
CHAPTER 2:  Literature Review / Constraint Programming  

 
 

Extract concerning Constraint Programming from   

Constraint Relaxation Techniques  

& 

Knowledge Base Reuse,  

A Ph.D. Thesis 

by 

Tomas Eric Nordlander 

 

 

 

If you need to reference this document, please use this: 
 

Nordlander, T.E., (2004) 'Constraint Relaxation Techniques & Knowledge 

Base Reuse', University of Aberdeen, PhD Thesis, pp. 246. 

 

1 

 



CHAPTER 2:  Literature Review / Constraint Programming  

 

Table of Contents 

1  LITERATURE REVIEW ................................................................... 5 
1.1  Constraint Programming ................................................................... 5 

1.1.1  Constraint Satisfaction .............................................................................. 5 
1.1.2  Constraint Graph & Constraint Hyper-graph ............................................ 7 
1.1.3  Search Methods ......................................................................................... 8 
1.1.4  Consistency Algorithms .......................................................................... 10 
1.1.5  Search Heuristics. .................................................................................... 18 
1.1.6  Random Generated CSPs ........................................................................ 19 
1.1.7  Phase Transition Behaviour & Hardness Peak........................................ 22 
1.1.8  Formulating the CSP ............................................................................... 25 
1.1.9  Examples of CSPs ................................................................................... 25 

BIBLIOGRAPHY .......................................................................................... 32 
 

Table of Figures 
Figure 2-1. Constraint Graph & Constraint Hyper-Graph. ..................................................... 8 

Figure 2-2. Reduction in Domain Size with Node-Consistency .......................................... 11 

Figure 2-3. Reduction in Domain Size with Arc-Consistency ............................................. 12 

Figure 2-4. Example of Path-Consistency, partly based on [118] ........................................ 15 

Figure 2-5. Solution Transition Phase for 30<20,10,Stepped,Stepped> ............................. 23 

Figure 2-6. Hardness Peak for 30<20,10, Stepped,Stepped> ............................................... 23 

Figure 2-7. Density & Solution Transition Graph for 30<20,10,Stepped,0.45> ................. 24 

Figure 2-8. The Different States of Australia; a Map Colouring Problem .......................... 27 

 

Table of Equations 
Equation 2-1. Density Calculation ......................................................................................... 25 

2 
Equation 2-2. Constrainedness ............................................................................................... 25 

 



CHAPTER 2:  Literature Review / Constraint Programming  

Equation 2-3. Constrainedness using Number of Constraint instead of Density ................ 25 

 

Table of Codes 

Code 2-2. Cryptarithmetic Puzzle 'Send+more=money', written in SICStus Prolog ......... 26 

Code 2-3. Graph Colouring Problem for the States of Australia, written in SICStus Prolog
 ................................................................................................................................ 28 

Code 2-4. Simple Scheduling Program, written in SICStus Prolog [114] ........................... 31 

 

Table of Tables 
Table 2-1. Constraints with Different Arity ............................................................................. 7 

Table 2-2. Time- and Space-Complexity for Arc-consistency Algorithms [11, 12, 15, 
16, 26, 67, 118] .................................................................................................... 13 

Table 2-3. Time- and Space-Complexity for Path-Consistency Algorithm [66, 125] ........ 15 

 

List of Acronyms & Abbreviations 
 

AC  Arc-Consistency  

AI  Artificial Intelligence  

BC  Back Checking  

BJ  Back Jumping 

BM  Back Marking 

BT  Standard Back Tracking Algorithm 

CBR  Case Base Reasoning  

CLP  Constraint Logic Programming 

CP  Constraint Programming  

CSP  Constraint Satisfaction Problem 

FC  Forward Checking 

FL  Full Look Ahead  

GT  Generate and Test 

KB  Knowledge Base 

3 

 



CHAPTER 2:  Literature Review / Constraint Programming  

KBS  Knowledge Based System 

MAC  Maintaining Arc Consistency  

NC  Node-Consistency 

OR  Operational Research 

PC  Path-Consistency 

PLA   Partial Look Ahead 

4 

 



CHAPTER 2:  Literature Review / Constraint Programming  

  

 
‘Many learned persons have 

read themselves stupid.’  

Arthur Schopenhauer  

1 Literature Review 
1.1 Constraint Programming 
Constraint programming (CP) has successfully been applied to many real-world 

problems since these problems can easily be modelled in terms of constraints, such 

as: scheduling, planning, configuration, layout, resource allocation, and decision 

support [100, 130]. Other areas where CP is used are: Concurrent computing, 

database systems, graphical interfaces, hardware verification, operations research and 

combinatorial optimisation [8, 45, 58, 107, 130]. In the eighties, constraint logic 

programming (CLP) appeared; the first general-purpose computational framework 

based on combining constraints and logic programming [58].  

1.1.1 Constraint Satisfaction  

Constraint Satisfaction techniques attempt to find solutions to constraint satisfaction 

problems (CSPs) [7, 127]. There are a number of efficient toolkits and languages 

available, for instance ILOG and SICStus [59, 113], especially designed to handle 

these problems.  

1.1.1.1 CSP Definition 

The definition of a Constraint Satisfaction Problem (CSP) is: 

 A set of variables X={X1,..., Xn}, 

 For each variable Xi, a finite set Di of possible values (its domain), and 

 A set of constraints C<j> ⊆ Dj1 × Dj2 × …× Djt, restricting the values that 
subsets of the variables can take simultaneously.  
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A solution to a CSP is the assignment of a value from its domain to every variable, 

in such a way that all constraints are satisfied. The main CSP solution technique 

interleaves consistency enforcement [42], in which unfeasible values are removed 

from the problem through reasoning about the constraints, and various forms of 

backtracking search. The same approach also serves to identify unsolvable 

problems. Formulating the problem as a Constraint Satisfaction Problem tends to 

be less complicated than traditional Operational Research (OR) techniques (e.g. 

