_Search (sk, f’, N, “best accept”);
Local Search strategy may well be ”first accept”, ..
Variants of Local_Search may be used
Delta-evaluation of moves must take penalties into account
If all features are penalized equally many times f’(s) gives the same
landscape as f(s)
Resetting penalty vectors

Avoids bad features, how about encouragement of good features?

148ICT

Geir Hasle - eVITA Winter School 2009

λ

Values
GLS seems to be rather robust regarding λ values
General advice: fraction of value of local minimum
Tsang & Voudouris:

TSP : λ = a*f(smin)/n , a∈[0,1] problem dependent
QAP: λ = a*f(smin)/n2 , a∈[0.2,1] problem dependent
For other problems they report absolute values depending on
problem size

149ICT

Geir Hasle - eVITA Winter School 2009

GLS - example : TSP
Feature: edge
Feature cost: length
e26 will be punished:
Augmented objective is f(s) if e26 is out,
f(s)+λ if e26 is in

4

1

6

5

7

2

3

1 2 3 4 5 6 7
1 0 0 0
2 0 0 0
3 0 0 0

0 0

0

0
01

4 0 0
5 0 0
6 0

0

150ICT

Geir Hasle - eVITA Winter School 2009

GLS - example : TSP

After next LS, e34 will be penalized

1 2 3 4 5 6 7
1 0 0 0
2 0 0 0
3 1 0 0

0 0

0

0
01

4 0 0
5 0 0
6 0

0

4

1

6

5

7

2

3

()
'()

∉⎧
⎪= ∈ ∈⎨
⎪ ∈⎩

26 34

26 34

26 34

f s , e ,e s
f s f(s)+ , e s or e s

f(s)+2 , e ,e s
λ
λ

151ICT

Geir Hasle - eVITA Winter School 2009

GLS vs. SA

SA
Local optima avoided by uphill moves
Looping avoided by randomness
High temperatures give bad solutions
Low temperatures: convergence to local minimum
The cooling schedule is critical and problem dependent

GLS visits local minima, but will escape
No uphill moves, but changes landscape
Deterministic (but probabilistic elements are easily added)

152ICT

Geir Hasle - eVITA Winter School 2009

GLS vs. Tabu Search
Similarities ...
Some arguments, from the GLS community ...
TS utilizes frequency based (long term) memory used to penalize
features that are often present (for diversification)
GLS utilizes memory (pi) throughout the search, not in phases
GLS penalizes on the basis of both cost and frequency
TS penalizes only on the basis of frequency, may avoid “good”
features
GLS avoids this by utilizing domain knowledge (ci)
In GLS the probability for a feature to be penalized is reduced
according to the number of times it has been penalized before
ui(smin , ei) = Ii* ci /(1+pi)

153ICT

Geir Hasle - eVITA Winter School 2009

Fast Local Search
Heuristic limitation of neighborhoods (a la Candidate Lists)
Idea

partition of neighborhood into sub-neighborhoods
Status sub-neighborhoods: active or non-active
Only search in active sub-neighborhoods
Association of properties to sub-neighborhoods

property ⇔ neighborhood that change status of this property

General idea, particularly well suited for GLS

154ICT

Geir Hasle - eVITA Winter School 2009

GLS for continuous, nonlinear optimization

Extensions

Limited duration of penalties
Decreasing penalties
Rewards
Automatic setting of λ
Alternative utility-functions that determine
which features will be penalized

2 2 2

22 2

sin 0.56(,) 0.5
1 0.001()

x yF x y
x y
+ −

= +
+ +⎡ ⎤⎣ ⎦

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -50 0 50 100

0.5+(sin(sqrt(x*x))*sin(sqrt(x*x)) -0.5)/((1+0.001*(x*x)) * (1+0.001*(x*x)))

155ICT

Geir Hasle - eVITA Winter School 2009

Genetic Algorithms (GA)

Rechenberg, Schwefel 1960-1970
Holland et al. 1970ies
Function optimization
AI (games, pattern matching, ...)
OR
Basic idea

intelligent exploration of search spaces based on randomness
parallelism
analogies from evolutionary biology

156ICT

Geir Hasle - eVITA Winter School 2009

GA – Analogies with biology

Representation of complex objects
by vector of simple elements
Chromosomes
Selective breeding
Darwinistic evolution

Classical GA for DOP: Binary encoding

157ICT

Geir Hasle - eVITA Winter School 2009

Classical GA: Binary chromosomes

1 2 3 4 5 6 7
1 0 1 0 0 1 0

Chromosome, (component) vector, string, solution,
 individual x=(x1

, ... , x7

)

Gene, Component, Variable, x3

Locus, position Allele, value
x3

∈{0,1}

Alleles, domain

158ICT

Geir Hasle - eVITA Winter School 2009

Genotype, Phenotype, Population

Genotype
chromosome
collection of chromosomes
coded string, collection of coded strings

Phenotype
the physical expression
attributes of a (collection of) solutions

Population – a set of solutions

159ICT

Geir Hasle - eVITA Winter School 2009

Genetic operators

Manipulate chromosomes/solutions
Mutation: Unary operator
Crossover: Binary (or n-ary) operator
Inversion
...

