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Presentation Topics
• The Relevance of Nonlinear and Global Optimization
• General (Continuous) GO Model, and Some Examples 
• Review of Exact and Heuristic GO Algorithms
• GO Software Implementations
• Illustrative Applications and Case Studies
• References
• Software Demonstrations (as time allows, or after talk)
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• Decision making under resource constraints is a key 
paradigm in strategic planning, design and operations 
by government and private organizations 
• Examples: environmental management; healthcare;  
industrial design and production; inventory planning; 
scheduling, transportation and distribution, and many 
others
• Quantitative decision support systems (DSS) tools −
specifically, optimization models and solvers − can 
effectively assist decision makers and analysts in 
finding better solutions

Decisions, Models and Optimization
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A KISS* Model Classification 
Convex Deterministic Models
Linear Programming, Convex Nonlinear Programming (including 
special cases)

Non-Convex Deterministic Models
Continuous Global Optimization, Combinatorial Optimization, 
Mixed Integer/Continuous Optimization (including special cases)

Stochastic Models
Generic Stochastic Optimization model; special cases that lead to 
LP, CP, and general NLP equivalents; and to “black box” models 

Formally, both the convex and stochastic model-classes can be 
considered as subsets of the non-convex model class  

Combinatorial models can also be formulated as continuous GO 
models; however, added specifications and insight are helpful

* Keep it Simple, Stupid… J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Nonlinear Systems Modeling & Optimization 
• As the previous slide already indicates, nonlinear 
systems are arguably more the norm than the exception…
• Why? Because nonlinearity is found literally everywhere: 
in processes leading to natural objects, formations, 
organisms, and in their interactions
• This fact is reflected by descriptive models in applied 
mathematics, physics, chemistry, biology, engineering, 
econometrics and finances, and in the social sciences
• Some of the most frequently used elementary nonlinear 
function forms: polynomials, power functions, exponential, 
logarithm, and trigonometric functions

J.D. Pintér, Global Optimization 
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Nonlinear Systems Modeling & Optimization
(continued)

• Composite and more complicated nonlinear functions: 
special functions, integral equations, linear system of 
ordinary differential equations, partial differential 
equations, and so on

• Statistical models: probability distributions, stochastic 
processes

• “Black box” deterministic or stochastic simulation 
models, closed (e.g. confidential) models, models with 
computationally expensive functions,… 

• Need for suitable descriptive system models, used in 
combination with control (optimization) methods

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Examples of Basic Nonlinear Functions

A large variety of such functions 
exists: many of these are used to 
describe objects, and processes
of practical relevance

J.D. Pintér, Global Optimization 
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Nonlinearity in Nature
[A small collection of great photos from the Web]

Nature is clearly the most successful of all artists.
Alvar Aalto, Finnish architect and designer (1898-1976)
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Nonlinearity in Nature

Twisted Vines − Nature's Art, Malaysia, 2006
© Thomas Allen, www.abstractechoes.com
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Nonlinear Universe: Further Examples
Credits: Scientific Computing & Instrumentation, 2004
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Nonlinearity in Man-Made Systems
Example: Audio Speaker Design

Credits: “How Stuff Works” Website, 2005

J.D. Pintér, Global Optimization 
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Nonlinearity in Man-Made Systems
Example: Automotive Engine Design

Credits: “How Stuff Works” Website & Daimler-Chrysler, 2005 

2003 Jeep® 
Grand Cherokee

J.D. Pintér, Global Optimization 
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Discovery Spaceship
A Man-Made System with Many Nonlinear Components

Credits: Robert Sullivan, 
New York Times, 2006
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Notice that many of these application areas need NLP/GO (software)

NAG Survey on Technical Computing Needs

J.D. Pintér, Global Optimization 
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The Global Optimization Challenge:
Theoretical Motivation

“The great watershed in optimization isn't between 
linearity and nonlinearity, but between convexity and 
nonconvexity.”  

R. Tyrell Rockafellar 

Lagrange multipliers and optimality,
SIAM Review 35 (1993) 2, 183-238.

J.D. Pintér, Global Optimization 
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The Relevance of Global Optimization:
Practical Motivation 

“Theorists interested in optimization have been too  
willing to accept the legacy of the great eighteenth and 
nineteenth century mathematicians who painted a clean 
world of [linear, or convex] quadratic objective functions, 
ideal constraints and ever present derivatives. 

The real world of search is fraught with discontinuities, 
and vast multi-modal, noisy search spaces...”

D. E. Goldberg 
(A well-known genetic algorithms pioneer)

J.D. Pintér, Global Optimization 
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The Relevance of Global Optimization
• Optimization is often based on highly nonlinear 
descriptive models 
• Several important and general model-classes:

Provably non-convex models
“Black box” systems design and operations
Decision-making under uncertainty
Dynamic optimization models

• Nonlinear models frequently possess multiple 
optima: hence, finding their “very best” solution 
requires a suitable global scope search approach
• The objective of global optimization is to find the 
absolutely best solution, in the possible presence of a 
multitude of local sub-optima

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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min f(x) f:  Rn → R1

g(x) ≤ 0 g: Rn → Rm

l ≤ x ≤ u l, x, u, (l < u) are real n-vectors

Key (“minimalist”) analytical assumptions: 
• l, u are finite vectors; l ≤ x ≤ u is interpreted 
component-wise
• the feasible set D={xl ≤ x ≤ xu: g(x) ≤ 0} is non-empty 
• f and the components of g are continuous functions

Continuous Global Optimization Model

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• The structural assumptions stated on the previous 
slide are sufficient to guarantee the existence of the 
global solution set X*; for any x* in X*, define z* = f(x*)
• They also support the application of theoretically 
exact, globally convergent search methods 
• In practice, we wish to find numerical estimates of x* 
or X*, and z*, using efficient global scope search 
methods
• The CGO prototype model covers many special 
cases
• Several examples follow on the next slides that hint 
at the potential difficulty of GO models

Continuous Global Optimization Model

J.D. Pintér, Global Optimization 
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A Mildly Non-Convex Function (a Classic NLP Test)

This function is projected into a 
2-dimensional subspace, the other 
two coordinates are set at their 
optimal solution value; see figure 

Notice that a local search method may end up in either one of two 
different “valleys”, depending on its starting point
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Wood’s 4-variable polynomial test function
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A Concave Minimization Problem

min f(x)   x∈D; f = − x1
2 − 0.5⋅x1 − x2

2 − 0.3⋅x2 is concave; D=[−1,1]2

f attains its minimum at (1,1), and all vertices of D are local minima
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GO Models Can Pose Difficult Challenges  
For Local Scope Search...

Example:  minimize sin(x2+x)+cos(3x) for −5 ≤ x ≤ 2
Local search can fail (local information is not sufficient)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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GO Models Can Be Even More Difficult
(In Principle, Arbitrarily Difficult...)

Obviously, a local view of such a function is not 
sufficient: instead, global scope search is needed

A GO model-instance
Cited from the Handbook of 
Global Optimization, Vol. 2, Ch. 15

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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GO models can be extremely difficult to solve, even 
in (very) low-dimensions, if the search effort is 
limited… as in prefixed (default) GO solver settings

f(x)=x·sin(πx) 0≤x≤1000

A “Monster” GO Test Example

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Another Inherent Issue in GO:     
“Curse of Dimensionality”
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Shubert’s one-dimensional box-constrained optimization model, 
and its simplest two-dimensional extension
Computational complexity increases exponentially, when the model 
size (n, m) grows

minâ

Σk=1,…,5 k sin(k+(k+1)x)

–10≤x≤10.

Σk=1,…,5 k sin(k+(k+1)x) + Σk=1,…,5 k sin(k+(k+1)y) 

–10≤x≤10, –10≤y≤10..