[119]). Though sometimes when fine-tuning the search for a CSP it requires 

remodelling in a more complicated fashion than the less expressive [97] OR 

techniques. In CSP variables and domain correlate directly to the problem entities 

and the values they can take. In some cases constraint satisfaction techniques may 

give a solution faster than OR techniques such as integer linear programming [8, 

57, 118, 119]. 

1.1.1.2 Search Cost  

Solving a CSP may be intended to achieve one of the following goals:  

 demonstrate there is no solution; 

 find any solution; 

 find all solutions; 

 find an optimal, or at least a good, solution given some objective 
evaluation function. 

 

According to Freuder and Wallace [44], a standard measure of effort for a CSP 

algorithm is the number of constraint checks. Other properties such as time, 

backtracking, and resumption are also commonly used to measure the cost of the 

search, which depends on the following CSP properties: 

 The structure of the problem; how the constraints interact to rule out 
assignments.  

 The individual constraints; some constraints are cheap to test/propagate, 
while others are expensive. Some constraints even push the problem into 
areas where there are no efficient solving methods [26]. 

 The number of solutions in a best-solution search or in an all-solution 
search. 
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1.1.1.3 Constraint Arity 

The constraint arity is the number of variables that the constraint is connected to. A 

‘unary constraint’ constrains one single variable while a constraint that constrains 

two variables is called a ‘binary constraint’. A commonly used notation of arity is a 

constraint that constrains the values of N variables and is a ‘N-ary constraint’. 

Below (Table 2-1) are some example of constraints and their arity1. 
 
 
 
 

Constraint Arity Name 

X1#\=0 1 Unary constraint 

X1#\=X2 2 Binary constraint 

all_different (X1,X2,X3) 3 Non-binary constraint 
with a arity of 3 

… … … 

X1#\=X2#\=…Xn n n-ary constraint 
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One of the reasons that researchers in the last 10 years, have mainly worked with 

binary constraints is that all constraints of an arity greater than 2 can be 

reformulated2 and represented with binary constraints [5, 7]. For instance, the arity 

3 constraint ‘all_different(X1,X2,X3)’ can be reformulated to the following three 

binary constraints ‘X1#\=X2, X2#\=X3, X3#\=X1. For more information about this 

binary representation of a non-binary constraint, see [5]. I have reservations about 

the practice of using solely binary constraints [5, 32, 31, 61, 102] and in section 

4.1.2, I present the shortcomings of this practice and argue for introducing a 

mixture of different constraint arities. 

Table 2-1. Constraints with Different Arity 

1.1.2 Constraint Graph & Constraint Hyper-graph 

                                                 
1 I used SICStus not-equal sign ‘#\=’ from its constraint library over finite domains. 
2 Even though in practice this transformation is not likely to be worth doing. 
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Graphical representations of the binary CSPs are normally done with Constraint 

Graphs (left graph in Figure 2-1). The nodes of the graph represent the variables 

and the constraints between them are represented by the edges joining two of the 

nodes. Graphical representations of the non-binary CSPs are normally done with a 

Constraint Hyper-graph, where the nodes represent the variables and the constraint 

is circled around the variables that are involved in the constraint (right graph in 

Figure 2-1). 

 

 

 

 

 

 

 

Figure 2-1. Constraint Graph & Constraint Hyper-Graph. 

1.1.3 Search Methods  

The majority of search algorithms systematically assign possible values to the 

variables. Although these types of algorithms are guaranteed to find existing 

solutions, they have the drawback of sometimes requiring a lot of time for the search. 

The effectiveness of an algorithm is normally judged by its time complexity; how 

long it takes to find the solution. Note that search is also commonly referred to as 

labelling. 

One of the earlier systematic search algorithms is Generate and Test (GT) 

that starts with randomly generating a value for each variable and checking if the set 

is consistent with the existing constraints. The instantiation and checking procedure 

iterates until a solution is found or until all possible instantiations have been tried. 

The advantage of this algorithm is that it is easy to implement; however it also has 

two major drawbacks: firstly, the run-time complexity of the algorithm is exponential 

O(max(|Di|)n), where n is the number of variables and D is the domain size used. 

Secondly, the algorithm is rather inefficient because the algorithm does not memorise 
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previous inconsistent variable instantiations and it will continue to instantiate the 

same inconstant values to the variables.  

The Standard Backtracking algorithm (BT) is a more commonly used 

systematic search algorithm and can be seen as a modified GT algorithm that 

surmounts the last shortcoming of the GT. After the first domain-value is instantiated 

to one of the variables, the Standard BT algorithm continues to instantiate another 

variable and checks for consistency against the first instantiation (partial solution). If 

consistent, it will extend the partial solution with the domain-value-instantiation and 

continue by instantiating the next variable, checking for consistency against previous 

partial solutions. This process will iterate until either a complete consistent assignment 

is found or no solution is found. A solution is detected when a complete consistent 

assignment is found, while no solution exists if no complete consistent assignment is 

found. If during this iterative process an inconsistency is detected in the BT 

instantiation process, it will ignore all further instantiations containing that partial 

solution and backtrack to the last successful variable instantiation and re-assign it with 

a new domain-value. This means that the algorithm avoids some of the inconsistent 

search space the GT would examine. If BT can find a solution without any 

backtracking its run-time complexity becomes linear. This is seldom the case as the 

most non-trivial problems require backtracking and the worst time complexity then 

becomes exponential O(dnm) and the space complexity linear O(dn). In order to reduce 

the amount of backtracking it is possible to implement search heuristics (see section 

2.2.5) that consider the ordering of variables and values in the instantiation process.  