160ICT

Geir Hasle - eVITA Winter School 2009

Assessment of individuals

”Fitness”
Related to objective for DOP
Maximized
Used in selection (”Survival of the fittest”)
Fitness is normally normalized

[]f : → 0,1S

161ICT

Geir Hasle - eVITA Winter School 2009

GA - Evolution

N generations of populations
For each generation (step in evolution)

selection of individuals for genetic operators
formation of new individuals
selection of individuals that will survive

Population size (typically fixed) M

162ICT

Geir Hasle - eVITA Winter School 2009

GA - Evolution
Generation

X Generation

X+1

Crossover

Mutation

Selection
M=10

163ICT

Geir Hasle - eVITA Winter School 2009

Classical GA for DOP: Binary chromosomes

Function optimization
chromosome reflects binary encoding of real number

DOP, e.g. TSP
binary encoding of solution
more direct representation often better
(e.g. sequential representation)

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1

164ICT

Geir Hasle - eVITA Winter School 2009

GA - Mutation

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
1 0 1 1 0 1 0

165ICT

Geir Hasle - eVITA Winter School 2009

1 2 3 4 5 6 7
0 1 1 0 0 1 0 Offspring

2

1 2 3 4 5 6 7
1 0 1 1 0 0 1 Offspring

1

GA - Classical crossover (1-point, 2 individuals)

One parent selected on the basis of fitness
The other parent selected randomly
Random choice of crossover point

1 2 3 4 5 6 7
1 0 1 0 0 1 0 Parent

1

1 2 3 4 5 6 7
0 1 1 1 0 0 1 Parent

2

Crossover

point

166ICT

Geir Hasle - eVITA Winter School 2009

GA - Classical crossover cont’d.

Random individual in population exchanged for one of the
offspring
Reproduction as long as you have energy
Sequence of almost equal populations
More elitist alternative

the most fit individual selected as one parent
crossover until M offspring have been born
change the whole population

Lots of other alternatives ...
Basic GA with classical crossover and mutation often works well

167ICT

Geir Hasle - eVITA Winter School 2009

GA – standard reproduction plan

Fixed polulation size
Standard 1-point 2-individual crossover
Mutation

standard: offspring are mutated
a certain (small) probability that a certain gene is mutated

168ICT

Geir Hasle - eVITA Winter School 2009

Theoretical analysis of GA
(Holland)

Schema/ schemata: subsets of similar chromosomes
same alleles (values) in certain loci (variables)
wildcards

A given chromosome belongs to multiple schema
How many?

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
* * 1 * 0 * *

169ICT

Geir Hasle - eVITA Winter School 2009

Schema - fitness

Every time we evaluate fitness to a chromosome, information on
average fitness to each of the associated schemata is gathered
A populasjon may contain M 2n schemata
In practice: overlap

170ICT

Geir Hasle - eVITA Winter School 2009

GA – Intrinsic parallelism

A number of schemata are evaluated in parallel
How many?
Under reasonable assumptions: O(M3)
Application of genetic operators will change the fitness of the
schemata that are represented in the population
Schema theorem

171ICT

Geir Hasle - eVITA Winter School 2009

Length and order of schema

Length: Distance between first and last defined position
Order: # defined position
Example has both length and order 2

1 2 3 4 5 6 7
* * 1 * 0 * *

172ICT

Geir Hasle - eVITA Winter School 2009

Fitness-ratio

Ratio between

average

fitness

of

a scheme

e(S)

and average

fitness
 of

the

population

P

()

()

()
()

s S

s P

f s

N Se S
f s

M

∈

∈

=

∑

∑

173ICT

Geir Hasle - eVITA Winter School 2009

Lemma 1

Under a reproduction

plan where

a parent

is selected

by fitness, the
 expected

instances

of

a schema

S

in generation

t+1 is

E(S,t+1)=e(S,t)N(S,t)

where

e(S,t)

is the

fitness-ratio

for schema

S

and N(S,t)

is # instances
 of

S

in generation

t

174ICT

Geir Hasle - eVITA Winter School 2009

Probability
that the other

parent
does not belong to

schema S

Probability
that S is

destroyed by
crossover

Lemma 2

If

crossover

is used in generation

t

with

probability

Pc

for a
schema

S

of

length

l(S), then

the

probability

P(S,t+1)

 that

S

will

be represented

in generation

t+1

is bounded
 by

() ()(), 1 1 1 (,)
1c

l SP S t P P S t
n

+ ≥ − −
−

175ICT

Geir Hasle - eVITA Winter School 2009

Probability
that S survives

mutation

Lemma 3

If

mutation

is used in generation

t,

with

probability

Pm

that

an
arbitrary

bit is mutated, for a schema

S

with

order k(S),

 then

the

probability

that

S

will

be represented

in
generation

t+1

will

be bounded

by:

() (), 1 (1) 1 ()k S
m mP S t P P k S+ = − ≥ −

176ICT

Geir Hasle - eVITA Winter School 2009

The schema theorem
In GA with

standard reproduction

plan, where

the

probability

for

crossover

and mutation

is Pc

og Pm

, respectively, and schema

S
 with

order k(S)

and length

l(S)

has a fitness-ratio

e(S,t)

in

generation

t, then

the

expected

representantives

for schema

S
 in generation

t+1

is bounded

by:

() ()(), 1 1 1 (,) () (,) (,)
1c m

l SE S t P P S t P k S e S t N S t
n

⎡ ⎤+ ≥ − − −⎢ ⎥−⎣ ⎦

S survives
crossover and

mutation

177ICT

Geir Hasle - eVITA Winter School 2009

Corollary
The

representation

of

schema

S will

increase

on

 average

if

()(,) 1 ()
1c m

l Se S t P P k S
n

≥ + +
−

Short, low

order schemata

will

increase

their
 representation, assuming

that

their

fitness-ratio

is

somewhat

larger

than

1, while

longer, high-order
 schemata

have to work

harder

to survive.

178ICT

Geir Hasle - eVITA Winter School 2009

GA – Building block hypothesis

Goldberg (1989)
Short, low order schemata are combined to increasingly
better solutions

179ICT

Geir Hasle - eVITA Winter School 2009

Later development of theory

Schema theorem for
uniform choice of parents in crossover
selection of both parents based on fitness

Exact expressions in the schema theorem
Analysis by Walsh-functions (from signal analysis)
Generalization of schema – form

design of desired operators

Fitness landscape analysis

180ICT

Geir Hasle - eVITA Winter School 2009

GA – Observations, Extensions, and Modifications

many knobs to turn
a lot of literature, chaotic
somewhat unclear terminology
modifications

population
encoding
operators
hybridization
parallelization

181ICT

Geir Hasle - eVITA Winter School 2009

GA – Evaluation of performance

3 important measures
based on objective f(x)
index t (”time”) indicates when solution has been generated

Best solution so far

On-line

Off-line

*()tf x

1
()

()

T

t
online t

f x
f T

T
==
∑

*

1
()

()

T

t
offline t

f x
f T

T
==
∑

182ICT

Geir Hasle - eVITA Winter School 2009

GA – Population size

Small populations – low coverage
Large populations – computationally demanding
Optimal size increases exponentially with string length in
binary encodings
Rule of thumb: 30
between n and 2n (Alander)

183ICT

Geir Hasle - eVITA Winter School 2009

GA – Initial population

normal: random solutions
alternative: ”seeds”: high quality solutions

quicker convergence
premature convergence

184ICT

Geir Hasle - eVITA Winter School 2009

GA – Selection mechanisms

Generation gap/overlap vs total exchange of population
Incremental selection works well in many applications

Alternative setup
A part of the population is selected for reproduction
Offspring replace randomly selected individuals
May work better

Duplication of solution should be avoided
The incumbent should survive
Elitisme/Selective death

185ICT

Geir Hasle - eVITA Winter School 2009

GA – Fitness

Objective function untouched rarely the perfect choice
Naive measure tends to give convergence to similar
solutions, premature convergence
Scaling

limited competition in early generations
increasing competition over time

() ()f x g x= α +β

186ICT

Geir Hasle - eVITA Winter School 2009

GA – Fitness/Selection

Use ranks rather than objective
Tournament selection

random selection of groups
the most fit in each group are selected

187ICT

Geir Hasle - eVITA Winter School 2009

GA – Operators

Mutation – keeps diversity
mutation rate normally not so critical

Crossover – essential
effective, particularly in the early phase
selective choice of crossover point

Multi-point crossover

188ICT

Geir Hasle - eVITA Winter School 2009

GA – Generalized crossover

1 2 3 4 5 6 7
1 1 1 0 0 1 0

•

Bit-string

determines

where

genes

should

be
fetched

1 2 3 4 5 6 7
1 0 1 0 0 1 0

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
1 0 1 1 0 1 1

P1

P0

Offspring

189ICT

Geir Hasle - eVITA Winter School 2009

GA – Inversion

1 2 3 4 5 6 7
0 1 1 1 0 0 1

1 2 3 4 5 6 7
1 0 0 0 1 1 0

190ICT

Geir Hasle - eVITA Winter School 2009

GA – Encoding and representation

Non-binary encoding
Sequence representation
PMX (Partially Mapped Crossover)

2-point, identifies segment for definition of permutation
parents define exchanges
permutation of each parent gives two children

1 2 3 4 5 6 7
2 1 3 4 5 6 7

1 2 3 4 5 6 7
4 3 1 2 5 7 6

1 2 3 4 5 6 7
3 4 2 1 5 6 7

3 ↔1
4 ↔2
5 ↔5

1 2 3 4 5 6 7
1 2 4 3 5 7 6

P1

P2

O1

O2

191ICT

Geir Hasle - eVITA Winter School 2009

GA - Hybridization

Strength and weakness of GA: domain independence
Constraints may be a challenge - penalties
Hybridization

Seeding, good individuals in initial population
”Local search” on individuals
Combination with other metaheuristics

192ICT

Geir Hasle - eVITA Winter School 2009

GA - parallelization

Fitness-evaluation
Fine grained parallelization

every solution its own process
(a)synchronous parallelization

Coarse grained parallelization
sub-populations
the island model

193ICT

Geir Hasle - eVITA Winter School 2009

GA - Summary

Inspired by biological evolution
Population of solutions that evolves
Genetic operators
Randomness
Domain independence – encoding
Lacks utilization of problem structure
Intrinsic parallelism – schema, vocabularies
Robust, but danger of premature convergence
Good diversification, lacks somewhat in intensification
Hybrid with local search: Memetic algorithms

194ICT

Geir Hasle - eVITA Winter School 2009

Memetic - meme

Introduced by Richard Dawkins (1976): ”The Selfish Gene”
Analogous to gene, in cultural evolution

”Examples

of

memes are

tunes, ideas, catch-phrases, clothes

fashions,
ways

of

making pots or building

arches.”

