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1. Introduction

1. Introduction

what is convexity

where does it arise

main concepts and results

Literature:
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Hiriart-Urruty and Lemaréchal: Convex analysis and
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1. Introduction

roughly: a convex set in IR2 (or IRn) is a set “with no holes”.

more accurately, a convex set C has the following property:
whenever we choose two points in the set, say x , y ∈ C , then
all points in the line segment between x and y also lie in C .

a sphere (ball), an ellipsoid, a point, a line, a line segment, a
rectangle, a triangle, halfplane, the plane itself

the union of two disjoint (closed) triangles is nonconvex.
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1. Introduction

Why are convex sets important?

Optimization:

mathematical foundation for optimization

feasible set, optimal set, ....

objective function, constraints, value function

closely related to the numerical solvability of an optimization
problem

Statistics:

statistics: both in theory and applications

estimation: “estimate” the value of one or more unknown
parameters in a stochastic model. To measure quality of a
solution one uses a “loss function” and, quite often, this loss
function is convex.

statistical decision theory: the concept of risk sets is central;
they are convex sets, so-called polytopes.
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1. Introduction

The expectation operator: Assume that X is a discrete
variable taking values in some finite set of real numbers, say
{x1, . . . , xr} with probabilities pi of the event X = xi .
Probabilities are all nonnegative and sum to one, so pj ≥ 0
and

∑r
j=1 pj = 1.The expectation (or mean) of X is the

number

EX =
r∑

j=1

pjxj .

This as a weighted average of the possible values that X can
attain, and the weights are the probabilities. We say that EX
is a convex combination of the numbers x1, . . . , xr .

An extension is when the discrete random variable is a vector,
so it attains values in a finite set S = {x1, . . . , xr} of points in
IRn. The expectation is defined by EX =

∑r
j=1 pjxj which,

again, is a convex combination of the points in S .

5 / 74



Convexity: an introduction

1. Introduction

Approximation

approximation: given some set S ⊂ IRn and a vector z 6∈ S ,
find a vector x ∈ S which is as close to z as possible among
all vectors in S .

distance: Euclidean norm (given by (‖x‖ = (
∑n

j=1 x2
j )1/2) or

some other norm.

convexity?

norm functions, i.e., functions x → ‖x‖, are convex functions.

a basic question is if a nearest point (to z in S) exists: yes,
provided that S is a closed set.

and: if S is a convex set (and the norm is the Euclidean
norm), then the nearest point is unique.

this may not be so for nonconvex sets.
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1. Introduction

Nonnegative vectors

convexity deals with inequalities

x ∈ IRn is nonnegative if each component xi is nonnegative.

we let IRn
+denote the set of all nonnegative vectors. The zero

vector is written O.

inequalities for vectors, so if x , y ∈ IRn we write

x ≤ y (or y ≥ x)

and this means that xi ≤ yi for i = 1, . . . , n.
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2. Convex sets

2. Convex sets

definition of convex set

polyhedron

connection to LP
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2. Convex sets

Convex sets and polyhedra

definition: A set C ⊆ IRn is called convex if
(1− λ)x1 + λx2 ∈ C whenever x1, x2 ∈ C and 0 ≤ λ ≤ 1.

geometrically, this means that C contains the line segment
between each pair of points in C .

examples: circle, ellipse, rectangle, certain polygons, pyramids

how can we prove that a set is convex?

later we learn some other useful techniques.

how can we verify that a set S is not convex? Well, it suffices
to find two points x1 and x2 and 0 ≤ λ ≤ 1 with the property
that (1− λ)x1 + λx2 6∈ S (you have then found a kind of
“hole” in S).
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2. Convex sets

the unit ball:
B = {x ∈ IRn : ‖x‖ ≤ 1}

to prove it is convex: let x , y ∈ B and λ ∈ [0, 1]. Then

‖(1− λ)x + λy‖ ≤ ‖(1− λ)x‖+ ‖λy‖
= (1− λ)‖x‖+ λ‖y‖
≤ (1− λ) + λ = 1

Therefore B is convex.

we here used the triangle inequality which is a convexity
property (we return to this): recall that the triangle ineq. may
be shown from the Cauchy-Schwarz inequality:

|x · y | ≤ ‖x‖ ‖y‖ for x , y ∈ IRn.