Standard BT has three drawbacks that affect its run-time complexity: firstly, 

Thrashing; which is the failure of BT to detect the actual variable that makes the partial 

instantiation test inconsistent. For example, if X1 is instantiated with value Da and the 

search continues instantiating values on variables X2, X3,…, Xn without realising that it 

is impossible to find any consistent assignment on these variables as long as Da is 

instantiated to X1. Secondly, the algorithm does redundant work: even when the reason 

for inconsistency is correctly detected, the reason would be forgotten when an identical 

inconsistency occurs in the iterative process. Lastly, the late inconsistency detection; 

the algorithm would only detect inconsistency after all variables in the partial 

assignments have been instantiated. Intelligent BT algorithms have been developed to 
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overcome the drawbacks of the standard BT, for example, Back-jumping (BJ), Back-

marking (BM), or Back-checking (BC). These are all Intelligent BT ‘Look Back 

algorithms’ that, by using consistency to check among the assigned variables, can 

overcome the first two limitations of standard BT. When backtracking takes place, this 

algorithm can identify the source of inconsistency and backtrack to the place where the 

inconsistent variables were assigned. In spite of the fact that these algorithms normally 

perform better than standard BT, they still suffer from the drawback of only detecting 

inconsistency after the assignment has been made. Algorithms that manage to 

overcome the third weakness of standard BT enforce consistency techniques (see 

section 2.2.4) during search, to avoid any inconsistent domain sets values before the 

instantiation is done. Several of these so-called Intelligent BT ‘Look Ahead 

algorithms’ have been proposed, see section 2.2.4.5.  

  Even though search algorithms such as standard BT are guaranteed to find 

any existing solution and its run-time complexity becomes linear if no backtracking 

is needed, this is hardly ever the case, for the most non-trivial problems backtracking 

is needed and the run-time complexity becomes exponential. Intelligent BT 

algorithm bridges the three inadequacies of the standard BT which affect its run-time 

complexity, but they are sometimes so costly to apply that standard BT is preferred. 

For further information on search algorithms see [46, 67, 105, 118].  

1.1.4 Consistency Algorithms  

Consistency techniques were first introduced for picture recognition programs [132] 

and later successfully applied on different hard search problems [46]. Consistency 

techniques try to detect and remove inconsistent values from the domain sets of a 

variable but can seldom discard all inconsistent domain values for a problem. 

Because consistency algorithms do not remove any values that would take part in any 

solutions, they can be considered to transform the original CSP to an equivalent one. 

Note that although Consistency Algorithms are often called discrete relaxation 

algorithms, they are completely different from the relaxation algorithms I have 

introduced (See section 4.2).  

The effectiveness of the consistency algorithms is normally judged by how 

long it takes to find the solution (time complexity) as well as how much memory is 
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needed to perform the search (space complexity). Because these algorithms can not 

demonstrate consistency (are incomplete), they are more frequently used either 

interleaved with the search or before the search as a preparation phase to remove 

redundant domain values that might have been detected several times and thus slow 

down the search. Researchers have long worked under the assumption that 

consistency checks before the search are always valuable. It should be noted that 

empirical results [106] have shown that the consistency checking before the search 

can interfere with the interleaved checking inside a search algorithm, making the 

search with pre-processing consistency checks more costly. 

1.1.4.1 Node-Consistency 

Node-consistency algorithms check that each variable (nodes) connected to unary 

constraints are consistent. Node-consistency algorithms locate variables that are 

constrained with unary constraints. When such a variable is found, the algorithm 

checks each of the domain values of the variable against the unary constraint and 

removes those that violate the constraint. A variable is Node Consistent (NC) if all 

its domain size values satisfy the unary constraint and a CSP is considered NC if all 

the variables connected with a unary constraint are NC. 

Figure 2-2 shows a CSP example where X1 is the only variable with the 

unary constraint. After the algorithm locates X1 it examines domain values of X1 to 

see if any of the domain values violate the unary constraint. In the example X1 

domain values are reduced from {1,2,3,4,5,6,7,8,9,10} to {1,2}, because 

{3,4,5,6,7,8,9,10} violates the unary constraint that states the X1 can only take a 

value less than 3. 
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Variable Domain Size Domain Size after  
Node-Consistency 

X1 {1,2,3,4,5,6,7,8,9,10} {1,2} 
X2 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} 
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} 
X4 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} 

 X1 

 X2 

 X3 

X4 

< 

< 
= 

= 

3

Figure 2-2. Reduction in Domain Size with Node-Consistency 
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The node-consistency algorithm can in some exceptional cases identify 

inconsistent CSPs but can never demonstrate a CSP to be consistent. If the 

algorithm removes all values in one of the variable domain sets, the CSP will then 

be inconsistent. Because the algorithm is incomplete it does not eliminate the need 

for search and should be used normally in a pre-processing phase to reduce the 

search. The node-consistency algorithm has a linear time-complexity of O(dn), 

where d is the maximum size of the domains and n is the number of variables to be 

examined. 

1.1.4.2 Arc-Consistency  

Arc-consistency is the most frequently used consistency technique; it checks the 

consistency for two variables connected with a constraint, and removes the domain 

values from the variables that violate the constraint. Many different Arc-consistency 

algorithms have been put forward; such as, AC-1 to AC-7 as well as variations of 

them (AC+3d [12]). Even though most of the proposed algorithms are only 

applicable on binary CSPs, corresponding non-binary algorithms (e.g. NAC4 and 

GAC4 [26]) have been presented as well. 

The procedure of making the CSP Arc Consistent (AC) is the iterative 

process of making the variable of each binary constraint consistent. Figure 2-3, 

shows an example where domain values that violate the binary constraints are 

detected and removed: X1 and X2 with the constraint 5X1≤ X2 is made AC by 

removing 3 to 10 from X1 and 1 to 5 from X2. None of the domain values for the X3 

and X2 variables violate the constraint X2+X3<20, so it is already AC. Because all the 

CSPs constraints in Figure 2-3 are now AC, the whole CSP is AC. 
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Variable Domain Size Domain Size after AC 
X1 {1,2,3,4,5,6,7,8,9,10} {1,2} 
X2 {1,2,3,4,5,6,7,8,9,10} {5,6,7,8,9,10} 
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} 

 X2 

 X3  X1 

X2+ X3<20 5X1≤ X2 

Figure 2-3. Reduction in Domain Size with Arc-Consistency 
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The arc-consistency can identify inconsistent CSPs only if one of its domain 

sets becomes empty during the consistency process. In addition, if every domain set 

only contains one value after the AC, the CSP is consistent and a solution is found. 