195ICT

Geir Hasle - eVITA Winter School 2009

Trends
GA –> Evolutionary Algorithms

More direct representation of solution
more natural encoding of solutions
specialized crossover- and mutation operators

More intensification
local search (”special mutation operators”) to local optimum
hybridization of e.g. SA or TA to get deeper
Memetic algorithms

Parallel computing

1-population, no crossover EA ...

196ICT

Geir Hasle - eVITA Winter School 2009

Ant Colony Optimization – ACO
(Marco Dorigo 1992, Marc Reimann)

Population based method
Inspirered by the”collective learning” and communication of ants
through pheromones, i.e. chemicals released by an organism into
its environment enabling it to communicate with other members of its
own species

Multiple ”agents” (ants) construct solutions by:
construction heuristics
random choice
information from other agents

197ICT

Geir Hasle - eVITA Winter School 2009

Ants (cont´d.)
Social insects
Self organizing collective behavior
Complex dynamics emerges from simple individuals

„emergent behaviour“
„swarm intelligence“

Interesting social phenomena (Work sharing, Allocation of tasks,
Organization of „graveyards“)
Transport management, finding food (e.g. Lasius niger)

198ICT

Geir Hasle - eVITA Winter School 2009

Ants and paths

Formation and following of paths by simple, local rules
Every ant legger lays a pheromone trail from nest to food source and back
Pheromone evaporates
Ants follow pheromone trails of other ants, according to intensity
Strong paths get stronger, weak paths get weaker
Positive feedback, reinforcement learning

199ICT

Geir Hasle - eVITA Winter School 2009

Ants – Path creation and path following

„Binary bridge“-experiment
Transportation optimization

nest

food

nest

food

nest

food

200ICT

Geir Hasle - eVITA Winter School 2009

Ant Colony Optimization (ACO) for DOP

Introduced by Dorigo, Maniezzo & Colorni 1992
Population based metaheuristic
Every „ant“ in the population constructs a solution
When they all are finished, a memory (artificial
pheromone) is updated
Construction and memory update is repeated until stop
criterion is satisfied

201ICT

Geir Hasle - eVITA Winter School 2009

Ant Colony Optimization (ACO) for DOP
- Ant System (AS)

First ACO-method (Dorigo 1992)
Construction (for every ant)
Greedy heuristic
Probabilistic decisions
e.g. TSP (first problem)
Construction mechanism

„Nearest neighbor“
randomness

Depot

B1

B2

B6
B3

B4

B5

B7

45c

202ICT

Geir Hasle - eVITA Winter School 2009

Ant System - Construction

Local

decisions

under

construction

are

based

on:
a constructive heuristic (greedy) rule
a local quality criterion σ (a priori heuristic information)
an adaptive memory (a dynamic, global quality criterionτ)
randomness

[] []
if

[] []

0 otherwise
∈Ω

⎧ ⋅
∈Ω⎪⎪ ⋅= ⎨

⎪
⎪⎩

∑
i

ij ij
i

ih ihij h

h
p

β α

β α

σ τ
σ τ

where

Ω i

is

the

set

of feasible

alternatives

1
ij

ij

for TSP
c

σ =

203ICT

Geir Hasle - eVITA Winter School 2009

TSP-example: All edges

are

updated

for

each

iteration, for

each

ant

Ant System
Update of dynamic informasjon (pheromone)

()(1) , 0 1m
ij

m M
ijij ρ τ ττ ρΔ

∈

= − ⋅ + < ≤∑

1 , if (,)
()

0
Δ

⎧ ∈⎪= ⎨
⎪⎩

m
mm

ij

i j s
f s

otherwise
τ

m
ij

m M
τΔ

∈
∑

is

pheromone

on edge

(i,j) after

evaporation(1) ijρ τ− ⋅

is

the

added

pheromone

on edge

(i,j)

204ICT

Geir Hasle - eVITA Winter School 2009

Ant System - developments
Performance of AS not impressive ...
Biological analogy partly abandoned
3 main developments

Ant Colony System (ACS)
Max-Min Ant System
Rank Based Ant System

All include local search for intensification
Convergence proofs

ACS
Modified global and local update
Global and local pheromone
Elitism: only „the best ant“ gets to update global pheromone
Different randomization, two-step probabilistic choice

greedy
probabilistic among feasible alternatives

205ICT

Geir Hasle - eVITA Winter School 2009

Constructive heuristics

Greedy construction
degree of locality in the decisions
informed choice vs. computing time