J.D. Pintér, Global Optimization 
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Further Examples: Increasingly More Difficult 
(Parameterized) Test Functions

Example:
x2+y2+c⋅sin2(x2+x+y2-y)
x=-8..1, y=-3..10;      c=1, 10, 100

Note: easy to modify, in order to generate
randomized solution points of model instances

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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A General Class of GO Models Formulated 
with DC Functions

f = f1−f2 if f1 and f2 are convex, then f is a DC function 
(the difference of convex functions)

A similar component-wise structure is postulated for g
DC structure supports the general B&B algorithmic 
framework (to be discussed later on)
However, a general DC structure is difficult to exploit 
(in terms of implementable algorithms), except for the 
case of general quadratic optimization under linear 
and quadratic constraints

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Lipschitz(-Continuous) GO Models
Function f is Lipschitz-continuous on D, if there exists a 
suitable Lipschitz-constant L=L(D,f)≥0 such that
|f(x1)-f(x2)| ≤ L||x1-x2 || holds for all pairs x1,x2∈D

Similar conditions can be postulated for all functions in g

The Lipschitz model-structure allows to generate lower 
bound estimates of the optimum value, based on an 
arbitrarily given finite sample set (next slide)

Based upon (mere) continuity and Lipschitz properties, a 
broad class of globally convergent algorithms can be 
axiomatically defined, designed and implemented, to solve 
general GO models − including all examples listed above
(except “black boxes”, at least in theory)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Example: Feasible set in R3

defined by the constraints

x⋅y⋅z ≤ 1   
x2+2y2+z2+x⋅z ≤ 2   
3x2+2y2–(1–z)2 ≤ 0

Convex programming methods
(direction and line searches) 
may fail on difficult non-convex
feasible sets

Tricky Feasible Sets Can Be Another Major 
Source of Difficulty… 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The Formal Equivalence of Combinatorial and 
Corresponding Continuous GO Models 1

Each finitely bounded integer variable can be 
represented by a suitable set of binary variables
Example 1: all integer 0 ≤ x ≤ 15 values can be exactly  
represented by 4 binary variables, since 24 -1=15 
For instance, 13 = 1*23+1*22+0*21+1*20 = 11012

Example 2: all integer 0≤x≤106 values can be described 
by at most 20 binary variables, since 220>106

Therefore it suffices to use binary variables instead of 
a given set of finitely bounded integer variables 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The Formal Equivalence of Combinatorial and 
Corresponding Continuous GO Models 2
Next, each binary variable can be represented jointly by its 
continuous  extension, and a single non-convex constraint
Example: x∈{0,1} (i.e., x is binary) is equivalent to the pair of  
relations 0 ≤ x ≤ 1 and x(1-x) ≤ 0; other formulations also exist
Therefore formally it suffices to use continuous variables
instead of binary ones, and hence also instead of finitely 
bounded integers; consequently, the same applies also to the 
most general optimization problems defined with mixed 
integer-continuous variables and continuous functions
This simple technical note shows a close connection between 
combinatorial and global optimization, both in terms of their
overall complexity, and also regarding the classes of suitable 
solution strategies for such models

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The Mixed Integer Global Optimization Challenge

Each binary variable selection (combination) induces a CGO sub-model 

The overall numerical complexity is characterized by the combined 
complexity of combinatorial optimization and continuous global 
optimization… Hence, it is massively exponential as the model size 
characterized by n=nB+nC and m grows

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Global Optimization Models: Summary
Key model types reviewed:
• Concave Optimization (Minimization Over a Convex Set)
• DC Optimization
• Lipschitz Optimization
• Continuous Optimization

These general model-classes cover all GO models of 
relevance, including also further specific cases

The following chain of set inclusions is valid: 

{Concave GO}⊂{DC GO}⊂{Lipschitz GO}⊂{Continuous GO} 

Recall also that CGO models cover mixed integer-
continuous models

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Global Optimization: Historical Perspective
An approximate timeline

Theory beginnings: 1950’s, foundations: 1970’s
↓↑

Methods beginnings: 1960’s, key results: 1980’s
↓↑

Software beginnings: 1980’s, professional: ~2000+
↓↑

Applications   GO needed for a long time, but only 
recently tackled by suitable GO tools

Ideally, all key components of knowledge are 
(should be) developed in close interaction

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• A significant repertoire of GO methods, including  
both exact and heuristic approaches, have been 
suggested since ~1950; systematic studies conducted 
since ~1970
• These solution methods differ with respect to the key 
analytical conditions of their applicability; and their 
proof of global convergence properties ─ or lack of it…
• A brief review of some of the GO approaches is 
provided in the following slides   

Global Optimization Strategies

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• Related general in-depth references are offered by 
the Handbook of Global Optimization, Vol. 1 (Horst and 
Pardalos, Eds., 1995) and Vol. 2 (Pardalos and Romeijn, 
Eds., 2002); and in other volumes of the topical Kluwer
(now Springer) book series; see also Neumaier’s
reviews (2001, 2004)
• For simplicity, we shall consider here the box-
constrained GO model
min f(x) 
l ≤ x ≤ u
• Note that the presence of constraints could cause 
considerable grief to many of the GO approaches 
discussed below…

Global Optimization Strategies

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



38

GO Solution Approaches: Exact Methods
Adaptive Stochastic Search Methods

These are procedures based (at least partially) on  
randomized sampling in the feasible set D

Search strategy (parameter) adjustments, sample 
clustering, deterministic solution refinement options, 
statistical stopping rules can be added as enhancements 
to the basic (pure random) sampling scheme

Applicable to both discrete and continuous global 
optimization problems under general conditions 

See e.g., Zhigljavsky (1991), Boender and Romeijn (1995), 
Pintér (1996), Zabinsky (2003)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Bayesian Search Algorithms

These methods are based on some a priori postulated 
stochastic model of the objective function f

The subsequent adaptive estimation of the problem-
instance characteristics is based upon the search 
(sample points and function values) results, towards 
building a posterior function (problem) model 

Typically, “myopic” (one-step optimal) approximate 
decisions govern the search procedure, since only 
these can be implemented 

Applicable to continuous GO models, w/o added 
Lipschitz or other structural assumptions

Consult, e.g., Mockus, Eddy, Mockus, Mockus and 
Reklaitis (1996), Sergeyev and Strongin (2000)

J.D. Pintér, Global Optimization 
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Branch and Bound Algorithms

Adaptive partition, sampling, and bounding procedures 
(within subsets of the feasible set D) can be applied to 
continuous GO models, analogously to the well-known 
integer linear programming methodology 

This general approach subsumes many specific cases, 
and allows for significant flexibility in implementations 

Applicable to diverse structured GOPs such as concave 
minimization, DC programming, and Lipschitz problems 

Consult, e.g., Neumaier (1990), Hansen (1992), Ratschek 
and Rokne (1995), Horst and Tuy (1996), Kearfott (1996), 
Pintér (1996), Tawarmalani and Sahinidis (2002)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



41

Enumeration Strategies

These are based upon a complete (streamlined) 
enumeration of all possible global or local solutions  

Applicable to combinatorial optimization problems, and 
to certain structured continuous GOPs such as e.g.,
concave minimization models

Consult, e.g., Horst and Tuy (1996)

J.D. Pintér, Global Optimization 
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Homotopy and Trajectory Methods

These strategies have the ambitious objective of visiting 
all stationary points of the objective function f, within the 
set D; then checking for minima, maxima, saddle points

This search effort then leads to the list of all - global as 
well as local - optima (the latter being a subset of the 
stationary points) 

In principle, applicable to smooth GO problems, but the 
numerical demands can be very substantial 

Consult, for instance, Diener (1995) and Forster (1995)

J.D. Pintér, Global Optimization 
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Integral Methods

These methods are aimed at the determination of the 
essential supremum of the objective function f over D, 
by numerically approximating the level sets of f

Consult, e.g., Zheng and Zhuang (1995), or Hichert, 
Hoffmann and Phú (1997)

J.D. Pintér, Global Optimization 
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Naïve Approaches

These include both passive (simultaneous) grid search 
and passive (pure) random search 

Note that these basic (and similar) methods are obviously 
convergent under mild analytical assumptions, they are 
truly “hopeless” in solving higher-dimensional problems
(already for n = 3 or more) 