In spite of the fact that AC in some cases can identify CSPs as consistent or 

inconsistent, this is not the normal case [67]. More often, some domain sets will 

contain more than one value (e.g. example in Figure 2-3) after the CSP is made AC, 

which makes it impossible to demonstrate the CSP either consistent or inconsistent 

without a search; the arc-consistency algorithm is incomplete. Because AC does not 

normally eliminate the need for search it is used in the pre-processing phase to ease 

the search or is interweaved with the search.  

Table 2-2 shows the cost in time and memory that the different arc-

consistency algorithms have, where n is the number of nodes, d domain size, and e is 

the number of constraints. The best arc-consistency algorithm is now generally 

assumed to be AC-2001 [9, 16]. 

 
Arc-consistency Algorithm Worst Time Complexity Space Complexity 

AC-1 O(n3d3) O(e+nd) 

AC-2 O(ed3) O(n2d2) 

AC-3 O(ed3) O(e+nd) 

AC-4 O(ed2) O(ed2) 

AC-6 O(ed2) O(ed) 

AC-7 O(ed2) O(ed) 

AC-2001 O(ed2) O(ed) 

 

 

 

 

 

 

Table 2-2. Time- and Space-Complexity for Arc-consistency Algorithms [11, 12, 15, 16, 26, 67, 118] 

1.1.4.3 Path-Consistency 

Path-consistency algorithms examine the consistency for three of the variables 

connected with two constraints and removes inconsistent domain values from the 

variables. A binary CSP is only Path Consistent (PC), if every possible path in the 

CSP is PC.  

‘A binary CSP is path-consistent, if for any path in its constraint graph it 

holds that if the assignments of the starting and ending variables are 
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consistent, then this can be extended to a consistent partial instantiation 

by assigning values to the remaining variables along the path.’ [105] 

Several path-consistency algorithms (PC-1 to PC-5) have been proposed, which are 

normally enforced after making the problem AC. Figure 2-3 in the previous section, 

shows that the domain values are first reduced to make the CSP AC. From that 

example it is possible to see that even though the problem is made AC, it can still 

have inconsistent domain values; for example, there exists no consistent DX2 if X1 is 

assigned the value 2 at the same time as the value 10 is assigned to X3. This 

inconsistent assignment can be detected and discarded during the process of making 

the problem path consistent. 

 

The path-consistency algorithm identifies all inconsistent instantiation of X1 

and X3. In my example it is only DX1{2} and DX3{10} that causes an inconsistency. 

This means that there is an implicit constraint between X1 and X3 that forbids this 

tuple to be instantiated with these values at the same time. By adding a constraint 

equivalent to the implicit constraint to the constraint graph as shown in Figure 2-3, 

and thereafter enforcing AC on the three variables, the path is made path consistent. 

With the new constraint, the arc-consistency algorithm would now detect and remove 

{2} from X1 domain set as well as {1,2,3,4,5} from X3 domain set. After this 

procedure, the path of the triple X1, X2, and X3 is PC. Because there is only one triple 

in my example the whole CSP has also become PC. If one of the domain sets 

becomes empty during the path-consistency then the CSP is inconsistent. If each 

domain set is left with only one value the CSP is consistent and the instantiation is 

the only solution. If some of the variable domain lists have more than one value, like 

example Figure 2-4, this does not normally demonstrate a CSP consistent or 

inconsistent, but in this case it does, due to n-consistency which is explained in 

section 2.2.4. 
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Variable Domain Values Domain Size After 
AC 

Domain Size 
after PC 

X2 
5X1≤ X2 X2+ X3<20 

X3  X1 

5X1< X3 
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X1 {1,2,3,4,5,6,7,8,9,10} {1,2} {1} 
X2 {1,2,3,4,5,6,7,8,9,10} {5,6,7,8,9,10} {5,6,7,8,9,10} 
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} {6,7,8,9,10} 

 

In practice, while it is usually valuable to enforce arc-consistency, path-

consistency is often not worth applying for three reasons. Firstly, even though the 

path-consistency algorithms remove more inconsistent values than arc-consistency 

algorithms the time-complexity is much worse (compare Table 2-2 with Table 2-3). 

The most efficient path-consistency algorithm has a worst case time-complexity of 

O(d3n3) [67, 118]. The main reason for the large difference in time-complexity is 

that the number of possible triples in a CSP to investigate is much larger than the 

CSP’s number of constraints. Secondly, the constraints are rarely expressed in 

allowed tuples, which makes it complicated to remove individual values in order to 

tighten a binary constraint [118]. Thirdly, because the algorithms add extra 

constraints into the constraint graphs (see Figure 2-3) there is a huge memory 

requirement even for small problems [8]. Although path-consistency removes more 

inconsistent values than any arc-consistency algorithm, it is incomplete and 

normally does not eliminate the need for search. 