Sequence based construction
Criticality
Static vs. dynamic evaluation of criticality

Parallel vs. sequential construction
Seeds
Combination with search

local search
systematic

”Squeaky Wheel” optimization

206ICT

Geir Hasle - eVITA Winter School 2009

Simple remedy to continue from local
optima

Restart from a new solution
Multi-start methods

207ICT

Geir Hasle - eVITA Winter School 2009

Simplest multi-start method

Random Restart, RR
Local search (e.g. with Steepest Descent) to local optimum
Choose random start solution
Iterate

Simple metaheuristic
Blindfolded helicopter skiing
Embarassingly parallel

Distance metric may be useful

208ICT

Geir Hasle - eVITA Winter School 2009

Alternative pseudo code
LS with ”Steepest Descent”

Procedure Local_Search_SD(init_sol,N,f)
current:=init_sol
new_current:=Best_Neighbor(current,N,f)
*/ Assuming

Best_Neighbor

returns

current

*/ if

there

is no

improving

move
while not f(new_current)=f(current) do

current:=new_current
new_current:= Best_Neighbor(current,N,f)

od
return current

; Local

optimum

209ICT

Geir Hasle - eVITA Winter School 2009

Random Restart – RR

Procedure Random_Restart

(S,N,f,Stop_Criterion)
current:=Init_Solution(S)
incumbent:=current

*/ best solution

until

now

while not Stop_Criterion() do
local_optimum:=Local_Search_SD(current,N,f)
if f(local_optimum) < f(incumbent) then

incumbent:= local_optimum
fi
current:=Random_Init_Solution(S)

od
return incumbent

*/ best solution until now

210ICT

Geir Hasle - eVITA Winter School 2009

Greedy Randomized Adaptive Search (GRASP)

Variant of Random Restart
Construction with random choice
Somewhat similar to Ant Colony Optimization, but
trajectory based
Limited candidate list for extension of partial solution

211ICT

Geir Hasle - eVITA Winter School 2009

GRASP

Procedure GRASP (Max_Iterations)
incumbent:=Bad_Solution()
for k:=1

to Max_Iterations

do

current:=Local_Search(.....
Greedy_Randomized_Construction(...))

if f(current) < f(incumbent) then
incumbent:= current

fi
od
return incumbent

*/ best solution until now

212ICT

Geir Hasle - eVITA Winter School 2009

GRASP – Randomized Construction

Procedure Greedy_Randomized_Construction(...)
partial_solution

:= Empty_Solution()

while not Complete(solution) do
Restricted_Candidate_List

:=Evaluate_Incremental_Costs(solution)
partial_solution:=Extend_Solution(partial_solution,Random_Element(Restricte

 d_Candidate_List))
od
return solution

213ICT

Geir Hasle - eVITA Winter School 2009

GRASP – Restricted Candidate List

Restrictions may be
Rank based (”the 10 best alternatives”)
Value based (”all elements with incremental cost no greater than threshhold”)

() []min min max minc(e) c ,c c c , 0,1⎡ ⎤∈ + α − α∈⎣ ⎦

Reactive (self-adaptive) GRASP: automatic adjustment
Perturbation of cost function (noising)
Extension with Path Relinking
Preprosessor to GA

214ICT

Geir Hasle - eVITA Winter School 2009

”Squeaky Wheel Optimization”
D. Joslin and D. Clements 1999

In a squeaking machine you first lubricate the squeaking
parts
Based on constructive heuristic where

Solution is built by successive augmentation of partial solution with
new elements with a (greedy) heuristic
The sequence of unserviced elements is important (priority of
elements)
There is a measure of how ”pleased” an element is in the final
solution

Change the priority sequence of elements
Repetition

215ICT

Geir Hasle - eVITA Winter School 2009

Squeaky Wheel Optimization

Procedure Squeaky_Wheel_Optimization(f)
Element_Priority_List

:=Determine_Element_Priorities() ; Static

prioritization
incumbent:=Some_Feasible_Solution()
while not Stop_Criterion() do

solution:= Empty_Solution()
while not Complete(solution) do

solution:=Augment_Solution(solution,
Element_Priority_List)

od
if f(solution)< f(incumbent) then incumbent:=solution
Element_Priority_List

:=Update_Element_Priorities(Element_Priority_List,solution)
od
return solution

216ICT

Geir Hasle - eVITA Winter School 2009

Variable Neighborhood Search (VNS)
P. Hansen and N. Mladenovic 1999

Local optimum is relative to neighborhood
A local optimum w.r.t. one neighborhood is not necessarily a local optimum
w.r.t. another
A globalt optimum is a et lokal optimum for all neighborhoods
Local optima may be close to one another
Basic idea in VNS:

Systematic variation of neighborhoods
Structure of neighborhoods, often ordered by size

k max, k 1, k= …N

217ICT

Geir Hasle - eVITA Winter School 2009

Variable Neighborhood Descent (VND)