For more details, see for instance Zhigljavsky (1991) or 
Pintér (1996), with further references therein

J.D. Pintér, Global Optimization 
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Relaxation (Outer Approximation) Strategies

In this general approach, the GOP is replaced by a 
sequence of relaxed sub-problems that are easier to 
solve 

Successive refinement of sub-problems to approximate 
the initial problem is applied: cutting planes and more 
general cuts, diverse minorant function constructions, 
and other customizations are possible 

Applicable to diverse structured GO models such as 
concave minimization, or DC programming 

See, e.g., Horst and Tuy (1996), or Benson (1995)

J.D. Pintér, Global Optimization 
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GO Solution Approaches: Heuristic Methods

These often offer a “plausible” approach to handle difficult 
models, but without any theoretical justification (global 
convergence guarantee) 

Approximate Convex Underestimation

This strategy attempts to estimate the (possible large-
scale, overall) convexity characteristics of the objective 
function based on directed sampling in D 

Applicable to smooth GO problems

See Dill, Phillips and Rosen (1997), and some related 
studies in classical (local) optimization studies

J.D. Pintér, Global Optimization 
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Continuation Methods

These approaches first transform the objective function 
into some more smooth, simpler function with fewer local 
minimizers, and then use a local minimization procedure 
to (hopefully) trace all minimizers back to the original 
function 

Applicable to smooth GO problems

J.D. Pintér, Global Optimization 
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Genetic Algorithms, Evolution Strategies

These “adaptive population” based heuristic 
approaches mimic biological and social evolution 
models (including e.g. ant colonies, memetic and 
other algorithmic approaches)

Various deterministic and stochastic algorithms can 
be constructed, based on diverse “evolutionary” rules 

These strategies are applicable to both discrete and 
continuous GO problems under mild structural 
requirements; typically, customization is needed 

Consult, e.g., Michalewicz (1996), Osman and Kelly 
(1996), Glover and Laguna (1997), or Voss, Martello, 
Osman and Roucairol (1999)

J.D. Pintér, Global Optimization 
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A General Framework for Population-Based 
Strategies

Initial population of sample points

Iteration cycle steps:
• Competitive selection, drop the poorest solutions 
• The remaining pool of points with higher fitness 
value can be recombined with other solutions, by 
swapping components with another
• The active points can also be mutated by making 
some (stochastic) change to a current point
• Recombination and mutation moves are applied 
sequentially, in each major iteration cycle
• Check algorithm stopping criteria: stop, or return 
to execute next major iteration cycle

J.D. Pintér, Global Optimization 
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Sequential Improvement of Local Optima

These approaches ─ including tunneling, deflation, and 
filled function methods ─ operate on adaptively defined
auxiliary functions, to assist the search for improving 
optima  

Applicable to smooth GO problems 

Consult, for instance, Levy and Gomez (1985), and 
their many followers (Ge Renpu and others)

J.D. Pintér, Global Optimization 
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Simple Globalized Extensions of Local Search Methods

These “pragmatic” strategies are often based on a rather 
quick global search (e.g. a limited passive grid or 
random search) phase, followed by local scope search 

Applicable to smooth GO problems: differentiability is 
typically postulated (only), to guarantee the convergence 
of the local search component 

However, global convergence is guaranteed only by the 
global scope search phase (which could be inefficient in 
a rudimentary implementation)

Consult, for instance, Zhigljavsky (1991) or Pintér (1996)

J.D. Pintér, Global Optimization 
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Simulated Annealing

SA is based upon the physical analogy of cooling 
crystal structures that spontaneously arrive at a 
stabilized configuration, characterized by (globally 
or locally) minimal potential energy 

Applicable to both discrete and continuous GOPs 
under mild structural requirements 

See, for instance, Osman and Kelly (1996), or Glover 
and Laguna (1997)

J.D. Pintér, Global Optimization 
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Tabu Search

The essential idea of this meta-heuristics is to 
forbid search moves towards points already visited 
in the (usually discrete) search space, within the 
next few steps, as governed by the algorithm 

Tabu search has been mainly used so far to solve 
combinatorial optimization problems, but it can 
also be extended to handle continuous GOPs 

Consult, e.g., Osman and Kelly (1996), Glover and 
Laguna (1997), or Voss, Martello, Osman and 
Roucairol (1999)

J.D. Pintér, Global Optimization 
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GO Solution Approaches: Concluding Notes
Observe that overlaps may (in fact, do) exist among the 
algorithm categories listed above 
Both exact and heuristic methods could suffer from 
drawbacks: “overly sophisticated for practice” vs. 
“simplistic” approaches and their implementations
Search strategy combinations are often both desirable 
and possible: this, however, leads to non-trivial issues in 
algorithm design 

J.D. Pintér, Global Optimization 
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Global Optimization
Software Development
“Those who say it cannot be done should not 

interrupt those who are busy doing it.”
Chinese proverb

"It does not matter whether a cat is black or white, as 
long as it catches mice."
Deng Xiaoping

“I don't want it perfect, I want it Tuesday.”
J.P. Morgan

J.D. Pintér, Global Optimization 
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GO Software Development Environments
• General purpose, “low level” programming languages: 
C, Fortran, Pascal, …  and their modern extensions 

• Business analysis and modeling: Excel and its various 
extensions and add-ons (Excel PSP, @RISK,…)

• Specialized algebraic modeling languages with a focus 
on optimization: AIMMS, AMPL, GAMS, LINGO, LPL, 
MPL,…

• Integrated scientific and technical computing systems: 
Maple, Mathematica, MATLAB,…

• Relative pros and cons: instead of a “dogmatic” 
approach, one should choose the most appropriate 
platform considering user needs and requirements

J.D. Pintér, Global Optimization 
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GO Software: State-of-Art in a Nutshell   1

• Websites (e.g., by Fourer, Mittelmann and Spellucci, 
Neumaier, NEOS, and others) list discuss research and 
commercial codes: examples of the latter listed below

• Excel Premium Solver Platform: Evolutionary, Interval, 
MS-GRG, MS-KNITRO, MS-SQP, OptQuest solver engines 

• Modeling languages and related solver options 
AIMMS: BARON, LGO
AMPL: LGO
GAMS:  BARON, DICOPT, LGO, OQNLP
LINGO: built-in global solver by the developers; also in 

What’sBest! for spreadsheets
MPL: LGO

J.D. Pintér, Global Optimization 
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GO Software: State-of-Art in a Nutshell   2

• Integrated scientific-technical computing environments 
Maple: Global Optimization Toolbox (LGO for Maple)
Mathematica: Global Optimization (package), 
MathOptimizer, MathOptimizer Professional (LGO for 
Mathematica), NMinimize
Matlab: GADS Toolbox  
TOMLAB solvers for MATLAB: CGO, LGO, OQNLP 

Detailed information and references: 
• Developer websites
• Handbook of GO, Vol. 2, Chapter 15
• Neumaier’s GO website

J.D. Pintér, Global Optimization 
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• LGO is introduced here as an example of GO software
• LGO offers a suite of global and local nonlinear 

optimization algorithms, in an integrated framework
• Globally search methods (solver options): 

continuous branch-and-bound 
adaptive random search (single-start)
adaptive random search (multi-start)
exact penalty function applied in global search phase

• Local optimization follows from the best global search 
based point(s), or from a user-supplied initial point, by 
the generalized reduced gradient method

LGO (Lipschitz Global Optimizer) 
Solver Suite: Summary of Key Features

J.D. Pintér, Global Optimization 
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• LGO can analyze and solve complex nonlinear models, 
under minimal analytical assumptions

• Computable values of continuous or Lipschitz model 
functions are needed only, without higher order 
information

• Hence, LGO can be applied also to completely “black 
box” system models, defined by continuous functions

• Tractable model sizes depend only on hardware and 
time… however, the inherent massive complexity of 
GO problems remains a challenge (for all GO software 
products)

LGO: Summary of Key Features (continued)

