Convexity: an introduction

Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo

1. Introduction

- what is convexity
- where does it arise
- main concepts and results

Literature:

- Rockafellar: Convex analysis, 1970.
- Webster: *Convexity*, 1994.
- Grünbaum: *Convex polytopes*, 1967.
- Ziegler: Lectures on polytopes, 1994.
- Hiriart-Urruty and Lemaréchal: Convex analysis and minimization algorithms, 1993.
- Boyd and Vandenberghe: Convex optimization, 2004.

- roughly: a convex set in \mathbb{R}^2 (or \mathbb{R}^n) is a set "with no holes".
- more accurately, a convex set C has the following property: whenever we choose two points in the set, say $x, y \in C$, then all points in the line segment between x and y also lie in C.
- a sphere (ball), an ellipsoid, a point, a line, a line segment, a rectangle, a triangle, halfplane, the plane itself
- the union of two disjoint (closed) triangles is nonconvex.

└─1. Introduction

Why are convex sets important?

Optimization:

- mathematical foundation for optimization
- feasible set, optimal set,
- objective function, constraints, value function
- closely related to the numerical solvability of an optimization problem

Statistics:

- statistics: both in theory and applications
- estimation: "estimate" the value of one or more unknown parameters in a stochastic model. To measure quality of a solution one uses a "loss function" and, quite often, this loss function is convex.
- statistical decision theory: the concept of risk sets is central; they are convex sets, so-called polytopes.

└─1. Introduction

The expectation operator: Assume that X is a discrete variable taking values in some finite set of real numbers, say $\{x_1, \ldots, x_r\}$ with probabilities p_i of the event $X = x_i$. Probabilities are all nonnegative and sum to one, so $p_j \ge 0$ and $\sum_{j=1}^r p_j = 1$. The expectation (or mean) of X is the number

$$EX = \sum_{j=1}^r p_j x_j.$$

This as a weighted average of the possible values that X can attain, and the weights are the probabilities. We say that EX is a convex combination of the numbers x_1, \ldots, x_r .

• An extension is when the discrete random variable is a vector, so it attains values in a finite set $S = \{x_1, \ldots, x_r\}$ of points in \mathbb{R}^n . The expectation is defined by $EX = \sum_{j=1}^r p_j x_j$ which, again, is a convex combination of the points in S.

Approximation

- approximation: given some set $S \subset \mathbb{R}^n$ and a vector $z \notin S$, find a vector $x \in S$ which is as close to z as possible among all vectors in S.
- distance: Euclidean norm (given by $(||x|| = (\sum_{j=1}^{n} x_j^2)^{1/2})$ or some other norm.
- convexity?
- \blacksquare norm functions, i.e., functions $x \to \|x\|$, are convex functions.
- a basic question is if a nearest point (to z in S) exists: yes, provided that S is a closed set.
- and: if S is a convex set (and the norm is the Euclidean norm), then the nearest point is unique.
- this may not be so for nonconvex sets.

└─1. Introduction

Nonnegative vectors

- convexity deals with inequalities
- $x \in \mathbb{R}^n$ is nonnegative if each component x_i is nonnegative.
- we let IR^{*n*}₊denote the set of all nonnegative vectors. The zero vector is written *O*.
- inequalities for vectors, so if $x, y \in {\rm I\!R}^n$ we write

$$x \leq y \quad (\text{or } y \geq x)$$

and this means that $x_i \leq y_i$ for $i = 1, \ldots, n$.

- definition of convex set
- polyhedron
- connection to LP

Convex sets and polyhedra

- definition: A set $C \subseteq \mathbb{R}^n$ is called convex if $(1 \lambda)x_1 + \lambda x_2 \in C$ whenever $x_1, x_2 \in C$ and $0 \le \lambda \le 1$.
- geometrically, this means that C contains the line segment between each pair of points in C.
- examples: circle, ellipse, rectangle, certain polygons, pyramids
- how can we prove that a set is convex?
- later we learn some other useful techniques.
- how can we verify that a set S is not convex? Well, it suffices to find two points x_1 and x_2 and $0 \le \lambda \le 1$ with the property that $(1 \lambda)x_1 + \lambda x_2 \notin S$ (you have then found a kind of "hole" in S).

the unit ball:

 $B = \{x \in \mathrm{I\!R}^n : \|x\| \le 1\}$

• to prove it is convex: let $x, y \in B$ and $\lambda \in [0, 1]$. Then

$$\begin{split} \|(1-\lambda)x+\lambda y\| &\leq \|(1-\lambda)x\|+\|\lambda y\| \\ &= (1-\lambda)\|x\|+\lambda\|y\| \\ &\leq (1-\lambda)+\lambda = 1 \end{split}$$

Therefore B is convex.

we here used the triangle inequality which is a convexity property (we return to this): recall that the triangle ineq. may be shown from the Cauchy-Schwarz inequality:

 $|x \cdot y| \le ||x|| ||y|| \quad \text{for } x, y \in {\rm I\!R}^n.$

• More generally: $B(a, r) := \{x \in \mathbb{R}^n : ||x - a|| \le r\}$ is convex (where $a \in \mathbb{R}^n$ and $r \ge 0$).