More generally: B(a, r) := {x ∈ IRn : ‖x − a‖ ≤ r} is convex
(where a ∈ IRn and r ≥ 0).
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2. Convex sets

Linear systems and polyhedra

By a linear system we mean a finite set of linear equations
and/or linear inequalities involving variables x1, . . . , xn.

Example: the linear system x1 + x2 = 3, x1 ≥ 0, x2 ≥ 0 in the
variables x1, x2.

equivalent form is x1 + x2 ≤ 3, −x1 − x2 ≤ −3, −x1 ≤ 0,
−x2 ≤ 0. Here we only have ≤–inequalities

definition: we define a polyhedron in IRn as a set of the form
{x ∈ IRn : Ax ≤ b} where A ∈ IRm×n and b ∈ IRm. Here m is
arbitrary, but finite. So: the solution set of a linear system.

Proposition

Every polyhedron is a convex set.
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2. Convex sets

Proposition

The intersection of convex sets is a convex set. The sum of convex
sets if also convex.

Note:

{x ∈ IRn : Ax = b}: affine set; if b = O: linear subspace

the dimension of an affine set z + L is defined as the
dimension of the (uniquely) associated subspace L

each affine set is a polyhedron

of special interest: affine set of dimension n − 1, i.e.

H = {x ∈ IRn : aT x = α}

where a ∈ IRn, a 6= O and α ∈ IR, i.e., solution set of one
linear equation. Called a hyperplane.
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2. Convex sets

LP and convexity

Consider a linear programming (LP) problem

max{cT x : Ax ≤ b, x ≥ O}

Then the feasible set {x ∈ IRn : Ax ≤ b, x ≥ O} is a
polyhedron, and therefore convex.

Assume that there is a finite optimal value v∗. Then the set
of optimal solutions {x ∈ IRn : Ax ≤ b, x ≥ O, cT x = v∗}
is a polyhedron.

This is (part of) the convexity in LP.
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3. Convex hulls

Convex hulls

convex hull

Carathéodory’s theorem

polytopes

linear optimization over polytopes
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3. Convex hulls

Convex hulls

Goal:

convex combinations are natural linear combinations to work
with in convexity: represent ”mixtures”.

convex hull gives a smallest convex set containing a given set
S . Makes it possible to approximate S by a nice set.

consider vectors x1, . . . , xt ∈ IRn and nonnegative numbers
(coefficients) λj ≥ 0 for j = 1, . . . , t such that

∑t
j=1 λj = 1.

Then the vector x =
∑t

j=1 λjxj is called a convex
combination of x1, . . . , xt . Thus, a convex combination is a
special linear combination.

convex comb. of two points (vectors), three, ...
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3. Convex hulls

Proposition

A set C ⊆ IRn is convex if and only if it contains all convex
combinations of its points.

Proof: Induction on number of points.

Definition. Let S ⊆ IRn be any set. Define the convex hull of S ,
denoted by conv (S) as the set of all convex combinations of
points in S .

the convex hull of two points x1 and x2 is the line segment
between the two points, [x1, x2].

an important fact is that conv (S) is a convex set, whatever
the set S might be.
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3. Convex hulls

Proposition

Let S ⊆ IRn. Then conv (S) is equal to the intersection of all
convex sets containing S. Thus, conv (S) is is the smallest
convex set containing S.
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3. Convex hulls

A ”special kind” of convex hull

what happens if we take the convex hull of a finite set of
points?

Definition. A set P ⊂ IRn is called a polytope if it is the convex
hull of a finite set of points in IRn.

polytopes have been studied a lot during the history of
mathematics

Platonian solids

important in many branches of mathematics, pure and applied.

in optimization: highly relevant in, especially, linear
programming and discrete optimization.
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3. Convex hulls

Linear optimization over polytopes

Consider
max{cT x : x ∈ conv ({x1, . . . , xt}}

where c ∈ IRn.

Each x ∈ P may be written as x =
∑t

j=1 λjxj for some λj ≥ 0,

j = 1, . . . , t where
∑

j λj = 1. Define v∗ = maxj cT xj . Then

cT x = cT
∑

j

λjxj =
t∑

j=1

λjc
T xj ≤

t∑
j=1

λjv
∗ = v∗

t∑
j=1

λj = v∗.