J.D. Pintér, Global Optimization 
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• LGO reviews in ORMS Today, Optimization Methods 
and Software; various other LGO implementations 
reviewed in ORMS Today, Scientific Computing, 
Scientific Computing World, IEEE Control Systems 
Magazine, Int. J. of Modeling, Identification and 
Control, and in AlgOR

• LGO is currently available to use with C/C++/C# and 
Fortran compilers; with links to AIMMS, AMPL, GAMS, 
Excel and MPL; and with links to Maple, Mathematica, 
and Matlab

• MPL/LGO demo accompanies Hillier & Lieberman OR 
textbook (from 8th edition, 2005)

• LGO demos for C/C#/Excel/Fortran,… are available 
upon request

LGO: Summary of Key Features (continued)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO Solver Suite: 
Technical Background Notes
• LGO offers a suite of global and local nonlinear 
optimization algorithms, in an integrated framework
• This approach is dictated by the demands of (many, 
although not all) GO software users who need to solve 
their optimization problems relatively quickly
• The global search components are (theoretically) 
globally convergent, either deterministically, or
stochastically (with probability 1) 
• The local search component aims at finding KKT points
that satisfy the necessary local optimality conditions
• This flexible combination of strategies leads to global
and local search based numerical solutions

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Lipschitzian minorant construction, based on a given sample point sequence 
and the Lipschitz-constant (overestimate); the basis for a B&B algorithm 

. Lipschitz lower bound

Lipschitz Function and its Minorant: An Example

|_____|___|____|_____|_____|_____|____|_____|____|_____|__|____|____|_____|_____|

Search interval: the function values at the sample points | are shown above by dots

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Partition sets, sample points, and selected subset

Example 2: Adaptive Partition and Sampling in R2

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Credits: intpakX v1 - User's Guide, by Markus Grimmer, University of Wuppertal, Germany 
© 1999-2005 Scientific Computing/Software Engineering Research Group

Example 3: Interval Arithmetic Package (in Maple)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• Exact deterministic methods have the advantage of 
guaranteed quality of the solution found. Examples: 
branch-and-bound strategies, including interval methods
• However, the computational demand of such methods 
in the worst case is exponential in n and m. Essentially, 
no method is better for the worst possible function(s) f 
than passive grid search… 
• In practice, to verify optimality and to sufficiently 
reduce the gap between the incumbent solution and the 
guaranteed lower bound can be very demanding: this 
may not be acceptable in certain (as a matter of fact, in 
numerous) practical applications

Deterministic vs. Stochastic GO Methods

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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God is subtle but he is not malicious…
Albert Einstein 

• Models to solve typically come from a “random source” 
(typically with unknown statistical features)
• This is a key motivation to look for alternative solution 
approaches, including stochastic search algorithms 
• We will highlight the basics, and then some more 
advanced uses of stochastic search strategies

Deterministic vs. Stochastic GO Methods

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The Power of Stochastic Search: An Illustrative Example

A complicated multi-modal function, and 1,000 random sample points
Pure (passive) random search will find points in an arbitrarily small 
neighborhood of the global solution x*, if the sampling effort tends to 
infinity
Adaptive search strategies and statistical modeling tools become 
essential in higher dimensions, to improve search efficiency
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• Global convergence of pure random search (w.p. 1) 
over D (assuming that f is continuous, and D has a 
suitable, but still very general topological structure)

• Global convergence of adaptive random search
• Global convergence of stochastically combined 
(sub)algorithms, assuming the “sufficiently frequent” 
usage of a globally convergent algorithm component  

Stochastic Search Methods: 
Some Key Theoretical Results

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• The following set of slides serves to illustrate 
various features of (LGO) software implementations 
• Some of the key features apply also to other GO 
software implementations, mutatis mutandis
• The examples also hint at the capabilites and the 
limitations of GO software (as of today)

GO Software Implementations: 
Illustrative Examples

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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A Simple-to-Use LGO Demo (C, C#)
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LGO Demo: Example poly+trig
Refer to previous slide where this model is solved

Model formulation and bounds given in *.mod and *.bds text files

Example 1 

Model: cited from poly+trig.mod

0.1*x[0]*x[0] + Math.Sin(x[0]) * Math.Sin(100*x[0])  objective fct

Bounds: cited from poly+trig.bds

0                                                                                    lower bound
3                                                                                    nominal value
5                                                                                    upper bound

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO Demo: Example poly+trig

Global solution argument found ~1.30376; optimum value ~-0.79458

Notice the many suboptimal solutions, including several
that are close to the globally optimal solution value

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO Demo: Example 2
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LGO Demo: Example 2
Model: log+trig.mod

Math.Log(1+x[1]*x[1]) + 100*Math.Pow(Math.Sin(x[0]*x[1]),2)  objective
Math.Pow(x[1],3) + 1 - Math.Pow(x[0]*x[0]-1,2)   constraint1
0    equality
x[1]*x[0] + x[0] – 1   constraint2
-1   inequality

Bounds: log+trig.bds

-2   lower bound
0    nominal value
3    upper bound
-5   lower bound
0    nominal value
13  upper bound

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO Demo: Example 2

The unique global solution is x[0]=x[1]=0, f*=0

Two views of the objective function in log+trig.mod 
(from previous slide)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO Integrated Development Environment

LGO IDE works with C and Fortran compilers
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LGO Link to Excel

Model Formulation Example:
Circuit Design Problem

Note: This development work is independent of the Excel Solver
development by Frontline Systems
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LGO Link to Excel
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Model Development and Solution by AIMMS/LGO

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



81

AIMMS/LGO Solver Link Options
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An AMPL Model
Solved by LGO
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GAMS Preprocessing

LGO Solver Result
Summary
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An MPL/LGO Model and its Solution
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GO in Integrated Scientific and 
Technical Computing Systems
• Maple, Mathematica, Matlab (and some others that are 
more specific to certain engineering or scientific fields)
• Model prototyping and development: simple and 
advanced calculations, programming, documentation, 
visualization,… supported in “live” interactive documents
• Data I/O and management features
• Links to external software products
• Portability across hardware and OS platforms
• “One-stop” tools for interdisciplinary development
• ISTCs are particularly suitable for developing complex, 
advanced nonlinear models; obvious GO relevance
• Several articles discuss our implementations (refs later)
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MathOptimizer Model

Note that dense nonlinear models (including many GO 
models) are similarly formulated across platforms: 
relatively easy model conversions, converters available 
in several cases (example: GAMS CONVERT utility)
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An example from the MathOptimizer User Guide:
Surface and contour plot of a randomly generated test function

Note: MO is a native Mathematica solver product, as opposed 
to the LGO implementations reviewed here

Advanced Visualization Tools in ISTCs

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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User Guide can  
be invoked from 
Mathematica’s 
online Help menu

The same applies 
to MathOptimizer

This feature
supports 
efficient
prototyping 
and modular 
development
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Model setup, solution 
and visualization in 
Matlab

TOMLAB /LGO solver
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Model formulation, 
numerical solution, 
and visualization,
using the GO Toolbox 
for Maple
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Branin’s Test Problem with Multiple (3) Global Solutions

The GOT can also be used to find a sequence of global solutions

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Maple GO Toolbox: Optimization Assistant

See e.g. Optimization Methods and Software (2006)
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Maple GO Toolbox: Optimization Plotter

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Illustrative Case Studies 
A Concise Summary

• Many of the actual client case studies reviewed here 
are based on multi-disciplinary research, in addition to 
the global optimization component
• All detailed case studies can (could) be presented in 
full detail, each in a separate lecture… instead, we shall 
briefly review a selection of these 
• References, demo software examples, publications, 
and additional details are all available upon request  

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Illustrative Case Studies reviewed in this talk (as time allows)

• An illustrative “black box” client model 
• Trefethen’s HDHD Challenge, Problem 4
• Systems of nonlinear equations
• Optimization problems featuring numerical procedures
• Nonlinear model fitting examples
• Experimental design
• Non-uniform circle packings, and other packings
• Computational chemistry: potential energy models
• Portfolio selection, with a non-convex purchase cost
• Solving differential equations by the shooting method
• Data classification and visualization
• Circuit design model 
• Rocket trajectory optimization