Linear systems and polyhedra

- By a linear system we mean a finite set of linear equations and/or linear inequalities involving variables x_1, \ldots, x_n .
- Example: the linear system $x_1 + x_2 = 3$, $x_1 \ge 0$, $x_2 \ge 0$ in the variables x_1, x_2 .
- equivalent form is $x_1 + x_2 \le 3$, $-x_1 x_2 \le -3$, $-x_1 \le 0$, $-x_2 \le 0$. Here we only have \le -inequalities
- definition: we define a polyhedron in \mathbb{R}^n as a set of the form $\{x \in \mathbb{R}^n : Ax \leq b\}$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Here *m* is arbitrary, but finite. So: the solution set of a linear system.

Proposition

Every polyhedron is a convex set.

Proposition

The intersection of convex sets is a convex set. The sum of convex sets if also convex.

Note:

- $\{x \in \mathbb{R}^n : Ax = b\}$: affine set; if b = O: linear subspace
- the dimension of an affine set z + L is defined as the dimension of the (uniquely) associated subspace L
- each affine set is a polyhedron
- of special interest: affine set of dimension n-1, i.e.

 $H = \{x \in \mathbb{R}^n : a^T x = \alpha\}$

where $a \in \mathbb{R}^n$, $a \neq 0$ and $\alpha \in \mathbb{R}$, i.e., solution set of one linear equation. Called a hyperplane.

LP and convexity

Consider a linear programming (LP) problem

 $\max\{c^T x : Ax \le b, \ x \ge 0\}$

- Then the feasible set $\{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ is a polyhedron, and therefore convex.
- Assume that there is a finite optimal value v^* . Then the set of optimal solutions $\{x \in \mathbb{R}^n : Ax \le b, x \ge 0, c^T x = v^*\}$ is a polyhedron.
- This is (part of) the convexity in LP.

Convex hulls

- convex hull
- Carathéodory's theorem
- polytopes
- linear optimization over polytopes

Convex hulls

Goal:

- convex combinations are natural linear combinations to work with in convexity: represent "mixtures".
- convex hull gives a smallest convex set containing a given set
 S. Makes it possible to approximate S by a nice set.
- consider vectors $x_1, \ldots, x_t \in \mathbb{R}^n$ and nonnegative numbers (coefficients) $\lambda_j \ge 0$ for $j = 1, \ldots, t$ such that $\sum_{j=1}^t \lambda_j = 1$. Then the vector $\mathbf{x} = \sum_{j=1}^t \lambda_j x_j$ is called a convex combination of x_1, \ldots, x_t . Thus, a convex combination is a special linear combination.
- convex comb. of two points (vectors), three, ...

Proposition

A set $C \subseteq \mathbb{R}^n$ is convex if and only if it contains all convex combinations of its points.

Proof: Induction on number of points.

Definition. Let $S \subseteq \mathbb{R}^n$ be any set. Define the convex hull of S, denoted by conv (S) as the set of all convex combinations of points in S.

- the convex hull of two points x_1 and x_2 is the line segment between the two points, $[x_1, x_2]$.
- an important fact is that conv (S) is a convex set, whatever the set S might be.

Proposition

Let $S \subseteq \mathbb{R}^n$. Then conv (S) is equal to the intersection of all convex sets containing S. Thus, conv (S) is is the smallest convex set containing S.

└─3. Convex hulls

A "special kind" of convex hull

what happens if we take the convex hull of a finite set of points?

Definition. A set $P \subset \mathbb{R}^n$ is called a polytope if it is the convex hull of a finite set of points in \mathbb{R}^n .

- polytopes have been studied a lot during the history of mathematics
- Platonian solids
- important in many branches of mathematics, pure and applied.
- in optimization: highly relevant in, especially, linear programming and discrete optimization.

└─3. Convex hulls

Linear optimization over polytopes

Consider

$$\max\{c^{\mathsf{T}}x:x\in \operatorname{conv}(\{x_1,\ldots,x_t\}\}\)$$

where $c \in \mathbb{R}^n$.