The set of optimal solutions is

conv ({xj : j ∈ J})
where J is the set of indices j satisfying cT xj = v∗.
This is a subpolytope of the given polytope (actually a
so-called face). Computationally OK if ”few” points. 19 / 74
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3. Convex hulls

Carathéodory’s theorem

The following result says that a convex combination of “many”
points may be reduced by using “fewer” points.

Theorem

Let S ⊆ IRn. Then each x ∈ conv (S) may be written as a convex
combination of (say) m affinely independent points in S. In
particular, m ≤ n + 1.

Try to construct a proof!
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3. Convex hulls

Two consequences

k + 1 vectors x0, x1, . . . , xk ∈ IRn are called affinely
independent if the k vectors x1 − x0, . . . , xk − x0 are linearly
independent.

A simplex is the convex hull of a affinely independent points.

Proposition

Every polytope in IRn can be written as the union of a finite
number of simplices.

Proposition

Every polytope in IRn is compact, i.e., closed and bounded.
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4. Projection and separation

4. Projection and separation

nearest points

separating and supporting hyperplanes

Farkas’ lemma
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4. Projection and separation

Projection

Approximation problem: Given a set S and a point x outside that
set, find a nearest point to x in S !

Question 1: does a nearest point exist?

Question 2: if it does, is it unique?

Question 3: how can we compute a nearest point?

convexity is central here!

23 / 74



Convexity: an introduction

4. Projection and separation

Let S be a closed subset of IRn. Recall: S is closed if and only if
S contains the limit point of each convergent sequence of points in
S . Thus, if {x (k)}∞k=1is a convergent sequence of points where
x (k) ∈ S , then the limit point x = limk→∞ x (k) also lies in S .

For S ⊆ IRn and x ∈ IRn we define the distance function

dS(x) = inf{‖x − s‖ : s ∈ S}

where ‖ · ‖ is the Euclidean norm.
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4. Projection and separation

Nearest point

Proposition

Let S ⊆ IRn be a nonempty closed set and let x ∈ IRn. Then there
is a nearest point s ∈ S to x, i.e., ‖x − s‖ = dS(x).

Proof. There is a sequence {s(k)}∞k=1 of points in S such that
limk→∞ ‖x − s(k)‖ = dS(x). This sequence is bounded and has a
convergent subsequence, and the limit point must lie in S . Then,
by continuity, dS(x) = limj→∞ ‖x − s(ij )‖ = ‖x − s‖.

Thus, closedness of S assures that a nearest point exists. But such
a point may not be unique.
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4. Projection and separation

Good news for convex sets

Theorem

Let C ⊆ IRnbe a nonempty closed convex set. Then, for every
x ∈ IRn, the nearest point x0 to x in C is unique. Moreover, x0 is
the unique solution of the inequalities

(x − x0)T (y − x0) ≤ 0 for all y ∈ C . (1)
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4. Projection and separation

Proof: Let x0 be a nearest point to x in C . Let y ∈ C and let
0 < λ < 1. Since C is convex, (1− λ)x0 + λy ∈ C and since x0 is
a nearest point we have that ‖(1− λ)x0 + λy − x‖ ≥ ‖x0 − x‖,
i.e., ‖(x0 − x) + λ(y − x0)‖ ≥ ‖x0 − x‖. This implies
‖x0 − x‖2 + 2λ(x0 − x)T (y − x0) + λ2‖y − x0‖2 ≥ ‖x0 − x‖2. We
now subtract ‖x0 − x‖2 on both sides, divide by λ, let λ→ 0+ and
finally multiply by −1. This proves that the inequality (1) holds for
every y ∈ C . Let now x1 be another nearest point to x in C ; we
want to show that x1 = x0. By letting y = x1 in (1) we get

(∗1) (x − x0)T (x1 − x0) ≤ 0.
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4. Projection and separation

Proof, cont.: By symmetry we also get that

(∗2) (x − x1)T (x0 − x1) ≤ 0.

By adding the inequalities (∗1) and (∗2) we obtain
‖x1 − x0‖2 = (x1 − x0)T (x1 − x0) ≤ 0 which implies that x1 = x0.
Thus, the nearest point is unique.