Figure 2-4. Example of Path-Consistency, partly based on [118] 

 

Path-consistency Algorithm Worst Time Complexity Space Complexity 

PC-1 O(d5n5) O(d2n3) 

PC-2 O(d5n3) O(d2n3 + n2) 

PC-3 O(d5n3) O(d2n3 + n2) 

PC-4 O(d3n3) O(d3n3) 

PC-5 O(d3n3) O(d3n3) 

Table 2-3. Time- and Space-Complexity for Path-Consistency Algorithm [66, 125] 

1.1.4.4 Obtaining n- and k-Consistency 

Freuder states [42] that a CSP is k-consistent, if any set of k-1 variables 

surrounding constraints are consistent and there exists domain values for the k-th 

variable that makes all k variables consistent. In addition, he states that a CSP is 

said to be strongly k-consistent if it is [1-(k-1)]-consistent. The k-consistency and 
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the strong k-consistency definition allow a general notation for the three different 

consistency algorithms I have explained: node-consistency becomes strong 1-

consistency, arc-consistency becomes strong 2-consistency, and path-consistency 

becomes strong 3-consistency. The time-complexity of the algorithm k-consistency 

is O(dnk). The maximum k value for k-consistency is the CSP’s number of 

variables (n), which allows a CSP with n variables to become n-consistent. If a 

problem containing n nodes is strongly n-consistent, then a solution to the CSP can 

be found without any search [42, 67]: this happened in the example in Figure 2-4 

which was made strongly n-consistent because the CSP only had 3 variables (k = n 

= 3). But if the problem is strongly k-consistent with k<n, undetected redundant 

domain values can still exist, and so search is needed. The time-complexity of the 

algorithm for obtaining n-consistency is O(dnn). For more information about 

consistency algorithms I recommend the following papers [12, 15, 42, 67, 71]. 

1.1.4.5 Search Algorithms that use Consistency Techniques 

One of the weaknesses of standard BT Search algorithms is the late detection of 

inconsistency; the algorithm would only detect an inconsistency after all variables in 

the partial assignments have been instantiated. By combining Standard BT with 

consistency algorithms this limitation can be overcome by enforcing consistency 

techniques (see section 2.2.4) during search, to avoid any inconsistent domain set 

values before the instantiation is done. Several types of the latter algorithms, so-called 

Look Ahead algorithms have been proposed such as, Forward Checking (FC) Partial 

Look Ahead (PLA), Full Look (FL) and Maintaining Arc Consistency (MAC) etc. The 

two most frequently used are FC and MAC, which differ in the amount of consistency 

they enforce during search [106]; MAC enforces full arc-consistency [47, 106] while 

FC enforces a limited form of arc-consistency [55, 106]. Initial research made the 

wrong assumption that Look Ahead algorithms would do best in only enforcing a 

limited arc-consistency [67]; Sabin and Freuder [106] showed that establishing and 

maintaining full arc-consistency during search (MAC) was in many cases more 

efficient than only implementing partial arc-consistency (FC). Research [13, 52, 106] 

has now shown that different types of MAC-algorithms in general perform much better 

than FC; MAC is significantly better than FC around the transition phase (see section 

2.2.7) but inferior in the clearly over- and under-constrained area. Note that although 
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the improved BT algorithms mentioned above manage to bridge the three inadequacies 

of the standard BT they are sometimes very costly to apply.  

For example, the MAC algorithm uses backtracking interleaved with 

polynomial consistency techniques that have E combinations to consider; its worst 

time complexity becomes E×(O(ednk))×max(|Di|)n. If I take the MAC-4 algorithm 

that uses full AC-4 consistency checking, the total time complexity becomes 

~k×(O(edn2))×max(|Di|)n; O(ed2) for AC-4 and max(|Di|)n for the time complexity of 

search. To guarantee completeness, you need n-consistency O(dnn), which is the 

same worst-case complexity as MAC. 

1.1.4.6 Approaches that Reduce the Time Complexity 

My research aim is to quickly identify inconsistent CSPs. A possible approach that 

reduces the time complexity involved, is to use the latest search and higher order of 

consistency algorithms described above, which have better worst time-complexity 

than those commonly used in constraint packages (e.g. [59, 113]). For the following 

reasons I am not interested using this approach:  

1. The time-complexity of enforcing consistency algorithms is very high, and 

unless n-consistency is enforced it does not guarantee the detection of 

inconsistent CSPs. Achieving n-consistency can often be even more 

expensive than simple backtracking [67]. 

2. My research aim is to help KBS people examine if existing KBs can be 

reused. I can not assume that these people have the necessary knowledge to 

implement the latest search and higher k-consistency algorithms on the CSPs. 

Therefore standard CP toolkits are used. These toolkits have good search 

algorithms but normally can only enforce 1 and 2-consistency. 

3. Enforcing higher k-consistency is complicated: real-world constraints are 

rarely expressed in allowed tuples (see section 4.1.3.1) and to enforce higher 

k-consistency the algorithms need to remove individual parts of values in 

order to tighten a binary constraint [118]. 
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4. Because the higher k-consistency algorithms adds extra constraints into the 

constraint graphs they have substantial space requirements even for small 

problems [8]. 

5. Even the latest most efficient search algorithms such as MAC are sometimes 

very costly to apply. 

My approach uses constraint relaxation strategies to quickly identify inconsistent 

CSPs. Through empirical investigation I have created constraint relaxation strategies, 

which relax the CSP by carefully removing constraints to create relaxed CSPs that 

are easier to demonstrate inconsistent. If the relaxed CSP is inconsistent the original 

CSP can be discarded without performing expensive search; empirical time-

complexity reduction. This means the two approaches do not compete, because 

different search and consistency algorithms can and are used to demonstrate the 

relaxed CSP inconsistent. Consequently, my approach can be seen as a contribution 

and a complement to the existing search and consistency algorithms. 

1.1.5 Search Heuristics. 

When the search algorithm starts to instantiate the variables, it must know the order 

in which variables are to be considered. This so-called ‘Variable Ordering’ can either 

be static or dynamic. When using static ordering the variable order is decided before 

the search starts. The dynamic ordering starts either with an order list that might 

change depending on the state of the search or it starts by computing the next 

variable afresh each time. A common ordering is ‘smallest domain’ which starts 

working with variables with the smallest domain size. Other common ordering is 

‘minimum width ordering’ and ‘minimum conflict first’. After the search algorithm 

chooses a variable to instantiate another search heuristic comes in to play. This is the 

so-called ‘Value Ordering’—the choice of domain value with which to start 

instantiating the variable. 