Each $x \in P$ may be written as $x = \sum_{j=1}^{t} \lambda_j x_j$ for some $\lambda_j \ge 0$, j = 1, ..., t where $\sum_j \lambda_j = 1$. Define $v^* = \max_j c^T x_j$. Then

$$c^{\mathsf{T}}x = c^{\mathsf{T}}\sum_{j}\lambda_{j}x_{j} = \sum_{j=1}^{t}\lambda_{j}c^{\mathsf{T}}x_{j} \leq \sum_{j=1}^{t}\lambda_{j}v^{*} = v^{*}\sum_{j=1}^{t}\lambda_{j} = v^{*}.$$

The set of optimal solutions is

$$\operatorname{conv}\left(\{x_j: j\in J\}\right)$$

where J is the set of indices j satisfying $c^T x_j = v^*$.

 This is a subpolytope of the given polytope (actually a so-called *face*). Computationally OK if "few" points. └─3. Convex hulls

Carathéodory's theorem

The following result says that a convex combination of "many" points may be reduced by using "fewer" points.

Theorem

Let $S \subseteq \mathbb{R}^n$. Then each $x \in \text{conv}(S)$ may be written as a convex combination of (say) m affinely independent points in S. In particular, $m \le n+1$.

Try to construct a proof!

Two consequences

- k + 1 vectors $x_0, x_1, \ldots, x_k \in \mathbb{R}^n$ are called affinely independent if the k vectors $x_1 - x_0, \ldots, x_k - x_0$ are linearly independent.
- A simplex is the convex hull of a affinely independent points.

Proposition

Every polytope in \mathbb{R}^n can be written as the union of a finite number of simplices.

Proposition

Every polytope in \mathbb{R}^n is compact, i.e., closed and bounded.

4. Projection and separation

nearest points

- separating and supporting hyperplanes
- Farkas' lemma

Projection

Approximation problem: Given a set S and a point x outside that set, find a nearest point to x in S !

- Question 1: does a nearest point exist?
- Question 2: if it does, is it unique?
- Question 3: how can we compute a nearest point?
- convexity is central here!

Let S be a closed subset of \mathbb{R}^n . Recall: S is closed if and only if S contains the limit point of each convergent sequence of points in S. Thus, if $\{x^{(k)}\}_{k=1}^{\infty}$ is a convergent sequence of points where $x^{(k)} \in S$, then the limit point $x = \lim_{k \to \infty} x^{(k)}$ also lies in S.

For $S \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$ we define the distance function

 $d_S(x) = \inf\{\|x - s\| : s \in S\}$

where $\|\cdot\|$ is the Euclidean norm.

Nearest point

Proposition

Let $S \subseteq \mathbb{R}^n$ be a nonempty closed set and let $x \in \mathbb{R}^n$. Then there is a nearest point $s \in S$ to x, i.e., $||x - s|| = d_S(x)$.

Proof. There is a sequence $\{s^{(k)}\}_{k=1}^{\infty}$ of points in S such that $\lim_{k\to\infty} ||x - s^{(k)}|| = d_S(x)$. This sequence is bounded and has a convergent subsequence, and the limit point must lie in S. Then, by continuity, $d_S(x) = \lim_{j\to\infty} ||x - s^{(i_j)}|| = ||x - s||$.

Thus, closedness of S assures that a nearest point exists. But such a point may not be unique.

Good news for convex sets

Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then, for every $x \in \mathbb{R}^n$, the nearest point x_0 to x in C is unique. Moreover, x_0 is the unique solution of the inequalities

$$(x-x_0)^T(y-x_0) \le 0 \quad \text{for all } y \in C.$$
(1)

Proof: Let x_0 be a nearest point to x in C. Let $y \in C$ and let $0 < \lambda < 1$. Since C is convex, $(1 - \lambda)x_0 + \lambda y \in C$ and since x_0 is a nearest point we have that $||(1 - \lambda)x_0 + \lambda y - x|| \ge ||x_0 - x||$, i.e., $||(x_0 - x) + \lambda(y - x_0)|| \ge ||x_0 - x||$. This implies $||x_0 - x||^2 + 2\lambda(x_0 - x)^T(y - x_0) + \lambda^2 ||y - x_0||^2 \ge ||x_0 - x||^2$. We now subtract $||x_0 - x||^2$ on both sides, divide by λ , let $\lambda \to 0^+$ and finally multiply by -1. This proves that the inequality (1) holds for every $y \in C$. Let now x_1 be another nearest point to x in C; we want to show that $x_1 = x_0$. By letting $y = x_1$ in (1) we get

$$(*_1) (x - x_0)^T (x_1 - x_0) \leq 0.$$

Proof, cont.: By symmetry we also get that

$$(*_2) (x - x_1)^T (x_0 - x_1) \leq 0.$$

By adding the inequalities $(*_1)$ and $(*_2)$ we obtain $||x_1 - x_0||^2 = (x_1 - x_0)^T (x_1 - x_0) \le 0$ which implies that $x_1 = x_0$. Thus, the nearest point is unique.