The variational inequality (1) has a nice geometrical
interpretation: the angle between the vectors x − x0 and y − x0

(both starting in the point x0) is obtuse, i.e., larger that 90◦.

pC (x) denotes the (unique) nearest point to x in C .
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4. Projection and separation

What’s next?

We shall now discuss supporting hyperplanes and separation of
convex sets.

Why is this important?

leads to another representation of closed convex sets

may be used to approximate convex functions by simpler
functions

may be used to prove Farkas’ lemma, and the linear
programming duality theorem

used in statistics (e.g. decision theory), mathematical
finance, economics, game theory.
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4. Projection and separation

Hyperplanes: definitions

Hyperplane: has the H = {x ∈ IRn : aT x = α} for some
nonzero vector a and a real number α.

a is called the normal vector of the hyperplane.

Every hyperplane is an affine set of dimension n − 1.

Each hyperplane divides the space into two sets
H+ = {x ∈ IRn : aT x ≥ α} and H− = {x ∈ IRn : aT x ≤ α}.
These sets H+ and H− are called halfspaces.
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4. Projection and separation

Definition: Let S ⊂ IRn and let H be a hyperplane in IRn.

If S is contained in one of the halfspaces H+ or H− and H ∩ S
is nonempty, we say that H is a supporting hyperplane of S .

We also say that H supports S at x , for each x ∈ H ∩ S .
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4. Projection and separation

Supporting hyperplanes

Note:

We now restrict the attention to closed convex sets.

Recall that pC (x) is the (unique) nearest point to x in C .

Then each point outside our set C gives rise to a supporting
hyperplane as the following lemma tells us.

Proposition

Let C ⊆ IRn be a nonempty closed convex set and let x ∈ IRn \ C .
Consider the hyperplane H containing pC (x) and having normal
vector a = x − pC (x). Then H supports C at pC (x) and C is
contained in the halfspace H− = {y : aT y ≤ α} where
α = aT pC (x).
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4. Projection and separation

The proof

Note that a is nonzero as x 6∈ C while pC (x) ∈ C . Then H is the
hyperplane with normal vector a and given by
aT y = α = aT pC (x). We shall show that C is contained in the
halfspace H−. So, let y ∈ C . Then, by (1) we have
(x − pC (x))T (y − pC (x)) ≤ 0, i.e., aT y ≤ aT pC (x) = α as
desired.
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4. Projection and separation

Separation

Define:
Ha,α := {x ∈ IRn : aT x = α};
H−a,α := {x ∈ IRn : aT x ≤ α};
H+

a,α := {x ∈ IRn : aT x ≥ α}.

We say that the hyperplane Ha,α separates two sets S and T if
S ⊆ H−a,α and T ⊆ H+

a,α or vice versa.

Note that both S and T may intersect the hyperplane Ha,α in this
definition.

We say that the hyperplane Ha,α strongly separates S and T if
there is an ε > 0 such that S ⊆ H−a,α−εand T ⊆ H+

a,α+ε or vice
versa. This means that

aT x ≤ α− ε for all x ∈ S ;
aT x ≥ α + ε for all x ∈ T .
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4. Projection and separation

Strong separation

Theorem

Let C ⊆ IRn be a nonempty closed convex set and assume that
x ∈ IRn \ C . Then C and x can be strongly separated.

Proof. Let H be the hyperplane containing pC (x) and having
normal vector x − pC (x). From the previous proposition we know
that H supports C at pC (x). Moreover x 6= pC (x) (as x 6∈ C ).
Consider the hyperplane H∗ which is parallel to H (i.e., having the
same normal vector) and contains the point (1/2)(x + pC (x)).
Then H∗ strongly separates x and C .
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4. Projection and separation

An important consequence

Exterior description of closed convex sets:

Corollary

Let C ⊆ IRn be a nonempty closed convex set. Then C is the
intersection of all its supporting halfspaces.
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4. Projection and separation

Another application: Farkas’ lemma

Theorem

Let A ∈ IRm×n and b ∈ IRm. Then there exists an x ≥ O
satisfying Ax = b if and only if for each y ∈ IRm with yT A ≥ O it
also holds that yT b ≥ 0.