One set of heuristics is not always better than another. The heuristics are 

chosen depending on the problem and search algorithm. These heuristic choices are 

essential for the performance of the search and demand expertise. Smith [118] used a 

small Cryptarithmetic puzzle to demonstrate that a specific heuristic can drastically 

18 
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improve the result. Some current research is investigating how novices could get help 

choosing search heuristics from a Case Base Reasoning (CBR) system [48]. For 

more information on search heuristics see [46, 105, 118]. 

1.1.6 Random Generated CSPs 

Ideally, researchers would use real-world problems for empirical analyses of 

different constraint satisfaction algorithms, such as search, relaxation, and 

consistency algorithms etc. However, it is hard to find sufficient numbers of 

analogous real-world problems to statistically verify the results of the algorithms, 

the usage of a randomly generated CSPs have been used as a substitute in the 

constraint community.  

The main benefits of using random binary CSPs as a test-bed, is the large 

numbers of analogous problems that can easily be generated, which allows the 

researchers to statistically verify the results of their algorithms. Another benefit is a 

test-bed which produces examples with specific properties; for example, the 

possibility to generate a large number of problems close to the solution transition 

phase (for more information about the transition phase, see next section), where the 

problems are known to be harder [25, 96]. Hard areas like these are particularly 

suited for comparing the performance of different algorithms [17]. In addition, 

Bessière has highlighted the test-beds inter-changeability as one often forgotten 

advantage of using random CSPs. No particular domain knowledge is needed to 

understand the problems and neither do the problems contain sensitive or classified 

information. The above reasons make it relatively easy for researchers to replicate 

the problems, for example, when comparing the effectiveness of different 

algorithms. However, although I list benefits obtained by using random CSPs as 

test-beds, it should not be forgotten that the reason of random CSP existence is to 

substitute real-world problems.  

Random binary CSPs are normally generated according to one of four 

common models; A, B, C, and D [70]. These are normally described by a 4-tuple 

<n,m,p1,p2>, where n is the number of variables and m is the number of values in 

19 
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e problem class notation <n,m,c,t> is more frequently used: in 

this no

iloptas 

et al. [1] showed that all four models can generate flawed variables; a variable is 

                                                

each domain3, p1 is the density of the constraint graph (the proportion of 

constraints used in the CSP relative to the maximum number possible), and p2 is 

the tightness (the proportion of forbidden tuples in each constraint, see section 

4.1.1). The four models differ in how the CSP constraints are created and chosen. 

Both A and C use probability p1 in selecting each one of the (n(n-1)/2) possible 

constraints, while B and D uniformly select exactly p1(n(n-1)/2) constraints. Model 

A and D use probability p2 to select each of the m2 forbidden tuples, while B and C 

uniformly select exactly p2m2 pairs as forbidden tuples.  

Recently th

tation p2 is changed to t but continues to represent the number of forbidden 

tuples in each constraint (a measure of problem tightness). More important is that 

p1 (density) is replaced with c (the number of constraints in the CSP). Density (p1) 

describes how dense the CSP is with constraints; adding more constraints makes 

the CSP denser. Density is normally calculated as a percentage by Equation 2-1 

(page 25), often this leads to working with a rounded off percentage which could 

lead to misinterpretations in the number of constraints used when the problem is 

recreated. The reason for the change to c in notation is practical—working with an 

integer is more exact then dealing with probabilities and proportions. For example, 

if the choice is made to create a CSP with 40 variables (n = 40) and 503 constraints 

(c = 503), the equation would give the CSP a density of ~0.6448718. Let us say 

that the density is then rounded down to 0.64 and placed in the problem class 

description <40,m,0.64,p2>. If the problem class needs to be replicated then 0.64 is 

used as the density. Equation 2-1. would be used to calculate the number of 

constraints required. With 0.64 the equation would then wrongly suggest 499 when 

the original problem class had 503 constraints. Working with a percentage here 

would create a completely new problem class when trying to replicate an old 

problem class. It is due to this reason I use the number of constraints c (integer 

value) as a density measurement in the problem class notation in this thesis. 

Recent additions to these four models have been introduced after Ach

 
3 Normally a random generated CSP uses the same domain size for all its variables. 
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flawed

better simulate real-

world

 if every one of its domain values are unsupported. ‘A value for a variable is 

unsupported if, when the value is assigned to the variable, there exists an adjacent 

variable in the constraint graph that cannot be assigned a value without violating 

constraint’ [70]. Flawed variables make it easy to demonstrate the CSP 

inconsistent: no search is needed as a simple arc-consistency algorithm would find 

the CSP inconsistent. As my CSP-Suite is based on model B, a deeper discussion 

on how the findings of Achiloptas et al. influence the results of my experiments, is 

put forward in section 4.1.7.  

Surprisingly little attention has been given to modifying the conventional 

CSPs (random binary CSPs with fixed internal tightness) to 

 problems. Although real-world problems involve different types of non-

binary constraints with different arity, most CSP Generators, described in the 

literature, only work with binary constraints. Another important shortcoming of the 

conventional CSP Generators is that they fail to embody the constraint’s diversity 

in tightness that occurs in a real-world problem. An implementation of non-binary 

constraints of different arity and allowing implementation of different statistical 

tightness distribution into the CSP Generator would create CSP test-beds that more 

accurately simulate real-world problems. In section 4.1.5.2 I argue for the 

importance of implementing different binary and non-binary constraints into my 

CSPs generator. In section 4.1.2 I highlight the reasons, as well as explaining how 

different tightness distributions were implemented in my CSP Generator. One 

might argue that few parameters associated with conventional CSPs give the user a 

beneficial controlled test environment. My thesis will demonstrate that even when 

implementing non-binary constraints with different statistical internal tightness, the 

user is still very much in control of the test environment. The rationale of striving 

to implement real-world properties in a CSP Generator comes from the very 

purpose of random CSPs test-beds, that is, to substitute for real-world problems. I 

believe the conventional CSP test-bed still retains its purpose, when comparing a 

new algorithm with an earlier one. If an earlier algorithm cannot be applied to 

problems with non-binary CSP and different tightness distributions, the 

performance comparison should be conducted on the conventional CSP test-bed. If 

the algorithms cannot work on test-beds that better simulate real-world problems, 
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n recent years 

received considerable attention [25, 50, 69, 95, 96, 98, 139]. To study this phase 

umbers of problem classes 

y to verify that there is an inconsistency (many 

constra

would they be applicable on real-world problems? If not, what is the reason behind 

their creation, what contribution do they make? Maybe it is time to update these 

algorithms so they can handle properties from real-world problems. I argue that the 

algorithms should evaluated, if possible, on Random CSP with properties as close 

to real-world problem before applying them on real-world problems. 