The variational inequality (1) has a nice geometrical interpretation: the angle between the vectors $x - x_0$ and $y - x_0$ (both starting in the point x_0) is obtuse, i.e., larger that 90°.

• $p_C(x)$ denotes the (unique) nearest point to x in C.

What's next?

We shall now discuss supporting hyperplanes and separation of convex sets.

Why is this important?

- leads to another representation of closed convex sets
- may be used to approximate convex functions by simpler functions
- may be used to prove Farkas' lemma, and the linear programming duality theorem
- used in statistics (e.g. decision theory), mathematical finance, economics, game theory.

Hyperplanes: definitions

- Hyperplane: has the $H = \{x \in \mathbb{R}^n : a^T x = \alpha\}$ for some nonzero vector *a* and a real number α .
- *a* is called the normal vector of the hyperplane.
- Every hyperplane is an affine set of dimension n-1.
- Each hyperplane divides the space into two sets $H^+ = \{x \in \mathbb{R}^n : a^T x \ge \alpha\}$ and $H^- = \{x \in \mathbb{R}^n : a^T x \le \alpha\}.$
- These sets H^+ and H^- are called halfspaces.

Definition: Let $S \subset \mathbb{R}^n$ and let *H* be a hyperplane in \mathbb{R}^n .

- If S is contained in one of the halfspaces H^+ or H^- and $H \cap S$ is nonempty, we say that H is a supporting hyperplane of S.
- We also say that H supports S at x, for each $x \in H \cap S$.

Supporting hyperplanes

Note:

- We now restrict the attention to closed convex sets.
- Recall that $p_C(x)$ is the (unique) nearest point to xin C.
- Then each point outside our set C gives rise to a supporting hyperplane as the following lemma tells us.

Proposition

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and let $x \in \mathbb{R}^n \setminus C$. Consider the hyperplane H containing $p_C(x)$ and having normal vector $a = x - p_C(x)$. Then H supports C at $p_C(x)$ and C is contained in the halfspace $H^- = \{y : a^T y \leq \alpha\}$ where $\alpha = a^T p_C(x)$.

The proof

Note that *a* is nonzero as $x \notin C$ while $p_C(x) \in C$. Then *H* is the hyperplane with normal vector *a* and given by $a^T y = \alpha = a^T p_C(x)$. We shall show that *C* is contained in the halfspace H^- . So, let $y \in C$. Then, by (1) we have $(x - p_C(x))^T (y - p_C(x)) \leq 0$, i.e., $a^T y \leq a^T p_C(x) = \alpha$ as desired.

Separation

Define:

$$\begin{aligned} H_{a,\alpha} &:= \{ x \in \mathbb{R}^n : a^T x = \alpha \}; \\ H_{a,\alpha}^- &:= \{ x \in \mathbb{R}^n : a^T x \leq \alpha \}; \\ H_{a,\alpha}^+ &:= \{ x \in \mathbb{R}^n : a^T x \geq \alpha \}. \end{aligned}$$

We say that the hyperplane $H_{a,\alpha}$ separates two sets S and T if $S \subseteq H_{a,\alpha}^-$ and $T \subseteq H_{a,\alpha}^+$ or vice versa.

Note that both S and T may intersect the hyperplane $H_{a,\alpha}$ in this definition.

We say that the hyperplane $H_{a,\alpha}$ strongly separates S and T if there is an $\epsilon > 0$ such that $S \subseteq H^-_{a,\alpha-\epsilon}$ and $T \subseteq H^+_{a,\alpha+\epsilon}$ or vice versa. This means that

$$\begin{aligned} \mathbf{a}^T \mathbf{x} &\leq \alpha - \epsilon \quad \text{for all } \mathbf{x} \in \mathbf{S}; \\ \mathbf{a}^T \mathbf{x} &\geq \alpha + \epsilon \quad \text{for all } \mathbf{x} \in \mathbf{T}. \end{aligned}$$

Strong separation

Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and assume that $x \in \mathbb{R}^n \setminus C$. Then C and x can be strongly separated.

Proof. Let *H* be the hyperplane containing $p_C(x)$ and having normal vector $x - p_C(x)$. From the previous proposition we know that *H* supports *C* at $p_C(x)$. Moreover $x \neq p_C(x)$ (as $x \notin C$). Consider the hyperplane *H*^{*} which is parallel to *H* (i.e., having the same normal vector) and contains the point $(1/2)(x + p_C(x))$. Then *H*^{*} strongly separates *x* and *C*.

An important consequence

Exterior description of closed convex sets:

Corollary

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Then C is the intersection of all its supporting halfspaces.
4. Projection and separation

Another application: Farkas' lemma

Theorem

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then there exists an $x \ge O$ satisfying Ax = b if and only if for each $y \in \mathbb{R}^m$ with $y^T A \ge O$ it also holds that $y^T b \ge 0$.