Proof: Consider the closed convex cone (define!!)
C = cone ({a1, . . . , an}) ⊆ IRm. Observe: Ax = b has a
nonnegative solution simply means simply (geometrically) that
b ∈ C .
Assume now that Ax = b and x ≥ O. If yT a ≥ O, then
yT b = yT (ax) = (yT a)x ≥ 0.
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4. Projection and separation

Proof, cont.: Conversely, if Ax = b has no nonnegative solution,
then b 6∈ C . But then, by Strong Separation Theorem, C and b
can be strongly separated, so there is a nonzero vector y ∈ IRn and
α ∈ IRwith yT x ≥ α for each x ∈ C and yT b < α. As O ∈ C , we
have α ≤ 0. Moreover yT aj ≥ 0 so yT a ≥ O. Since yT b < 0 we
have proved the other direction of Farkas’ lemma.
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5. Representation of convex sets

5. Representation of convex sets

study (very briefly) the structure of convex sets

involves the notions: faces, extreme points and extreme
halflines

an important subfield: the theory (and application) of
polyhedra and polytopes
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Faces

Definition. Let C be a convex set in IRn. A convex subset F of C
is a face of C whenever the following condition holds:

if x1, x2 ∈ C is such that (1− λ)x1 + λx2 ∈ F for some
0 < λ < 1, then x1, x2 ∈ F .

So: if a relative interior point of the line segment between two
points of C lies in F , then the whole line segment between these
two points lies in F .

Note: the empty set and C itself are (trivial) faces of C .

Example:

faces of the unit square and unit circle
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5. Representation of convex sets

Exposed faces

Definition. Let C ⊆ IRn be a convex set and H a supporting
hyperplane of C . Then the intersection C ∩H is called an exposed
face of C .

Relation between faces and exposed faces:

Let C be a nonempty convex set in IRn. Then each exposed
face of C is also a face of C .

For polyhedra: exposed faces and faces are the same!
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5. Representation of convex sets

Extreme points and extreme halflines

Definition. If {x} is a face of a convex set C , then x is called an
extreme point of C . (So: face of dimension 0)

Equivalently: x ∈ C is an extreme point of C if and only if
whenever x1, x2 ∈ C satisfies x = (1/2)x1 + (1/2)x2, then
x1 = x2 = x .

Example: what are the extreme points if a polytope
P = conv ({x1, x2, . . . , xt})?

Definition. Consider an unbounded face F of C that has
dimension 1. Since F is convex, F must be either a line segment, a
line or a halfline (i.e., a set {x0 + λz : λ ≥ 0}). If F is a halfline,
we call F an extreme halfline of C .
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5. Representation of convex sets

Inner description of closed convex sets

Theorem

Let C ⊆ IRn be a nonempty and line-free closed convex set. Then
C is the convex hull of its extreme points and extreme halflines.

The bounded case is called Minkowski’s theorem.

Corollary

If C ⊆ IRn is a compact convex set, then C is the convex hull of
its extreme points.
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5. Representation of convex sets

Representation of polyhedra

Consider a polyhedron

P = {x ∈ IRn : Ax ≤ b}

A point x0 ∈ P is called a vertex of P if x0 is the (unique) solution
of n linearly independent equations from the system Ax = b.

The following says: Extreme point = vertex

Proposition

Let x0 ∈ P. Then x0 is a vertex of P if and only if x0 is an
extreme point of P.
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5. Representation of convex sets

Main theorem for polyhedra

Theorem

Each polyhedron P ⊆ IRn may be written as

P = conv (V ) + cone (Z )

for finite sets V ,Z ⊂ IRn. In particular, if P is pointed, we may
here let V be the set of vertices and let Z consist of a direction
vector of each extreme halfline of P.
Conversely, if V and Z are finite sets in IRn, then the set
P = conv (V ) + cone (Z ) is a polyhedron. i.e., there is a matrix
A ∈ IRm×n and a vector b ∈ IRm for some m such that

conv (V ) + cone (Z ) = {x ∈ IRn : Ax ≤ b}.
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6. Convex functions

6. Convex functions

convex functions of a single variable

... of several variables

characterizations

properties, and optimization
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6. Convex functions

Convex function - one variable

Definition. Let f : IR→ IR. We say that f is convex if

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y)

holds for every x , y ∈ IR and every 0 ≤ λ ≤ 1. Extension:
f : [a, b]→ IR

Geometric interpretation: “graph below secant”.