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Illustrative Case Studies reviewed in this talk (as time allows)

• Industrial design model examples
• Collision (trajectory) analysis
• Design optimization in robotics 
• Laser design 
• Cancer therapy planning
• Sonar equipment design
• Oil field production optimization
• Automotive suspension system design
and other areas  

• In addition, many standard NLP/GO and other test 
problems have been used to evaluate solver performance 
across the various modeling environments reviewed here
• Experiments conducted by developer partners and 
clients, in addition to the author’s own work

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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“Black Box” Model Received from Client: 
“Can your software handle this problem?…”
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HDHD Challenge, Problem 4 continued

• This model has been used as a test for LGO, as well as 
with MathOptimizer, MathOptimizer Pro, TOMLAB /LGO, 
and the Maple GOT
• The solution found by all listed implementations is 
identical to more than 10 decimals to the announced 
solution; the latter was originally based on an enormous 
grid sampling effort combined with local search 

x*~ (-0.024627…, 0.211789…)
f*~ -3.30687…

• Close-up picture near to 
global solution: still looks quite 
difficult...

J.D. Pintér, Global Optimization 
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Example solved by 
Maple GO Toolbox
x-y+sin(2*x)-cos(y)=0
4*x-exp(-y)+5*sin(6*x-y)+3*cos(3*y)=0

Solving Systems of Nonlinear Equations

Error function plot

A numerical solution found is 
x ~ 0.0147589760525313926,   y ~ − 0.712474169476650099
l2-norm error ~ 1.22136735435643598 <10-16

Note: there could be other solutions; systematic search is possible

Equivalent GO model formulation 
assuming that solution exists; else 
minimal norm solution sought

F(x)=0 ↔ min ||F(x)||

Optimization Methods and Software (2006)
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Nonlinear Equations

Observe the equations (lines in x-y subspace 
projection), and the solution point found as
indicated by the green dot
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Optimization with 
Arbitrary Computable 
Model Functions

A unique - and practically 
important - feature
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Optimization of A Parametric Integral Expression
> objf := a->2*evalf(Int(0.01*x+sin(5*x)*cos(3*x)-sin(3*x)*cos(2*x)+sin(x)*cos(7*x), x=-1.5*a..2*a));
> bounds := -3..10;
> GlobalSolve(objf, bounds)

Result found by the GOT: 
a*~ 4.92574563473295957 
f*~-1.86463327469610008; here f*=objf(a*)
Total number of function evaluations: 1351
Runtime in external LGO solver: 14 seconds  
(integration takes time for each input value a)

> plot(objf, bounds);

The plot shows the high multi-modality of the 
parametric integral value (as a function of a)
Notice the location of the global solution (a*,f*) 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Nonlinear Model Calibration in Presence of Noise

An example model (in Mathematica notation), inspired by 
a client’s (medication dosage effect) study:

a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(5Pi*t)+g]+ξ

The parameters a,b,c,d,e,f,g are randomly generated from 
interval [0,1]; ξ is a stochastic noise term from U[-0.1,0.1]

Subsequently, the optimal parameterization is recovered 
numerically by MathOptimizer: this gives superior 
results, in comparison with Mathematica’s corresponding 
built-in local solver functionality (NonlinearFit)

Optimization Methods and Software (2003)
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(5Pi*t)+g] +ξ

Calibration of Nonlinear Model in Presence of Noise (cont.)

Global search based fit, obtained by MathOptimizer
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Arrhenius Probe Model Calibration
Credits: Grigoris Pantoleontos et al., Chemical Engineering Department, 
Aristotle University of Thessaloniki, Greece

ln(y) = A-Ea /RT   Arrhenius formula
Describes temperature dependence of 
reaction rate coefficient y

A multi-component version of the formula:

Here Ri[j] is calculated from another (rather 
complicated) expression

The study by GP et al. is aimed at the determination 
of the parameters ci, Ai and Ei i=1,2,3 by comparing the 
computed model output values to the experimental ones

The figure shows the initially given data points (red circles), the component curves 
(green, blue, yellow), and the resulting curve (bold blue); a fairly good fit
The solution of this computationally intensive example (9 variables to calibrate, very 
large search region, hundreds of data points, difficult model functions to compute) 
took about an hour on a desktop PC (in 2007); GP used the Maple GOT

[ ]( )( ) [ ]( )jR1jRTemp/EexpAcy iiiii −⋅−=

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Data Classification (Clustering) by Global Optimization
Details: Global Optimization in Action, Ch. 4.5

Classification objective: 
Find the “most homogeneous” 
or “most discriminative” 
grouping of a given set of entities 
(see black dots shown in rhs 
figure)

This can be done numerically, by 
globally optimizing the position 
of cluster centres (medoids, see 
red dots) 
For any given (candidate) medoid 
configuration, one can use e.g. the 
“nearest neighbor” rule to associate the 
points xj with the cluster centres ck

Example:
400 3-dimensional points 
classified into 4 clusters

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Data Classification (Clustering) by Global Optimization

Key advantage of the GO model formulation compared to the usual 
combinatorial optimization based approach: model dimension is 
ndim*nclusters=12... vs. nentities=400... The example is solved in 
seconds, the approach also scales up well 

For a given (prefixed) number of clusters, 
one can use the following model to 
identify the cluster medoids {ck}:

min ΣkΣj||ck−xj||  s.t.  clk≤ck≤cuk

For any given set of {ck} and each xj, 
the index k=k(xj) is chosen following
the “nearest neighbor” rule

In general, this is a GO problem

Model description and detailed 
discussion with numerical examples in 
Global Optimization in Action, Ch. 4.2
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Maxi-Min and Related Point Arrangements
In a large variety of applications, one is interested in the 
“best possible covering” arrangement of points in a set 
• numerical approximation methods
• design of experiments for expensive “black box” models
• potential energy models (in physics, chemistry, biology)
• crystallography, viral morphology, and other areas 

For illustration, consider a maxi-min model instance
max { min ||xi - xk || }   xl ≤ xi ≤ xu xi ∈Rd i=1,…,m
{ xi }     1≤i<k≤m

Additional restrictions, alternative feasible sets, and other 
quality criteria can also be considered

Permutations avoided by lexicographic point arrangements 
In general, difficult non-convex models arise

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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LGO IDE: model visualization (m=13, d=2)

MaxiMin Point Arrangement Problem

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



113

Example: 40 circles; optimized radius of circles r~0.0787391…
Solution time using MOP: less than 5 minutes (3 GHz PC)
No postulated structural info is exploited: MOP used “blindly” 

Packing Uniform Size Circles in the Unit Square

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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In such problems, we study the packing of different size circles in 
an embedding circle. Since this model formulation typically has 
infinitely many solutions per se, we will additionally try to bring the 
circles as close together as possible. 
The primary objective (obj1) is to find the circumscribed circle with 
the smallest radius; the secondary objective (obj2) brings the circles 
close together by minimizing the average distance among all circle 
centers.
A scaled linear combination of these two objectives is used. 
Note that alternative formulations are also possible, and that 
rotational symmetries of solutions can also be avoided (by added 
constraints), thereby making the solution of a specific model 
formulation essentially unique. 
Applications: wires packed together in a cable, dashboard design…

Mathematica in Education and Research (2005), The Mathematica 
Journal (2006) Co-author: Frank J. Kampas

Non-Uniform Size Circle Packings in a Circle
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Non-Uniform Size Circle Packings 

J.D. Pintér, Global Optimization 
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General Circle Packings in 
Minimal Volume (Length) Container

Example: given 30 circles with radii below ; given height of container; find minimal container width 

rlist = {1.275, 1.67, 2.05, 1.739, 1.399, 1.18, 0.564, 1.374, 1.237, 0.845, 1.484, 0.868, 0.807, 1.551, 1.274, 
0.855, 1.493, 1.281, 1.491, 0.747, 1.085, 1.044, 0.955, 1.404, 1.292, 0.853, 0.76, 0.527, 0.592, 0.887}
Best known radius is 17.291; MOP default option based radius 18.915 in ~ 20 secs; relative quality ~ 
91% Further structure based refinements are possible and recommended