Proof: Consider the closed convex cone (define!!) $C = \operatorname{cone} (\{a^1, \dots, a^n\}) \subseteq \mathbb{R}^m$. Observe: Ax = b has a nonnegative solution simply means simply (geometrically) that $b \in C$. Assume now that Ax = b and $x \ge O$. If $y^T a \ge O$, then $y^T b = y^T (ax) = (y^T a)x \ge 0$. **Proof, cont.**: Conversely, if Ax = b has no nonnegative solution, then $b \notin C$. But then, by Strong Separation Theorem, C and bcan be strongly separated, so there is a nonzero vector $y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ with $y^T x \ge \alpha$ for each $x \in C$ and $y^T b < \alpha$. As $O \in C$, we have $\alpha \le 0$. Moreover $y^T a^j \ge 0$ so $y^T a \ge O$. Since $y^T b < 0$ we have proved the other direction of Farkas' lemma.

5. Representation of convex sets

- study (very briefly) the structure of convex sets
- involves the notions: faces, extreme points and extreme halflines
- an important subfield: the theory (and application) of polyhedra and polytopes

Faces

Definition. Let C be a convex set in \mathbb{R}^n . A convex subset F of C is a face of C whenever the following condition holds:

• if $x_1, x_2 \in C$ is such that $(1 - \lambda)x_1 + \lambda x_2 \in F$ for some $0 < \lambda < 1$, then $x_1, x_2 \in F$.

So: if a relative interior point of the line segment between two points of C lies in F, then the whole line segment between these two points lies in F.

Note: the empty set and C itself are (trivial) faces of C.

Example:

faces of the unit square and unit circle

Exposed faces

Definition. Let $C \subseteq \mathbb{R}^n$ be a convex set and H a supporting hyperplane of C. Then the intersection $C \cap H$ is called an exposed face of C.

Relation between faces and exposed faces:

- Let C be a nonempty convex set in \mathbb{R}^n . Then each exposed face of C is also a face of C.
- For polyhedra: exposed faces and faces are the same!

Extreme points and extreme halflines

Definition. If $\{x\}$ is a face of a convex set *C*, then *x* is called an extreme point of *C*. (So: face of dimension 0)

- Equivalently: x ∈ C is an extreme point of C if and only if whenever x₁, x₂ ∈ C satisfies x = (1/2)x₁ + (1/2)x₂, then x₁ = x₂ = x.
- Example: what are the extreme points if a polytope P = conv ({x₁, x₂, ..., x_t})?

Definition. Consider an unbounded face F of C that has dimension 1. Since F is convex, F must be either a line segment, a line or a halfline (i.e., a set $\{x_0 + \lambda z : \lambda \ge 0\}$). If F is a halfline, we call F an extreme halfline of C.

Inner description of closed convex sets

Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty and line-free closed convex set. Then *C* is the convex hull of its extreme points and extreme halflines.

The bounded case is called Minkowski's theorem.

Corollary

If $C \subseteq \mathbb{R}^n$ is a compact convex set, then C is the convex hull of its extreme points.

Representation of polyhedra

Consider a polyhedron

 $P = \{x \in \mathbb{R}^n : Ax \le b\}$

A point $x_0 \in P$ is called a vertex of P if x_0 is the (unique) solution of n linearly independent equations from the system Ax = b.

The following says: Extreme point = vertex

Proposition

Let $x_0 \in P$. Then x_0 is a vertex of P if and only if x_0 is an extreme point of P.

Main theorem for polyhedra

Theorem

Each polyhedron $P \subseteq \mathbb{R}^n$ may be written as

 $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$

for finite sets $V, Z \subset \mathbb{R}^n$. In particular, if P is pointed, we may here let V be the set of vertices and let Z consist of a direction vector of each extreme halfline of P. Conversely, if V and Z are finite sets in \mathbb{R}^n , then the set $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$ is a polyhedron. i.e., there is a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$ for some m such that

 $\operatorname{conv}(V) + \operatorname{cone}(Z) = \{ x \in \mathbb{R}^n : Ax \le b \}.$

6. Convex functions

- convex functions of a single variable
- ... of several variables
- characterizations
- properties, and optimization

Convex function - one variable

Definition. Let $f : \mathbb{R} \to \mathbb{R}$. We say that f is convex if

 $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$

holds for every $x, y \in \mathbb{R}$ and every $0 \le \lambda \le 1$. Extension: $f : [a, b] \to \mathbb{R}$

Geometric interpretation: "graph below secant".