Examples:

f (x) = x2 (or f (x) = (x − a)2)

f (x) = xn for x ≥ 0

f (x) = |x |
f (x) = ex

f (x) = − log x

f (x) = −x log x
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6. Convex functions

Increasing slopes

Here is a characterization of convex functions. And it also works
even when f is not differentiable!

Proposition

A function f : IR→ IR is convex if and only if for each x0 ∈ IR the
slope function

x → f (x)− f (x0)

x − x0
.

is increasing on IR \ {x0}.
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6. Convex functions

Differentiability

The left-sided derivative of f at x0 is defined by

f ′−(x0) := lim
x→x−0

f (x)− f (x0)

x − x0
.

provided this limit exists. Similar: right-sided derivative f ′+(x0).

Theorem

Let f : I → IR be a convex function defined on an interval I . Then
f has both left-and right-sided derivatives at every interior point
of I . Moreover, if x , y ∈ I and x < y, then

f ′−(x) ≤ f ′+(x) ≤ f (y)− f (x)

y − x
≤ f ′−(y) ≤ f ′+(y).

In particular, both f ′− and f ′+ are increasing functions.
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6. Convex functions

Criterion: derivatives

Theorem

Let f : I → IR be a continuous function defined on an open
interval I .

(i) If f has an increasing left-derivative (or an increasing
right-derivative) on, then f is convex.

(ii) If f is differentiable, then f is convex if and only if f ′ is
increasing. If f is two times differentiable, then f is convex if and
only if f ′′ ≥ 0 in I .
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6. Convex functions

Convex functions are ”essentially continuous”!

Corollary

Let f : [a, b]→ IR be convex and define M = max{−f ′+(a), f ′−(b)}.
Then

|f (y)− f (x)| ≤ M |y − x | for all x , y ∈ [a, b].

In particular, f is continuous at every interior point of I .
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6. Convex functions

Generalized derivative: the subdifferential

Differentiability: one can show that each convex function is
differentiable almost everywhere; the exceptional set is
countable.
We now look further at derivatives of convex functions.

Let f : IR→ IR be a convex function. For each x ∈ IR we
associate the closed interval

∂f (x) := [f ′−(x), f ′+(x)].

which is called the subdifferential of f at x . Each point s ∈ ∂f (x)
is called a subderivative of f at x .

By a previous result: ∂f (x) is a nonempty and finite (closed)
interval for each x ∈ IR.
Moreover, f is differentiable at x if and only if ∂f (x) contains
a single point, namely the derivative f ′(x).
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Corollary

Let f : IR→ IR be a convex function and let x0 ∈ IR. Then, for
every s ∈ ∂f (x0), the inequality

f (x) ≥ f (x0) + s · (x − x0)

holds for every x ∈ IR.

Proof: Let s ∈ ∂f (x0). Due to Theorem 9 the following inequality
holds for every x < x0:

(f (x)− f (x0))/(x − x0) ≤ f ′−(x0) ≤ s.

Thus, f (x)− f (x0) ≥ s · (x − x0). Similarly, if x > x0 then

s ≤ f ′+(x0) ≤ (f (x)− f (x0))/(x − x0)

so again f (x)− f (x0) ≥ s · (x − x0) and we are done.
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Support

Consider again the inequality:

f (x) ≥ f (x0) + s · (x − x0) = L(x)

L can be seen as a linear approximation to f at x0. We say
that L supports f at x0; this means that L(x0) = f (x0) and
L(x) ≤ f (x) for every x .

So L underestmates f everywhere!
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Global minimum

We call x0 a global minimum if

f (x0) ≤ f (x) for all x ∈ IR.

Weaker notion: local minimum: smallest function value in some
neighborhood of x0.

In general it is hard to find a global minimum of a function.

But when f is convex this is much easier!
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The following result may be derived from

f (x) ≥ f (x0) + s · (x − x0) = f (x0).

Corollary

Let f : IR→ IR be a convex function. Then the following three
statements are equivalent.

(i) x0 is a local minimum for f .

(ii) x0 is a global minimum for f .