Procedure VND (N[1..kmax])
incumbent:=Initial_Solution() ; best solution

until

now

while not Stop() do
restart: for k:=1

to kmax

do
local_optimum:=Some_Local_Search(N(k),incumbent)
; Variants: First Improve, Best Neighbor, SA, TS ...
if f(local_optimum)< f(incumbent) then

incumbent:=local_optimum
if not Stop() goto restart

fi
fi

od
od
return incumbent

218ICT

Geir Hasle - eVITA Winter School 2009

Variable Neighborhood Search (VNS)

Procedure VNS (N[1..kmax])
incumbent:=Initial_Solution()
while not Stop() do

restart: for k:=1

to kmax

do
current:=Random_Element(N(k),incumbent)
local_optimum:=Some_Local_Search(N(k),current)
; Variants: First Improve, Best Neighbor, SA, TS, VND ...
if f(local_optimum)< f(incumbent) then

incumbent:=local_optimum
if not Stop() goto restart

fi
od

od
return incumbent

219ICT

Geir Hasle - eVITA Winter School 2009

VNS

”Local search” in VNS may be VND
VNS is computationally demanding for large instances
Reduced local search: VNDS
Hybridization

Tabu search
GRASP
...

220ICT

Geir Hasle - eVITA Winter School 2009

Iterated Local Search
(Lourenço et al.)

Based on (variant of) local search
Lokal search gives a mapping

ˆLS: →S S

Different initial solutions gives different local optima
(not really, the mapping is surjective)
Random restart will eventually find a global optimum ...
To speed up things, it would be nice to use recursion

ˆˆ ˆLS: →S S

221ICT

Geir Hasle - eVITA Winter School 2009

Iterated Local Search

Try to iterate in such a way that we do not enter the same
”Basin of attraction”
Perturbation of the current solution
Diversification

222ICT

Geir Hasle - eVITA Winter School 2009

Iterated Local Search
Procedure Iterated_Local_Search(N,f)
incumbent:=current:=Local_Search(Initial_Solution(),N,f)
while not Stop_Criterion() do

new_start:=Perturbation(current,history)
new_local_optimum:= Local_Search(new_start,N,f)
if f(new_local_optimum)<f(incumbent) then

incumbent:=new_local_optimum
fi
if Accept(new_local_optimum,incumbent,history) then

current:= new_local_optimum
fi

od
return incumbent

223ICT

Geir Hasle - eVITA Winter School 2009

Iterated Local Search - Perturbation

Move in higher order neighborhood
Ruin and recreate
Random perturbation
Focused perturbation
”Noising” – change problem data, find local optimum
Distance measures to cut off search

224ICT

Geir Hasle - eVITA Winter School 2009

Iterated Local Search - Perturbation

How big?
Too small: same ”Basin of attraction”
Too big: ”Random restart”
Varying size

225ICT

Geir Hasle - eVITA Winter School 2009

(Very) Large Neighborhood Search
(P. Shaw 1999)

Local Search based methods are often too local
Good diversification is essential
Large Neigborhood Search

226ICT

Geir Hasle - eVITA Winter School 2009

Find a good, complete solution
Take away a substantial number of commitments (5%-40%)

Alternative “ruiners”
Randomly
“Similar” commitments

Reconstruct
Alternative recreators
Cheapest insertion
Regret-based insertion

Accept new solution if
better
Threshold Acceptance
Simulated Annealing

Iterate, until no progress
Learning, self-adaptation

Ruin and Recreate
(Schrimpf et al. 2000)

227ICT

Geir Hasle - eVITA Winter School 2009

228ICT

Geir Hasle - eVITA Winter School 2009

Categorization of metaheuristics

Trajectory vs. population
Stochastic vs. deterministic
Memoryless vs. ”memorable”
Restart vs. one shot
Penalty-based

229ICT

Geir Hasle - eVITA Winter School 2009

”GUT” of Metaheuristics?
Which mechanisms work well?
local search
restart
randomness
uphill moves
memory
penalty
diversification
ruin and recreate

populasjon
....

230ICT

Geir Hasle - eVITA Winter School 2009

”No Free Lunch”-theorem
(Wolpert & MacReady, 1995)

Informal

description:
When

we

average

over all instances

of

a given problem, all

search

algorithms

have the

same average

performance.

For any search algorithm, you have to pay for any performance
superiority for a given set of instances with a performance

inferiority in others.

231ICT

Geir Hasle - eVITA Winter School 2009

”No Free Lunch”-theorem
(Wolpert & MacReady, 1995)

When we average the performance of a search algorithm
over all possible search landscapes, it has no better
performance than random search.
To achieve high performance, a search algorithm needs
to utilize domain knowledge

232ICT

Geir Hasle - eVITA Winter School 2009

GUT for metaheuristics

”Beauty contest” of different search algorithms
Working mechanisms
Analysis, learning, opportunistic reasoning

investigation of search space
analyse of problem solving history / status
choice of appropriate technique

233ICT

Geir Hasle - eVITA Winter School 2009

Hyperheuristics

Metaheuristics are not generic
There is no globally best metaheuristic
Hyperheuristics

General search techniques
Based on (meta)heuristics
Use of (meta)heuristics to select (meta)heuristic during search
no use of domain knowledge