Examples:

•
$$f(x) = x^2$$
 (or $f(x) = (x - a)^2$)
• $f(x) = x^n$ for $x \ge 0$
• $f(x) = |x|$
• $f(x) = e^x$
• $f(x) = -\log x$
• $f(x) = -x \log x$

Increasing slopes

Here is a characterization of convex functions. And it also works even when f is not differentiable!

Proposition

A function $f: {\rm I\!R} \to {\rm I\!R}$ is convex if and only if for each $x_0 \in {\rm I\!R}$ the slope function

$$x
ightarrow rac{f(x)-f(x_0)}{x-x_0}.$$

is increasing on $\mathbb{R} \setminus \{x_0\}$.

Differentiability

The left-sided derivative of f at x_0 is defined by

$$f'_{-}(x_0) := \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

provided this limit exists. Similar: right-sided derivative $f'_+(x_0)$.

Theorem

Let $f : I \to \mathbb{R}$ be a convex function defined on an interval I. Then f has both left-and right-sided derivatives at every interior point of I. Moreover, if $x, y \in I$ and x < y, then

$$f'_{-}(x) \leq f'_{+}(x) \leq rac{f(y) - f(x)}{y - x} \leq f'_{-}(y) \leq f'_{+}(y).$$

In particular, both f'_{-} and f'_{+} are increasing functions.

Criterion: derivatives

Theorem

Let $f: I \to {\rm I\!R}$ be a continuous function defined on an open interval I.

(*i*) If f has an *increasing left-derivative* (or an increasing right-derivative) on, then f is convex.

(ii) If f is differentiable, then f is convex if and only if f' is increasing. If f is two times differentiable, then f is convex if and only if $f'' \ge 0$ in I.

Convex functions are "essentially continuous"!

Corollary

Let $f : [a, b] \rightarrow \mathbb{R}$ be convex and define $M = \max\{-f'_+(a), f'_-(b)\}$. Then

$$|f(y) - f(x)| \le M |y - x|$$
 for all $x, y \in [a, b]$.

In particular, f is continuous at every interior point of I.

Generalized derivative: the subdifferential

- Differentiability: one can show that each convex function is differentiable almost everywhere; the exceptional set is countable.
- We now look further at derivatives of convex functions.

Let $f: {\rm I\!R} \to {\rm I\!R}$ be a convex function. For each $x \in {\rm I\!R}$ we associate the closed interval

 $\partial f(x) := [f'_-(x), f'_+(x)].$

which is called the subdifferential of f at x. Each point $s \in \partial f(x)$ is called a subderivative of f at x.

- By a previous result: $\partial f(x)$ is a nonempty and finite (closed) interval for each $x \in \mathbb{R}$.
- Moreover, f is differentiable at x if and only if $\partial f(x)$ contains a single point, namely the derivative f'(x).

Corollary

Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function and let $x_0 \in \mathbb{R}$. Then, for every $s \in \partial f(x_0)$, the inequality

$$f(x) \geq f(x_0) + s \cdot (x - x_0)$$

holds for every $x \in \mathbb{R}$.

Proof: Let $s \in \partial f(x_0)$. Due to Theorem 9 the following inequality holds for every $x < x_0$:

$$(f(x) - f(x_0))/(x - x_0) \le f'_-(x_0) \le s.$$

Thus, $f(x) - f(x_0) \ge s \cdot (x - x_0)$. Similarly, if $x > x_0$ then

$$s \leq f'_+(x_0) \leq (f(x) - f(x_0))/(x - x_0)$$

so again $f(x) - f(x_0) \ge s \cdot (x - x_0)$ and we are done.

Support

Consider again the inequality:

$$f(x) \geq f(x_0) + s \cdot (x - x_0) = L(x)$$

- *L* can be seen as a linear approximation to f at x_0 . We say that *L* supports f at x_0 ; this means that $L(x_0) = f(x_0)$ and $L(x) \le f(x)$ for every x.
- So *L* underestmates *f* everywhere!

Global minimum

We call x_0 a global minimum if

$$f(x_0) \leq f(x)$$
 for all $x \in \mathbb{R}$.

Weaker notion: local minimum: smallest function value in some neighborhood of x_0 .

In general it is hard to find a global minimum of a function.

But when *f* is convex this is much easier!

The following result may be derived from

$$f(x) \ge f(x_0) + s \cdot (x - x_0) = f(x_0).$$

Corollary

Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Then the following three statements are equivalent.

- (i) x_0 is a local minimum for f.
- (ii) x_0 is a global minimum for f.
- (iii) $0 \in \partial f(x_0)$.