Pintér and Kampas (Mathematica in Edu. and Res., 2005), Castillo, Kampas, and Pintér (EJOR, 2008), 
Kampas and Pintér (WTC presentations, 2006, 2007; downloadable notebooks)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Sphere Packings in Optimized Sphere

Example: 15 spheres with radii ri=i-1/3  solved numerically by MOP
Radius of embedding sphere: ~1.96308, 1.5 sec runtime on a 2007 PC,
vs. ~10 min when using the built-in Mathematica function NMinimize 

More details: Kampas  and JDP, WTC talks + notebooks

Given a collection of spheres, find
the minimal size sphere that includes
all of these, in a non-overlapping 
arrangement   

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Industrial Packings and Polygon Cutting Stock Plans

Credits: Ignacio Castillo, University of Alberta, Edmonton, Canada (now at WLU)
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Credits: G. Fasano, MIP-based heuristics for non-standard 3D-packing 
problems with additional constraints; technical report and papers by GF 

Packing Objects with Orientation and Other Characteristics
(Constraints Such as Mass Balance): An Example 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Potential Energy Models
Point arrangements on the surface of unit sphere
xi=(xi1,xi2,xi3) ||xi||=1
x(m)={x1,…,xm} m-tuple (point configuration)
djk=d(xj,xk) 1≤j<k≤m Euclidean distance

Model versions considered:
max ∑1≤j<k≤m log(djk)         Fekete (elliptic or log-potential)
min  ∑1≤j<k≤m 1/djk (djk>0)     Coulomb-Fekete
max ∑1≤j<k ≤m djk

a Power sum, 0<a<2
max {min 1≤j<k≤m djk} Tammes (hard sphere)
In all cases, the objective function is multi-extremal; 
Combined GO + expert knowledge based solution
approaches 
Applications: math, physics, chemistry, biology,...
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Elliptic Fekete model (m=25 points)

J.D. Pintér, Global Optimization 
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Coulomb-Fekete model (m=25 points)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Powersum model (m=25 points)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Tammes model (m=25 points)

J.D. Pintér, Global Optimization 
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Log-potential (Fekete Potential) Model
In this example charged particles 
(points that are repelling each 
other) are confined to stay on the 
surface of the unit sphere 

Our objective is to find their 
optimized configuration, using 
the Fekete potential model

5-particle example: as expected, 
the arrangement is symmetrical 
with respect to the configuration 
elements

Finding such an arrangement is 
not trivial for arbitrary m-point 
configurations: GO techniques
can be used

Mathematica model implementation
By Frank J. Kampas

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Log-potential Model: 13 Points

Solution found by MathOptimizer                      expressed in spherical coordinates
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Electrons in a Sphere

In this example charged particles 
that are repelling each other
are confined to stay within 
the unit sphere 
Objective: find their 
optimized configuration
6-electron example: 
again (as expected), the 
arrangement found is
symmetrical; all optimized 
points are on the surface 
of the sphere
Mathematica model implementation
By Frank J. Kampas J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Summary of Numerical Studies
Putative global optima collected (to use in comparisons)  
from the Web site of AT&T Bell Laboratories: these results
have been derived by extensive numerical experiments
Our illustrative results (LGO 2000) successfully approximate 
the corresponding best known results to more than 99.99 
precision for the log-potential, Coulomb, and power sum 
models; LGO solution time was ~ 10-15 sec (P4 1.6 GHz PC)
Hard sphere model solution quality was only ~90% of best:
Results significantly improved since that time; more 
recent published results using LGO and MathOptimizer Pro
Model variants and illustrative results appeared in Annals of Operations 
Research (2001); J. of Computational and Applied Mathematics (2001)
Co-authors of JCAM paper: Walter Stortelder and Jacques de Swart
Subsequent work and reports/papers/talks with Frank J. Kampas

J.D. Pintér, Global Optimization 
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Lennard-Jones Potential Energy Model

A pair of neutral atoms or molecules is subject to two distinct forces: 
an attractive force at long ranges (van der Waals force) and a 
repulsive force at short ranges (Pauli repulsion). The Lennard-Jones 
potential is a simple mathematical model that approximates these two
forces. The L-J potential is of the form    

Credits: Wikipedia

Here ∈ is the depth of the ‘potential well’; σ is the distance at which 
the inter-particle potential is zero; and r is the distance between the 
particles. The aggregated (pairwise) interactions model of a group of 
particles leads to difficult global optimization problems: these models 
are used both in GO tests and in (physics, chemistry, biology) research
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Lennard-Jones clusters for some challenging cases
Credits: Jon Doye, University of Cambridge

Lennard-Jones Model and Optimized Configurations

J.D. Pintér, Global Optimization 
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Lennard-Jones clusters for further interesting cases
Credits: Jon Doye, University of Cambridge

Lennard-Jones Model and Optimized Configurations

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Lennard-Jones clusters for higher-dimensional cases
Credits: Carlos Barron (University of Houston)

The optimal geometry of Lennard-Jones clusters: Computer Physics Comm. (1999), 148-309.
Authors: Romero, D., Barron, C., and Gomez, S.

The missing atoms are denoted by red dots

Lennard-Jones Model and Optimized Configurations

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The Morse potential energy function (model) is of the form

Morse Potential Energy Model
Credits: Wikipedia

Here 
r is the distance between the atoms, 
re is the equilibrium bond distance, 
De is the well depth (defined relative 
to the dissociated atoms), and 
a controls the 'width' of the potential.

Again, the minimal energy model of a group of particles leads to 
difficult global optimization problems that are used both in GO tests 
and in (physics, chemistry, biology) research

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Globally optimized Morse clusters, n=24
Credits: Locatelli and Schoen, 2003

New putative 
optimal configuration

Previous putative 
optimal configuration

J.D. Pintér, Global Optimization 
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Globally optimized Morse clusters, n=25
Credits: Locatelli and Schoen, 2003

New putative 
optimal configuration

Previous putative 
optimal configuration

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Globally optimized Morse clusters, n=51
Credits: Locatelli and Schoen, 2003

New putative 
optimal configuration

Previous putative 
optimal configuration
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Credits: László Füsti-Molnár and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida

Molecular Alignment and Docking 
Using ab initio Quality Scoring

Docking potential drug candidates into active sites of enzymes in 
receptor based drug design, or aligning molecules into abstract 
external fields or to other molecules in ligand based drug design,
represents one of the biggest challenges in contemporary drug R&D. 

An accurate and efficient molecular alignment technique is presented 
by the authors named below. It is based on first principle electronic 
structure calculations. This new scheme maximizes quantum similarity 
matrixes in the relative orientation of the molecules.

The authors have been using LGO to find the optimal alignment; as a 
result, they have found noticeably improved alignments.