234ICT

Geir Hasle - eVITA Winter School 2009

Hyperheuristics

h1

Evaluation function

h2 h3 h4 h5 h6

Domain barrier

Hyperheuristic

235ICT

Geir Hasle - eVITA Winter School 2009

Hyperheuristics

General information to hyperheuristic from each
(meta)heuristic
CPU time
Merit, improvement of objective over time
How long since last active

236ICT

Geir Hasle - eVITA Winter School 2009

Topics for future research

Hybrid methods
Combination of exact and heuristic methods
Parallel algorithms
Collaborating solvers
Self-adaptive methods, hyperheuristics

Theoretical understanding of search algorithms

237ICT

Geir Hasle - eVITA Winter School 2009

Summary (slide 1)

Discrete optimization problems are important
Discrete optimization problems are often computationally
hard
Exact methods may take too long, will give guarantees
Better to find a good solution to the real problem than the
optimal problem to an overly idealized problem
Local Search is a robust, simple and fast method
Local Search gives few and weak guarantees
Local Search is local, gets trapped in a local optimum

238ICT

Geir Hasle - eVITA Winter School 2009

Summary (slide 2)
Metaheuristics move on from local optima and explore larger parts of
the solution space
Metaheuristics are often based on local search
Different strategies

stochastic search
allow uphill moves
memory structures
penalties, changing the landscape
combining vocabularies of good solutions
vary between neighborhoods
restart
ruin and recreate

There is no free lunch
This area is a lot of fun, many challenges
Short road from theoretical to practical improvements