Jensen's inequality

Theorem

Let $f : I \to \mathbb{R}$ be a convex function defined on an interval I. If $x_1, \ldots, x_r \in I$ and $\lambda_1, \ldots, \lambda_r \ge 0$ satisfy $\sum_{j=1}^r \lambda_j = 1$, then

$$f(\sum_{j=1}^r \lambda_j x_j) \leq \sum_{j=1}^r \lambda_j f(x_j).$$

The arithmetic geometric mean inequality follows from this by using $f(x) = -\log x$:

$$(\prod_{j=1}^r x_j)^{1/r} \le (1/r) \sum_{j=1}^r x_j$$

Convex functions of several variables

many results from the univariate case extends to the general case of n variables.

Let $f : C \to {\rm I\!R}$ where $C \subseteq {\rm I\!R}^n$ is a convex set. We say that f is convex if

 $f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$

holds for every $x, y \in {\rm I\!R}^n$ and every $0 \le \lambda \le 1$.

- note: need *C* to be a convex set here
- every linear, or affine, function from \mathbb{R}^n to \mathbb{R} is convex.
- Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is convex and $h : \mathbb{R}^m \to \mathbb{R}^n$ is affine. Then the composition $f \circ h$ is convex (where $(f \circ h)(x) := f(h(x))$)

Jensen's inequality, more generally

Theorem

Let $f : C \to \mathbb{R}$ be a convex function defined on a convex set $C \subseteq \mathbb{R}^n$. If $x_1, \ldots, x_r \in C$ and $\lambda_1, \ldots, \lambda_r \ge 0$ satisfy $\sum_{j=1}^r \lambda_j = 1$, then

$$f(\sum_{j=1}^r \lambda_j x_j) \leq \sum_{j=1}^r \lambda_j f(x_j).$$

Note: in (discrete) probability this means

 $f(\mathbb{E}X) \leq \mathbb{E}f(X)$

The epigraph

Let $f : C \to \mathbb{R}$ where $C \subseteq \mathbb{R}^n$ is a convex set. Define the following set in \mathbb{R}^{n+1} associated with f:

epi
$$(f) = \{(x, y) \in \mathbb{R}^{n+1} : y \ge f(x)\}.$$

It is called the epigraph of f.

The following result makes it possible to use results for convex sets to obtain results for convex function (and vice versa). relation.

Theorem

Let $f : C \to \mathbb{R}$ where $C \subseteq \mathbb{R}^n$ is a convex set. Then f is a convex function if and only if epi(f) is a convex set.

Supremum of convex functions

Corollary

Let f_i ($i \in I$) be a nonempty family of convex functions defined on a convex set $C \subseteq \mathbb{R}^n$. Then the function f given by

$$f(x) = \sup_{i \in I} f_i(x) \text{ for } x \in C$$

(the pointwise supremum) is convex.

Example:

Pointwise supremum of affine functions, e.g. (finite case)

$$f(x) = \max_{i \le n} \left(a_i^T x + b_i \right)$$

Note: such a function if not differentiable in certain points!

The support function

Let P be a polytope in \mathbb{R}^n , say $P = \operatorname{conv} (\{v_1, \ldots, v_t\})$. Define $\psi_P(c) := \max\{c^T x : x \in P\}.$

which is the optimal value of this LP problem. This function ψ_P is called the support function of P.

- ψ_P is a convex function! Because it is the pointwise supremum of the linear functions $c \to c^T v_j$ $(j \le t)$. This maximum is attained in a vertex (since the objective function is linear).
- More generally: the support function ψ_C of a compact convex set *C* is convex. Similar proof, but we take the supremum of an infinite family of linear functions; one for each extreme point of *C*.
- Here we used Minkowski's theorem saying that a compact convex set is the convex hull of its extreme points.

Directional derivative

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$, $z \neq 0$. The directional derivative of f at x_0 is

$$f'(x_0; z) = \lim_{t \to 0} \frac{f(x_0 + tz) - f(x_0)}{t}$$

provided the limit exists. Special case: $f'(x_0; e_j) = \frac{\partial f(x)}{\partial x_j}$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function and consider a line $L = \{x_0 + \lambda z : \lambda \in \mathbb{R}\}$ where x_0 is a point on the line and z is the direction vector of L. Define the function $g : \mathbb{R} \to \mathbb{R}$ by

$$g(t) = f(x_0 + tz)$$
 for $t \in \mathbb{R}$.

One can prove that g is a convex function (of a single variable).

- Thus, the restriction g of a convex function f to any line is another convex function.
- A consequence of this result is that a convex function $f : \mathbb{R}^n \to \mathbb{R}$ has one-sided directional derivatives:

$$g'_{+}(0) = \lim_{t \to 0^{+}} (g(t) - g(0))/t$$

=
$$\lim_{t \to 0^{+}} (f(x_{0} + tz) - f(x_{0}))/t$$

=
$$f'_{+}(x_{0}; z)$$

Continuity

Theorem

Let $f : C \to \mathbb{R}$ be a convex function defined on an open convex set $C \subseteq \mathbb{R}^n$. Then f is continuous on C.