1.1.7 Phase Transition Behaviour & Hardness Peak 

The phase transition was first identified by [19, 38, 39] and has i

transition phenomena [96], researchers generated large n

with fixed n and m but varying c and t. Within each of the problem classes a large 

number of CSPs are generated with identical parameters <n,m,c,t>. By measuring 

the number of CSPs in each problem class that have a solution it is possible to 

calculate the probability of finding a solution for a specific problem class. Figure 

2-5 shows the phase transition, where the rapid change in the probability of finding 

a solution occurs when density and tightness parameters are varied on problem 

class 30<20,10,Stepped,Stepped>. 

The transition phenomena occurs between an area where CSPs have many 

solutions and are easy to demonstrate consistent, and a region where most CSPs are 

inconsistent and it is relatively eas

ints allow effective pruning of domain values). In the phase transition, the 

probability of finding a solution drastically shifts from 100% to 0%. When working 

with a problem class close to the transition phase, small changes to some of the 

control parameters of the problem class such as adding constraints to the CSP 

(Density increase) or tightening the constraints of the CSPs, can push the CSP over 

the phase transition from consistent to inconsistent. Note that if several CSPs from 

the same problem class are generated in the middle of the transition phase, some 

CSPs would turn up inconsistent while others would be consistent, which makes it 

possible to calculate the probability of finding a solution for that problem class. 
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In Figure 2-6 instead of measuring the probability of finding a solution I 

have measured the average search effort (problem class hardness) when density and 

the tightness parameters are varied. The figure shows how hard CSPs from certain 

problem classes are, and research has shown [25, 96] that the hardness peak 

coincides with the transition phase, i.e. CSPs close to or on the solution transition 

phase are in general much harder to solve than others. This transition phase area of 

very hard CSPs is of special interest to the constraint community, as it supports 

empirical work, such as algorithm comparison [17]. 
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Figure 2-5. Solution Transition Phase for 30<20,10,Stepped,Stepped> 

Figure 2-6. Hardness Peak for 30<20,10, Stepped,Stepped> 
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Figure 2-7 shows slices taken out of the 3D graph in Figure 2-6 and Figure 2-5, 

when the tightness is fixed to 0.45. Figure 2-7 shows that the transition phase coincides 

with the hardness peak and that the inconsistent CSP tends to become somewhat 

harder than the consistent CSP. The aim of my relaxation strategies is to detect these 

inconsistent CSPs using less search effort than is used by a normal search. 
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Research that tries to characterise problem hardness, for instance [103], and 

understand the behaviour of the phase transition is important in my research 

because my relaxation strategies (described in section 4.2) are only profitable when 

constraints are removed from an inconsistent CSP in such a way that new 

inconsistent CSP’s, which are easier to solve, are produced. Due to the CSPs 

hardness peak at the transition phase (transition phase behaviour) this is a difficult 

task.  

Figure 2-7. Density & Solution Transition Graph for 30<20,10,Stepped,0.45> 

Gent et al. [50] presented Equation 2-2 that predicts the location of the 

phase transition. The relaxation strategies can use the equation when deciding the 

number of constraints to remove, to reduce the possibility of passing over the 

consistent side of the transition phase, i.e. the relaxed CSP will be inconsistent. 

Equation 2-2 predicts the location of the phase transition, where k is a measurement 

of constrainedness of the problem. Because I use the <n,m,c,t> notation while Gent 

et al. used the somewhat older notation <n,m,p1,p2> I replace p1 in Equation 2-2 

with the density Equation 2-1. Using this substitution, I get the phase transition 
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prediction equation (Equation 2-3) for the notation <n,m,c,t>. Gent et al. [50] have 

shown that for problem classes with <20,10, Step, Step> the phase-transition 

occurs between 0.75 ≤  k  ≤  1. In my empirical chapter (section 5.2) there is a more 

detailed discussion of the transition phase behaviour influencing my research. 
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1.1.8 Formulating the CSP 

 formulated as a CSP, in many different ways. To 

1.1.9 Examples of CSPs 

 

A real-world problem can be

represent the problem as a CSP in an efficient way is difficult but important to get 

an efficient search. It has been shown [118] that a simple change in representation 

can dramatically improve the performance of the search algorithm. Ruttkay [105] 

claims that there are exceptionally complicated problems where reformulation has 

led to a solution. Evidently, the constraint programmers need knowledge and 

experience of CSP formulation. Until now, only experienced constraint 

programmers have sufficient knowledge to efficiently represent problems as CSPs. 

There is interesting ongoing research into easing the formulation problem for 

novice users with the help of the Case Based Systems approach [48]. Even though 

representation is difficult in constraint programming it is still considered easier 

than for OR techniques [97]. 

Equation 2-1. Density Calculation Equation 2-2. Constrainedness 

Equation 2-3. Constrainedness using Number of 

Constraint instead of Density 

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
t

pnk m

1
1log

2
1

1( )( )
⎟
⎠
⎞

⎜
⎝
⎛ −

=

2
1

1

nn
cp

 



CHAPTER 2:  Literature Review / Constraint Programming  

26 

pes of combinatorial problem, which can be represented 

ematical problem in which the digits are replaced 

 

There are many different ty

as a CSP. I will now describe three classical combinatorial problems and show how 

these can be formulated as CSPs. The problems are the Cryptarithmetic Puzzle, 

Graph Colouring, and a small scheduling problem. My formulations of the 

problems are written in SICStus Prolog, using its library over finite domains [21] 

and these CSPs are available online [89]. 