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



138

Credits: László Füsti-Molnár and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida

Molecular Alignment and Docking 
Using ab initio Quality Scoring

A local optimum in the alignment of Methylacrylate to Crotonic acid 

(The color of Crotonic acid is set to white)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Credits: László Füsti-Molnár and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida

Molecular Alignment and Docking 
Using ab initio Quality Scoring

The globally optimized alignment of Methylacrylate to Crotonic acid 

(The color of Crotonic acid is set to brown)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



140

Further Application Perspectives in 
Chemistry and Biology – The Real Deal…

Example: The molecular surface of crambin
Credits: Molecular Surface Graphics, http://www.netsci.org/Science/Compchem/feature14.html
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Atomic Structures of Macromolecules
Credits: Marin van Heel, Imperial College, London, UK

These (and great many other similar, biologically 
relevant) structures result from a natural tendency 
towards self-organizing

Notice the close conceptual relation among maximin 
point arrangements, circle packings and the various 
models of atomic and molecular structures

These arrangements are all aimed at finding globally  
minimal energy configurations of their objects, 
according to a context-specific criterion function

Therefore GO technology can be brought to a wide 
range of object configuration problems − as always, 
in combination with domain-specific expertise

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Financial Modeling and Optimization

Example:
Model development, solution, 
and visualization in Maple 

Castillo-Lee-Pintér, Integrated 
Software Tools for the OR/MS 
Classroom, AlgOR (2008)
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Portfolio Optimization with Transaction Costs
Objective: minimize portfolio variance; Q cov. matrix xTQx
Constraints: expected return (ER) xTr≥ER

asset allocation (of capital C) ∑ixi+ ∑it(xi)≤C

Note: other considerations will make model more complex… 
GO can be applied to many such (more realistic) models

Credits: Jason Schattman, Maplesoft 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Portfolio Optimization with Transaction Costs

Castillo-Lee-Pintér, Integrated Software Tools for the OR/MS Classroom, AlgOR (2008)

The figure shows the location of the optimal budget allocation point 
(in green) on the boundary of the feasible region 
The surfaces representing the active budget constraint (blue) and the 
expected return constraint (grey) are also shown − recall KKT theory

(continued)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Supply Chain Management: 
A Reliability Optimization Example

Cited from Hum and Parlar (2006); numerical example in the e-book
Global Optimization with Maple (2006)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



146

Solving a System of ODEs 
by the “Shooting Method”
The SM consists of adjusting 
the initial conditions of the 
solution until the boundary 
conditions are met. Unless the 
initial conditions are very 
close to the correct value, 
singularities are frequently  
encountered. 

Therefore one can use a finite 
difference approach and solve 
the resulting system of 
equations with MathOptimizer  
Professional. Then, based on 
the initial condition values 
found, one can find a more 
precise solution by the SM.

Note: the model shown is 
received from an MOP user

Further technical details in 

MOP User Guide
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Circuit Design

NLEQ System
Solved by 
Excel/LGO
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A Time-Discretized 
Control Model
Solved by Excel/LGO
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A Time-Discretized Control Model
continued; the full formulation is displayed above

Credits: Frontline Systems

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Industrial Design Problems
An illustrative application: 

Design of an “optimized” 
parfume bottle, using the 
Maple GOT 

Objective:                          
minimize package volume

Constraints:                      
Bottle volume ≥ required  
Width of the base ≥ required 
Aesthetic proportions     

Example by Maplesoft
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Collision Analysis for Moving Solid Bodies

Given a number of solid bodies, each with corresponding 
geometry, initial position, and analytical trajectory 
description: our task is to decide whether they will 
collide or not 

Obviously, this problem-type is of interest in various 
practical applications: e.g. in robot motion analysis, 
production (job shop) floor planning, and other areas

One can approach this problem by finding the time 
moment when the smallest distance between all pairs of 
the moving bodies is minimal: this is a (generally 
speaking, far from trivial) global optimization problem 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Collision analysis for moving solid bodies: An example

Details, including code implementation: The Mathematica Journal
(2006)   Co-author: Frank J. Kampas

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Credits: Yisheng Guan and Hong Zhang, University of Alberta, Edmonton, Canada

Kinetic Grasp Feasibility Analysis in Robotics Design

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Laser Design
Optimization and Engineering (2003); with G. Isenor & M. Cada

Basic Concepts

The laser is a device that produces a beam of light that 
is coherent. The beam is produced by a process known 
as stimulated emission.

The word laser is an acronym for the phrase “Light 
Amplification by Stimulated Emission of Radiation”.

The idea of stimulated emission was proposed by Albert 
Einstein in 1916. It took another four decades to build 
the first lasers as a scientific research tool; soon they 
found numerous significant applications. 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Index-coupled distributed feedback laser
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Various laser design issues can be analyzed using GO

Example:

min f(x) field flatness function (key quality
measure)

g(x) ≤ ε boundary condition (error limit)

xl ≤ x ≤ xu explicit, finite parameter bounds

x = (KL1, KL2, KL3, λ, Co)   laser design parameters

Essential difficulty: f and g are complicated “black box” 
functions. The LGO IDE software has been used to 
analyze and solve this model (in several variants). 

A very significant improvement (over 90% reduction) of 
the field flatness function has been attained. 

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Radiotherapy Planning
Significance of the problem: world-wide interest and R&D 
activities devoted to cancer therapy by irradiation
Specific area of our research: intensity modulated 
radiation therapy planning, delivered by multi-leaf 
collimators, to cure individual patients 
Objective: determine the operations (movements) of the 
leafs in an MLC equipment, to optimally approximate the 
prescribed dose intensity distribution in 3 dimensions, 
thereby
• providing prescribed radiation intensity to a target area 
or volume (the body parts affected by cancer)
• avoiding unwanted radiation as much as possible 
(especially of organs at risk, as well as other body parts)
For details, cf. Tervo et al., Annals of Operations Research, 2003

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Dose Delivery and Effect Modeling
Sophisticated, computationally intensive mathematical 
models of dose delivery by MLC equipment have been 
developed in several versions by researchers at the 
University of Kuopio, Finland. The key novel feature of 
this approach is to optimize  dose distribution directly 
via adjusting MLC parameters. These optimization 
models are all characterized by 
• tens or hundreds of variables (leaf positions and their 
coordinated movements, to describe MLC operations), 
• a large number of relatively simple constraints 
(feasible leaf positions), 
• a few significant complex “black box” constraints; 
complex objective function (target dose, and  limits on 
unwanted dose in OAR and body tissue).

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



162

Leaf positions

Radiation intensity

A resulting radiation profile
(based on all leaf positions
that determine total exposure)

Superposition of overall irradiation effect,                              
as a function of leaf positions and radiation intensity

Joint operation of leafs in MLC equipment 
(simplified scheme)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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A Numerical Example

Illustrative model (2D phantom) used in optimized radiation 
dose distribution test calculations: overall  irradiation area, 
hypothetical target area, and an organ at risk are shown

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Dose distribution found by local optimization of nominal solution
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Globally optimized dose distribution
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Modeling and Optimization of Transducers
MathOptimizer User Guide, joint presentations with C.J. Purcell

• Traditional engineering design often based on 
experimental studies: change key parameters and 
then trace their effect (e.g. by physical experiments 
and their graphical summaries) – as a rule, expensive 
and time consuming…
• Parametric studies are ideal tasks for computers: 
numerical models can (partially) replace experiments
• Parametric models can be directly optimized
• In our study, a combination of detailed system 
modeling and optimization has been applied; this has 
resulted in improved (in some cases “surprising” and 
entirely new) designs

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Engineering Design Optimization by Trial and Error

Expensive and time-consuming...
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway



168

ModelMaker

• Mathematica package for developing         
advanced finite element models (FEM)

• Numeric and symbolic parameterized 
models can be developed

• Models and results presented in 
interactive Mathematica document 
(notebook) format

• Built-in, extensible documentation 
• Supports other FEM packages (such as 

Mavart, Mavart3D, MavartMag, Atila,…)
• Developed since 1994 by C. Purcell, DRDC

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Example: Folded Shell Projector

FSP is a sonar projector (or in-air loudspeaker) with 
overall cylinder shape with corrugations on the sides

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Experimental Design
Three FSPs with varying transformer ratio 
(a key design parameter): optimization needed...

Curves generated experimentally

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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The optimization problem consists of finding circuit design 
parameters such that the sonar projector gives a broad 
efficiency vs. frequency. This model has been solved using 
MathOptimizer. The results have been applied to the actual 
design of sonar equipment, leading to improved designs.