239ICT

Geir Hasle - eVITA Winter School 2009

Discrete Optimization - Heuristics

Geir Hasle
SINTEF ICT, Applied Mathematics

University of Jyväskylä, Finland

	Discrete Optimization - Heuristics
	Summary (slide 1)
	Summary (slide 2)
	Outline
	Literature
	Background and motivation
	Real-life, important DOP
	The Knapsack Problem
	Example: – Selection of projects
	Example: - Transportation
	Traveling Salesman Problem (TSP)
	Greed is good [Gordon Gekko 1987]
	Problem (types) and problem instances
	Optimization Problem�- Mathematical formulation
	Linear Integer Program
	(Linear) Integer Programming
	Definition – Discrete Optimization Problem
	Definition – DOP instance
	Example 1: An asymmetrical TSP-instance
	Observations
	Combinatorial explosion
	Example 2: The Knapsack Problem
	Example 1: 0-1 Knapsack-instance
	Comments on the definition of DOP
	DOP Applications
	Solution methods for DOP
	Computational Complexity Theory
	Complexity classes of problem types
	Motivation for heuristic DOP algorithms
	Some messages (1)
	Large TSPs
	VRP with Capacity Constraints (CVRP)
	A mathematical model for VRPTW�(Network Flow Formulation)
	Complexity of VRP(TW) and�State-of-the-art: Exact Methods
	Slide Number 35
	Slide Number 36
	Some messages (2)
	Quality Assessment� - upper and lower bounds (minimization)
	Further motivation - heuristics
	Exact methods for DOP
	Heuristics - definitions
	Heuristics in Discrete Optimization
	How to find a DOP solution?
	Local Search and Meta-Heuristics
	Local search for DOP
	Example: TSP
	Example: 0-1 Knapsack
	Given a solution, how to find a better one?
	Example: TSP
	Example: Knapsack
	Definition: Neighborhood function
	Neighborhood operator
	Local Search (Neighborhood Search)
	Definition: Local optimum
	Example: TSP
	Definition: Exact neighborhood
	Local Search (Neighborhood Search)
	Local_Search (S,f,N,strategy)
	Search_the_Neighborhood (current,Neighbors,f,strategy,incumbent)
	Observations and Structures
	Traversing the Neighborhood Graph
	Local Optimum
	Search Landscapes�- Local and global optima
	Simplex algorithm for LP as Local Search
	Local Search
	Design of neighborhood operators
	Example: Symmetric TSP and 2-opt
	Diameter of 0-1 Knapsack problem with the ”Flip” neighborhood
	Knapsack instance Idaho20
	Search landscape for Idaho20
	Knapsack-instance Idaho20ex
	Search Landscape Idaho20ex
	Local Search
	Local Search
	Slide Number 75
	How to escape local optima in LS�- some strategies
	Metaheuristics (General heuristics)
	Some metaheuristics
	”Definition” of metaheuristics �(Osman & Kelly)
	”Definition” of metaheuristics�(Glover & Kochenberger)
	Variant of LS: Random Search (RS)�”Brownian motion” - A borderline metaheuristic
	Variant of RS: Random Descent�A borderline metaheuristic
	Metaheuristic strategies
	Simulated Annealing (SA)� Kirkpatrick et al. 1983 / Cerny 1985
	SA - Analogies
	Simulated Annealing (SA)
	Move selection in SA
	Move selection in SA
	SA�Acceptance of worse solutions
	SA – higher level strategy
	SA – overall procedure
	Statistical analysis of SA
	SA i practice
	SA in practice – Cooling schedule
	SA – Cooling schedule
	SA – Decisions
	SA – Computational efficiency aspects
	SA – Modifications and extensions
	Deterministic Annealing �- Threshold Accepting (TA)
	Deterministic Annealing �- Record-to-Record Travel (RRT)
	TA, RTR: Cooling schedule of tolerance
	Tabu Search (TS)�F. Glover / P. Hansen 1986
	Tabu (Taboo)
	Tabu Search – Main ideas
	Basic Tabu Search
	Tabu Restrictions
	Local_Search (S,f,N,strategy)
	Search_the_Neighborhood (current,N,f,strategy,incumbent)
	Traversing the Neighborhood Graph
	Local_Search (S,f,N,’Basic_Tabu_Search’)
	Search_the_Neighborhood (current,N,f,strategy,incumbent)
	Example: TSP
	TSP-example�1-exchange in permutation vector
	TSP-example 1-exchange
	Tabu criterion and tabu list �- TSP-example
	Alternative tabu criteria / attributes �- TSP-example
	Candidate list of moves�- TSP-example
	TSP-example 1-exchange�- Iteration 0/1
	TSP-example�- Iteration 1 (after Exchange (4,5))
	TSP-example�- Iteration 2
	TSP-example�- Iteration 3
	TSP-example�- Iteration 4
	Observations
	TSP-example�- Frequency based long term memory
	Tabu Search - Main Ideas
	Tabu Search – More ideas, and practice
	Tabu Search - Generic procedure
	Tabu Search – Attributes
	Example: TSP
	Use of attributes in tabu restrictions
	Tabu tenure – the (witch)craft
	Aspiration criteria
	Frequency based memory
	Intensification and diversification
	Intensification and diversification �- basic mechanisms
	Path relinking
	Punishment and encouragement�Whip and carrot
	Candidate list
	Tabu Search - Summary
	Guided Local Search (GLS)�(E. Tsang, C. Voudouris 1995)
	GLS - Main ideas
	Features
	Feature example: TSP
	Augmented objective
	Augmented objective - Comments
	GLS(S, f, λ, I, c, G, stopCriterion, N)
	Comments
	 Values
	GLS - example : TSP
	GLS - example : TSP
	GLS vs. SA
	GLS vs. Tabu Search
	Fast Local Search
	Extensions
	Genetic Algorithms (GA)
	GA – Analogies with biology
	Classical GA: Binary chromosomes
	Genotype, Phenotype, Population
	Genetic operators
	Assessment of individuals
	GA - Evolution
	GA - Evolution
	Classical GA for DOP: Binary chromosomes
	GA - Mutation
	GA - Classical crossover (1-point, 2 individuals)
	GA - Classical crossover cont’d.
	GA – standard reproduction plan
	Theoretical analysis of GA�(Holland)
	Schema - fitness
	GA – Intrinsic parallelism
	Length and order of schema
	Fitness-ratio
	Lemma 1
	Lemma 2
	Lemma 3
	The schema theorem
	Corollary
	GA – Building block hypothesis
	Later development of theory
	GA – Observations, Extensions, and Modifications
	GA – Evaluation of performance
	GA – Population size
	GA – Initial population
	GA – Selection mechanisms
	GA – Fitness
	GA – Fitness/Selection
	GA – Operators
	GA – Generalized crossover
	GA – Inversion
	GA – Encoding and representation
	GA - Hybridization
	GA - parallelization
	GA - Summary
	Memetic - meme
	Trends�GA –> Evolutionary Algorithms
	Ant Colony Optimization – ACO�(Marco Dorigo 1992, Marc Reimann)
	Ants (cont´d.)
	Ants and paths
	Ants – Path creation and path following
	Ant Colony Optimization (ACO) for DOP�	
	Ant Colony Optimization (ACO) for DOP �- Ant System (AS)
	Ant System - Construction
	Ant System�Update of dynamic informasjon (pheromone)
	Ant System - developments	
	Constructive heuristics
	Simple remedy to continue from local optima
	Simplest multi-start method
	Alternative pseudo code �LS with ”Steepest Descent”
	Random Restart – RR
	Greedy Randomized Adaptive Search (GRASP)
	GRASP
	GRASP – Randomized Construction
	GRASP – Restricted Candidate List
	”Squeaky Wheel Optimization”�D. Joslin and D. Clements 1999
	Squeaky Wheel Optimization
	Variable Neighborhood Search (VNS)�P. Hansen and N. Mladenovic 1999
	Variable Neighborhood Descent (VND)
	Variable Neighborhood Search (VNS)
	VNS
	Iterated Local Search�(Lourenço et al.)
	Iterated Local Search
	Iterated Local Search
	Iterated Local Search - Perturbation
	Iterated Local Search - Perturbation
	(Very) Large Neighborhood Search�(P. Shaw 1999)
	Slide Number 226
	Slide Number 227
	Categorization of metaheuristics
	”GUT” of Metaheuristics?
	”No Free Lunch”-theorem�(Wolpert & MacReady, 1995)
	”No Free Lunch”-theorem�(Wolpert & MacReady, 1995)
	GUT for metaheuristics
	Hyperheuristics
	Hyperheuristics
	Hyperheuristics
	Topics for future research
	Summary (slide 1)
	Summary (slide 2)
	Discrete Optimization - Heuristics