1.1.9.1 Cryptarithmetic Puzzles 

Cryptarithmetic Puzzles is a math

by letters of the alphabet or other symbols. Solving the problem involves assigning 

each letter a digit, in such a way that the resulting mathematical calculation is 

correct. Code 2-2 shows the classical SEND+MORE=MONEY problem. Other 

possibilities are: SEVEN-NINE = EIGHT, CROSS + ROADS = DANGER, etc. 

 
:- use_module(library(clpfd)). 
 

 
9),     % Variables and their domain size 

 % Constraint 

e 

+100* 100*N+10*E+Y. 

N,D,M,O,R,Y],Type). 

 mm([S,E,N,D,M,O,R,Y],Type) :-
  domain([S,E,N,D,M,O,R,Y],0, 
   S#>0, M#>0,    
   all_different([S,E,N,D,M,O,R,Y]),     % Constraint 

, Y),          Constraint    sum(S,E,N,D,M,O R,     % Call Equation 
 
   labeling([],[S,E,N,D,M,O,R,Y]).    % Assign values to the variabl
 
sum(S,E,N,D,M,O,R,Y) :-    % Equation Constraint 
000*S+100*E+10*N+D+1000*M O+10*R+E#=10000*M+1000*O+1

 
% End of file 
 
| ?- mm([S,E,

 = 7, D
E = 5, 
M = 1, 
N = 6, 
O = 0, 
R = 8, 
S = 9, 
Y = 2 ? 
yes 
| ?- 

 

 

 

 

 

 

 

 

Code 2-1. Cryptarithmetic Puzzle 'Send+more=money', written in SICStus Prolog 
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1.1.9.2 Graph Colouring  

Given a map and a number of different colours, the graph colouring problem is 

solved by colouring the map so that no regions sharing a boundary line have the 

same colour. Code 2-3 shows an example, in SICStus Prolog, of the colouring 

problem on the different states in Australia (See Figure 2-8). 

p and a number of different colours, the graph colouring problem is 

solved by colouring the map so that no regions sharing a boundary line have the 

same colour. Code 2-3 shows an example, in SICStus Prolog, of the colouring 

problem on the different states in Australia (See Figure 2-8). 

  

Western 
Australia 

Northern 
Territory 

Queensland 

South 
Australia 

New South 
Wales 

Victoria 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 2-8. The Different States of Australia; a Map Colouring Problem :- use_module(library(clpfd)). 
 
solve_AUSTRALIA(WA,NT,Q,SA,NSW,V):- 
 
domain([WA,NT,Q,SA,NSW,V], 1, 3),  % Variables & their domain size colour 1=blue, 2=red   
       or 3= green. 
 
WA#\=NT,    % Constraints 
WA#\= SA,    % WA abbreviation of Western Australia  
NT#\= SA,     % NT abbreviation of Northern Territory 
NT#\= Q,     % Q abbreviation of Queensland 
SA#\=Q,      % SA abbreviation of South Australia 
SA#\=NSW,     % NSW abbreviation of New South Wales 
SA#\=V,     % V abbreviation of Victoria 
Q#\=NSW,    
NSW#\=V, 
 
labeling([],[WA,NT,Q,SA,NSW,V]).   % assign values to the Variables 
 
%% End of file 
 
| ?- solve_AUSTRALIA(WA,NT,Q,SA,NSW,V).                                 
Q = 1,           
V = 1, 
NT = 2, 
SA = 3, 
WA = 1, 
NSW = 2 ? 
yes 
| ?- 
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1.1.9.3 Scheduling 

Since my relaxation approach is exemplified on a production schedule problem, I 

show here an example of a scheduling problem. The problem below is taken from 

the SICStus manual [114]. The scheduling problem below aims to minimize the 

completion time for seven tasks without exceeding the resource capacity of 13. 

Each task has its specific duration, and resource needs. If this problem is put in a 

real-world context (See Code 2-4) with real-world scheduling variable names it 

could look like this: A manufacturing line is divided into seven workstations and 

has access to 13 workers. At each of the seven workstations a task is performed 

which has a minimum need of workers (resources) and will take a certain amount 

of time (duration). The manager would like to find the most efficient scheduling 

with regard to time and resources. 

Code 2-2. Graph Colouring Problem for the States of Australia, written in SICStus Prolog 

 */ TASK  DURATION  RESOURCE 
  ====  ========  ======== 
  t1  16    2 
  t2  6    9 
  t3  13    3 
  t4  7    7 
  t5  5    10 
  t6  18    1 
  t7  4    11           /* 
 
:- use_module(library(clpfd)). 
:- use_module(library(lists), [append/3]). 
 
schedule(Ss, Rs, End) :- 
   length(Ss, 7), 
   Ds = [16,6,13,7,5,18,4], 
   Rs = [2,9,3,7,10,1,11], 
   domain(Ss,1,30), 
   domain([End],1,50), 
   after(Ss, Ds, End), 
   cumulative(Ss, Ds, Rs, 13), 
   append(Ss, [End], Vars), 
   labeling([minimize(End)], Vars).   
 
after([], [], _). 
after([S|Ss], [D|Ds], E) :- 
E #>= S+D, after(Ss, Ds, E). 
 
%% End of file 
 
 
 
| ?- schedule(Ss,Rs,End). 
Rs = [2,9,3,7,10,1,11], 
Ss = [1,17,10,10,5,5,1], 
End = 23 ? 
yes 
| ?- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code 2-3. Simple Scheduling Program, written in SICStus Prolog [114]  
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‘All things of this world are nothing, unless 

they have reference to the next.’  

Spanish Proverb 
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