(iii) 0 ∈ ∂f (x0).
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Jensen’s inequality

Theorem

Let f : I → IR be a convex function defined on an interval I . If
x1, . . . , xr ∈ I and λ1, . . . , λr ≥ 0 satisfy

∑r
j=1 λj = 1, then

f (
r∑

j=1

λjxj) ≤
r∑

j=1

λj f (xj).

The arithmetic geometric mean inequality follows from this by
using f (x) = − log x :

(
r∏

j=1

xj)
1/r ≤ (1/r)

r∑
j=1

xj
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Convex functions of several variables

many results from the univariate case extends to the general
case of n variables.

Let f : C → IR where C ⊆ IRn is a convex set. We say that f is
convex if

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y)

holds for every x , y ∈ IRnand every 0 ≤ λ ≤ 1.

note: need C to be a convex set here

every linear, or affine, function from IRn to IR is convex.

Assume that f : IRn → IRis convex and h : IRm → IRn is
affine. Then the composition f ◦ h is convex (where
(f ◦ h)(x) := f (h(x)))
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Jensen’s inequality, more generally

Theorem

Let f : C → IR be a convex function defined on a convex set
C ⊆ IRn. If x1, . . . , xr ∈ C and λ1, . . . , λr ≥ 0 satisfy

∑r
j=1 λj = 1,

then

f (
r∑

j=1

λjxj) ≤
r∑

j=1

λj f (xj).

Note: in (discrete) probability this means

f (EX ) ≤ Ef (X )
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The epigraph

Let f : C → IR where C ⊆ IRn is a convex set. Define the
following set in IRn+1 associated with f :

epi (f ) = {(x , y) ∈ IRn+1 : y ≥ f (x)}.

It is called the epigraph of f .

The following result makes it possible to use results for convex sets
to obtain results for convex function (and vice versa). relation.

Theorem

Let f : C → IR where C ⊆ IRn is a convex set. Then f is a
convex function if and only if epi (f ) is a convex set.
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Supremum of convex functions

Corollary

Let fi (i ∈ I ) be a nonempty family of convex functions defined on
a convex set C ⊆ IRn. Then the function f given by

f (x) = sup
i∈I

fi (x) for x ∈ C

(the pointwise supremum) is convex.

Example:

Pointwise supremum of affine functions, e.g. (finite case)

f (x) = max
i≤n

(aT
i x + bi )

Note: such a function if not differentiable in certain points!
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The support function

Let P be a polytope in IRn, say P = conv ({v1, . . . , vt}). Define

ψP(c) := max{cT x : x ∈ P}.
which is the optimal value of this LP problem. This function ψP is
called the support function of P.

ψP is a convex function! Because it is the pointwise
supremum of the linear functions c → cT vj (j ≤ t). This
maximum is attained in a vertex (since the objective function
is linear).
More generally: the support function ψC of a compact
convex set C is convex. Similar proof, but we take the
supremum of an infinite family of linear functions; one for
each extreme point of C .
Here we used Minkowski’s theorem saying that a compact
convex set is the convex hull of its extreme points.
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Directional derivative

Let f : IRn → IR be a function and let x0 ∈ IRn and z ∈ IRn,
z 6= O. The directional derivative of f at x0 is

f ′(x0; z) = lim
t→0

f (x0 + tz)− f (x0)

t

provided the limit exists. Special case: f ′(x0; ej) = ∂f (x)
∂xj

.

Let f : IRn → IR be a convex function and consider a line
L = {x0 + λz : λ ∈ IR} where x0 is a point on the line and z is the
direction vector of L. Define the function g : IR→ IR by

g(t) = f (x0 + tz) for t ∈ IR.

One can prove that g is a convex function (of a single variable).
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Thus, the restriction g of a convex function f to any line is
another convex function.

A consequence of this result is that a convex function
f : IRn → IR has one-sided directional derivatives:

g ′+(0) = limt→0+(g(t)− g(0))/t

= limt→0+(f (x0 + tz)− f (x0))/t

= f ′+(x0; z)
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Continuity

Theorem

Let f : C → IR be a convex function defined on an open convex
set C ⊆ IRn. Then f is continuous on C .
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Characterization of convexity

We now recall a concept from linear algebra: a symmetric matrix
A ∈ IRn×n is positive semidefinite if

xT A x =
∑
i ,j

aijxixj ≥ 0 for each x ∈ IRn.