Sonar Transducer Design: Numerical Model

This electric circuit simulates a piezoelectric sonar projector

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Mathematica code of a numerical 
model (only a portion is shown here),
subsequently solved by MathOptimizer
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Example: Optimized FFR Transducer Design

• FFR is a free flooding ring projector and refers to a 
high power, unlimited depth sonar projector, in the 
shape of a ring 
• Used by Canada and the UK in sonar research over 
the last 1t years
• TVR is the transmitting voltage response of a sonar 
projector and gives the response of the device in 
units of microPascals/Volt (mP/V) measured at 1 meter 
from the device center, and converted into decibels 
(by taking 20*log10 of the resulting mP/V value)
• A higher TVR means more output sound per unit of 
input voltage, and thus it is a key design objective to 
provide a uniformly high TVR

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Example: Multi-Mode Pipe Projector (MMPP)
• Low frequency, depth insensitive sonar projector
• Prototype MMPP demonstrated reasonable 

bandwidth from 2.5 to 6 kHz, but TVR (sonar 
response) was too low

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• Goal of optimization is to improve TVR and to increase 
bandwidth (3 to 9 kHz)
• First optimization done using NMinimize (a Mathematica fct)
• Second optimization done using MathOptimizer
• Optimization was run on wave-guide wall thickness, end-cap 
thickness and wave-guide wall height

MMPP Modeling

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



176

MMPP Optimization Results

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway



177

MMPP Optimization: Summary 
• Optimization provided solutions enhancing the 

MMPP design in a very short time period
• Optimized MMPP is a broadband, lightweight, 

depth-insensitive design which can be employed 
for numerous applications such as 
– communications
– active sonar
– oil well borehole shaker
as well as some others
– patents submitted / used for actual designs

Details for a special case described in MathOptimizer User Guide,
and in Wolfram Research Developer Conference Proceedings 
Co-author: C.J. Purcell

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Credits: T. Mason, P. Zwietering, C. Emelle, et al. Shell R&D, Rijswijk, NL
EURO 2006 talk, JIMO 2007 paper by Mason, Emelle, Van Berkel, Bagirov, Kampas, and Pintér

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Oil Field Production Analysis and Optimization: 
The Global Optimization Advantage

Improved gas lift (production) found by using HFTP/LGO at Shell IEP 
J.D. Pintér, Global Optimization 

eVITA Winter School 2009, Norway
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Case study 
development
using Maple

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Suspension System Tuning

Model calibration problem
solved by using the 
Global Optimization
Toolbox for Maple

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Double Wishbone Suspension and Steering System

Objective
Given a desired (target) behaviour of a double wishbone
suspension system, in terms of the displacement curves for 
bumps on the road, determine its so-called hard point settings 

DynaFlex Pro by MotionPro, Inc. is used to model the system

The resulting inverse problem is then solved by the GOT 

Design by Global Optimization

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Designation of the Hard Points

The designer can specify or optimize the Cartesian coordinates of the hard points that 
define the double wishbone suspension: the label associated with each hard point is 
indicated in the lhs figure, see A to M 
The Cartesian coordinates relative to the chassis-fixed XYZ frame are shown in the 
rhs figure: the hard point coordinates are expressed in millimeters
Using global optimization, superior new designs have been found; the GOT is now 
used also be several leading automotive companies as an R&D tool
Credits: Maplesoft and MotionPro, Inc., Waterloo, ON
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Global Optimization Software Users: 
Summary
• Universities

• Research organizations

• Advanced industries, R&D departments

• Consulting organizations  

• Scientists, engineers, econometrists and financial    
modelers

• GO software is used worldwide (software by PCS and 
partners is used at several  hundred organizations)

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Authors/Editors Application Areas, with Information on  
Software (in works denoted by +S)

Grossmann, 1996 Chemical Engineering Design + S
Pardalos, Shalloway & Xue, 1996 Computational Chemistry and Biology
Pintér, 1996 Environmental Modeling/Mgmt, and others + S
Corliss and Kearfott, 1999 Rigorous Optimization in Industry + S
Floudas et al., 1999 Handbook of Test Problems 
Papalambros and Wilde (2000) Engineering Design 
Edgar, Himmelblau & Lasdon, 2001 Chemical Engineering Design/Operations+ S
Gao, Ogden & Stavroulakis, 2001 Physics (Mechanics) 
Pardalos and Resende, 2002 Topical chapter by Floudas (Chem. Engrg)
Schittkowski, 2002 Model Fitting (Calibration) + S
Tawarmalani and Sahinidis (2002) Chemical Engineering Design/Operations+ S
Diwekar (2003) Environmental Modeling/Mgmt + S

Global Optimization Applications and 
Perspectives: Illustrative References

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Authors/Editors Application Areas, with Details on  
Software (in works denoted by +S)

Locatelli, Schoen et al. 2000+ Computational Chemistry and Biology + S
Stojanovic, 2003 Financial Modeling + S
Zabinsky, 2003 Engineering Design + S
Neumaier, 2004 See topical review sections + S
Bartholomew-Biggs, 2005 Financial Modeling and Optimization
Liberti & Maculan, 2005 Chapters on Software Implementations + S
Nowak, 2005 MINLP Software Devpt & Tests + S
Pintér, 2006 Global Optimization with Maple + S
Pintér, 2006 GO: Sci & Engrg Case Studies + S
Pintér, 200… Applied NLO in Modeling Environments + S
Kampas & Pintér, 200… Modeling & Opt. Using Mathematica + S

Further information is welcome

Note: Keep an eye also on other literature not written by GO researchers ─ 
numerous examples discussed by professionals who need GO…

Global Optimization Applications and 
Perspectives: Illustrative References

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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This e-book includes hands-on demos of the LGO IDE
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Frank J. Kampas and János D. Pintér
ELSEVIER SCIENCE (forthcoming)

Optimization with Mathematica 
Scientific, Engineering, and Economic Applications

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Conclusions 1

• Global optimization is a subject of growing importance: 
it is relevant in many areas in the sciences, engineering, 
and economics 

• Development and application of sophisticated, complex 
numerical models  frequently requires the use of global 
scope optimization methodology

• Professionally developed and supported GO solver 
options are available for a range of platforms; further 
development in progress

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Several Key Application Areas
• Advanced engineering 
• Chemical and process industries
• Defense, security
• Econometrics and finance
• Math/physics/chemistry/biology 
• Medical and pharmaceutical R&D

Conclusions 2

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Some Key Challenges and Future Work
• Integrate exact and heuristic methods
• Handle problems with (very) costly functions
• Handle problems w/o any exploitable structure
• Stochastic optimization: simulation and optimization
• Dynamic models: ODE/PDE solvers and optimization

Conclusions 3

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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• Customized model, algorithm, software, DSS 
development and related consulting services 
• Workshops and tutorials 
• Demonstration software, reports, and articles 
available
• New test examples and practical challenges are 
welcome

Conclusions 4

Interest in R&D and Business Cooperation

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway
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Thanks for your attention!

Further information: 
www.pinterconsulting.com
Comments and questions: 
janos.d.pinter@gmail.com

J.D. Pintér, Global Optimization 
eVITA Winter School 2009, Norway


	Slide Number 1
	Presentation Topics
	Slide Number 3
	A KISS* Model Classification 
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Another Inherent Issue in GO:     �“Curse of Dimensionality”
	Further Examples: Increasingly More Difficult (Parameterized) Test Functions
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Global Optimization�Software Development
	GO Software Development Environments
	GO Software: State-of-Art in a Nutshell   1
	GO Software: State-of-Art in a Nutshell   2
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Model Development and Solution by AIMMS/LGO
	AIMMS/LGO Solver Link Options
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Maple GO Toolbox: Optimization Assistant
	Maple GO Toolbox: Optimization Plotter
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	General Circle Packings in �Minimal Volume (Length) Container
	Slide Number 117
	Industrial Packings and Polygon Cutting Stock Plans
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Further Application Perspectives in �Chemistry and Biology – The Real Deal…
	Slide Number 141
	Financial Modeling and Optimization
	Slide Number 143
	Slide Number 144
	Supply Chain Management: �A Reliability Optimization Example
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Industrial Design Problems
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Oil Field Production Analysis and Optimization: The Global Optimization Advantage
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	 
	Slide Number 187
	Slide Number 188
	Slide Number 189
	Slide Number 190
	Slide Number 191
	Slide Number 192
	Slide Number 193
	Slide Number 194
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198