Characterization of convexity

We now recall a concept from linear algebra: a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if

$$x^T A x = \sum_{i,j} a_{ij} x_i x_j \ge 0$$
 for each $x \in {\rm I\!R}^n$.

A useful fact is that A is positive semidefinite if and only if all the eigenvalues of A are (real and) nonnegative.

Theorem (Characterization via the Hessian)

Let f be a real-valued function defined on an open convex set $C \subseteq \mathbb{R}^n$ and assume that f has continuous second-order partial derivatives on C.

Then f is convex if and only if the Hessian matrix $H_f(x)$ is positive semidefinite for each $x \in C$.

Examples

• Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix which is positive semidefinite and consider the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = x^T A x = \sum_{i,j} a_{ij} x_i x_j.$$

Then it is easy to check that $H_f(x) = A$ for each $x \in \mathbb{R}^n$. Therefore, f is a convex function.

• A symmetric $n \times n$ matrix A is called diagonally dominant if

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}| \quad (i \le n)$$

If all these inequalities are strict, A is strictly diagonally dominant. These matrices arise in many applications, e.g. splines and differential equations.

It can be shown that every symmetric diagonally dominant matrix with positive diagonal is positive semidefinite.

Differentiability

A function f defined on an open set in \mathbb{R}^n is said to be differentiable at a point x_0 in its domain if there is a vector d such that

$$\lim_{h\to O} (f(x_0+h) - f(x_0) - d^T h) / \|h\| = 0.$$

Then *d* is unique; called the gradient of *f* at x_0 .

Assume that f is differentiable at x_0 and the gradient at x_0 is d. Then, for each nonzero vector z,

$$f'(x_0;z)=d^Tz.$$

Partial derivatives, gradients

Theorem

Let f be a real-valued convex function defined on an open convex set $C \subseteq \mathbb{R}^n$. Assume that all the partial derivatives exist at a point $x \in C$. Then f is differentiable at x.

Theorem

Let $f : C \to \mathbb{R}$ be a differentiable function defined on an open convex set $C \subseteq \mathbb{R}^n$. Then the following conditions are equivalent:

- (i) f is convex.
- (ii) $f(x) \ge f(x_0) + \nabla f(x_0)^T (x x_0)$ for all $x, x_0 \in C$.
- (iii) $(\nabla f(x) \nabla f(x_0))^T (x x_0) \ge 0$ for all $x, x_0 \in C$.

Consider a convex function f and an affine function h, both defined on a convex set $C \subseteq \mathbb{R}^n$. We say that $h : \mathbb{R}^n \to \mathbb{R}$ supports f at x_0 if $h(x) \le f(x)$ for every x and $h(x_0) = f(x_0)$.

Theorem

Let $f : C \to \mathbb{R}$ be a convex function defined on a convex set $C \subseteq \mathbb{R}^n$. Then f has a supporting (affine) function at every point. Moreover, f is the pointwise supremum of all its (affine) supporting functions.

Global minimum

Corollary

Let $f : C \to \mathbb{R}$ be a differentiable convex function defined on an open convex set $C \subseteq \mathbb{R}^n$. Let $x^* \in C$. Then the following three statements are equivalent.

(ii) x^* is a global minimum for f.

(iii) $\nabla f(x^*) = O$ (i.e., all partial derivatives at x^* are zero).

Subgradients

Definition. Let f be a convex function and $x_0 \in \mathbb{R}^n$. Then $s \in \mathbb{R}^n$ is called a subgradient of f at x_0 if

 $f(x) \ge f(x_0) + s^T(x - x_0)$ for all $x \in \mathbb{R}^n$

■ The set of all subgradients of f at x₀ is called the subdifferential of f at x₀, and it is denoted by ∂f(x₀).

Here is the basic result on the subdifferential.

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function, and $x_0 \in \mathbb{R}^n$. Then $\partial f(x_0)$ is a nonempty, compact and convex set in \mathbb{R}^n .
6. Convex functions

Global minimum, again

Moreover, we have the following theorem on minimum of convex functions.

Corollary

Let $f : C \to \mathbb{R}$ be a convex function defined on an open convex set $C \subseteq \mathbb{R}^n$. Let $x^* \in C$. Then the following three statements are equivalent.

- (i) x^* is a local minimum for f.
- (ii) x^* is a global minimum for f.
- (iii) $O \in \partial f(x^*)$ (O is a subgradient).

6. Convex functions

Final comments ...

- This means that convex problems are attractive, and sometimes other problems are reformulated/modfied into convex problems
- Algorithms exist for minimizing convex functions, with or wiothout constraints.
- So gradient-like methods for differentiable functions are extended into subgradient methods for general convex functions.
- More complicated, but efficient methods exist.