A useful fact is that A is positive semidefinite if and only if all the
eigenvalues of A are (real and) nonnegative.

Theorem (Characterization via the Hessian)

Let f be a real-valued function defined on an open convex set
C ⊆ IRn and assume that f has continuous second-order partial
derivatives on C .

Then f is convex if and only if the Hessian matrix Hf (x) is
positive semidefinite for each x ∈ C .
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Examples

Let A ∈ IRn×n be a symmetric matrix which is positive
semidefinite and consider the function f : IRn → IR given by

f (x) = xT A x =
∑
i ,j

aijxixj .

Then it is easy to check that Hf (x) = A for each x ∈ IRn.
Therefore, f is a convex function.
A symmetric n × n matrix A is called diagonally dominant if

|aii | ≥
∑
j 6=i

|aij | (i ≤ n)

If all these inequalities are strict, A is strictly diagonally
dominant. These matrices arise in many applications, e.g.
splines and differential equations.
It can be shown that every symmetric diagonally dominant
matrix with positive diagonal is positive semidefinite. 67 / 74
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Differentiability

A function f defined on an open set in IRn is said to be
differentiable at a point x0 in its domain if there is a vector d such
that

lim
h→O

(f (x0 + h)− f (x0)− dT h)/‖h‖ = 0.

Then d is unique; called the gradient of f at x0.

Assume that f is differentiable at x0 and the gradient at x0 is d .
Then, for each nonzero vector z ,

f ′(x0; z) = dT z .
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Partial derivatives, gradients

Theorem

Let f be a real-valued convex function defined on an open convex
set C ⊆ IRn. Assume that all the partial derivatives exist at a
point x ∈ C . Then f is differentiable at x.

Theorem

Let f : C → IR be a differentiable function defined on an open
convex set C ⊆ IRn. Then the following conditions are equivalent:

(i) f is convex.

(ii) f (x) ≥ f (x0) +∇f (x0)T (x − x0) for all x , x0 ∈ C .

(iii) (∇f (x)−∇f (x0))T (x − x0) ≥ 0 for all x , x0 ∈ C .
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Consider a convex function f and an affine function h, both
defined on a convex set C ⊆ IRn.
We say that h : IRn → IR supports f at x0 if h(x) ≤ f (x) for every
x and h(x0) = f (x0).

Theorem

Let f : C → IR be a convex function defined on a convex set
C ⊆ IRn. Then f has a supporting (affine) function at every point.
Moreover, f is the pointwise supremum of all its (affine)
supporting functions.
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Global minimum

Corollary

Let f : C → IR be a differentiable convex function defined on an
open convex set C ⊆ IRn. Let x∗ ∈ C . Then the following three
statements are equivalent.

(i) x∗ is a local minimum for f .

(ii) x∗ is a global minimum for f .

(iii) ∇f (x∗) = O (i.e., all partial derivatives at x∗ are zero).
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Subgradients

Definition. Let f be a convex function and x0 ∈ IRn. Then s ∈ IRn

is called a subgradient of f at x0 if

f (x) ≥ f (x0) + sT (x − x0) for all x ∈ IRn

The set of all subgradients of f at x0 is called the
subdifferential of f at x0, and it is denoted by ∂f (x0).

Here is the basic result on the subdifferential.

Theorem

Let f : IRn → IR be a convex function, and x0 ∈ IRn. Then ∂f (x0)
is a nonempty, compact and convex set in IRn.
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Global minimum, again

Moreover, we have the following theorem on minimum of convex
functions.

Corollary

Let f : C → IR be a convex function defined on an open convex
set C ⊆ IRn. Let x∗ ∈ C . Then the following three statements are
equivalent.

(i) x∗ is a local minimum for f .

(ii) x∗ is a global minimum for f .

(iii) O ∈ ∂f (x∗) (O is a subgradient).
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Final comments ...

This means that convex problems are attractive, and
sometimes other problems are reformulated/modfied into
convex problems

Algorithms exist for minimizing convex functions, with or
wiothout constraints.

So gradient-like methods for differentiable functions are
extended into subgradient methods for general convex
functions.

More complicated, but efficient methods exist.
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