
CHAPTER 2: Literature Review / Constraint Programming

Extract concerning Constraint Programming from

Constraint Relaxation Techniques

&

Knowledge Base Reuse,

A Ph.D. Thesis

by

Tomas Eric Nordlander

If you need to reference this document, please use this:

Nordlander, T.E., (2004) 'Constraint Relaxation Techniques & Knowledge

Base Reuse', University of Aberdeen, PhD Thesis, pp. 246.

1

CHAPTER 2: Literature Review / Constraint Programming

Table of Contents

1 LITERATURE REVIEW ... 5
1.1 Constraint Programming ... 5

1.1.1 Constraint Satisfaction .. 5
1.1.2 Constraint Graph & Constraint Hyper-graph .. 7
1.1.3 Search Methods ... 8
1.1.4 Consistency Algorithms .. 10
1.1.5 Search Heuristics. .. 18
1.1.6 Random Generated CSPs .. 19
1.1.7 Phase Transition Behaviour & Hardness Peak.. 22
1.1.8 Formulating the CSP ... 25
1.1.9 Examples of CSPs ... 25

BIBLIOGRAPHY .. 32

Table of Figures
Figure 2-1. Constraint Graph & Constraint Hyper-Graph. ... 8

Figure 2-2. Reduction in Domain Size with Node-Consistency .. 11

Figure 2-3. Reduction in Domain Size with Arc-Consistency ... 12

Figure 2-4. Example of Path-Consistency, partly based on [118] .. 15

Figure 2-5. Solution Transition Phase for 30<20,10,Stepped,Stepped> 23

Figure 2-6. Hardness Peak for 30<20,10, Stepped,Stepped> ... 23

Figure 2-7. Density & Solution Transition Graph for 30<20,10,Stepped,0.45> 24

Figure 2-8. The Different States of Australia; a Map Colouring Problem 27

Table of Equations
Equation 2-1. Density Calculation ... 25

2
Equation 2-2. Constrainedness ... 25

CHAPTER 2: Literature Review / Constraint Programming

Equation 2-3. Constrainedness using Number of Constraint instead of Density 25

Table of Codes

Code 2-2. Cryptarithmetic Puzzle 'Send+more=money', written in SICStus Prolog 26

Code 2-3. Graph Colouring Problem for the States of Australia, written in SICStus Prolog
 .. 28

Code 2-4. Simple Scheduling Program, written in SICStus Prolog [114] 31

Table of Tables
Table 2-1. Constraints with Different Arity ... 7

Table 2-2. Time- and Space-Complexity for Arc-consistency Algorithms [11, 12, 15,
16, 26, 67, 118] .. 13

Table 2-3. Time- and Space-Complexity for Path-Consistency Algorithm [66, 125] 15

List of Acronyms & Abbreviations

AC Arc-Consistency

AI Artificial Intelligence

BC Back Checking

BJ Back Jumping

BM Back Marking

BT Standard Back Tracking Algorithm

CBR Case Base Reasoning

CLP Constraint Logic Programming

CP Constraint Programming

CSP Constraint Satisfaction Problem

FC Forward Checking

FL Full Look Ahead

GT Generate and Test

KB Knowledge Base

3

CHAPTER 2: Literature Review / Constraint Programming

KBS Knowledge Based System

MAC Maintaining Arc Consistency

NC Node-Consistency

OR Operational Research

PC Path-Consistency

PLA Partial Look Ahead

4

CHAPTER 2: Literature Review / Constraint Programming

‘Many learned persons have

read themselves stupid.’

Arthur Schopenhauer

1 Literature Review
1.1 Constraint Programming
Constraint programming (CP) has successfully been applied to many real-world

problems since these problems can easily be modelled in terms of constraints, such

as: scheduling, planning, configuration, layout, resource allocation, and decision

support [100, 130]. Other areas where CP is used are: Concurrent computing,

database systems, graphical interfaces, hardware verification, operations research and

combinatorial optimisation [8, 45, 58, 107, 130]. In the eighties, constraint logic

programming (CLP) appeared; the first general-purpose computational framework

based on combining constraints and logic programming [58].

1.1.1 Constraint Satisfaction

Constraint Satisfaction techniques attempt to find solutions to constraint satisfaction

problems (CSPs) [7, 127]. There are a number of efficient toolkits and languages

available, for instance ILOG and SICStus [59, 113], especially designed to handle

these problems.

1.1.1.1 CSP Definition

The definition of a Constraint Satisfaction Problem (CSP) is:

 A set of variables X={X1,..., Xn},

 For each variable Xi, a finite set Di of possible values (its domain), and

 A set of constraints C<j> ⊆ Dj1 × Dj2 × …× Djt, restricting the values that
subsets of the variables can take simultaneously.

5

CHAPTER 2: Literature Review / Constraint Programming

A solution to a CSP is the assignment of a value from its domain to every variable,

in such a way that all constraints are satisfied. The main CSP solution technique

interleaves consistency enforcement [42], in which unfeasible values are removed

from the problem through reasoning about the constraints, and various forms of

backtracking search. The same approach also serves to identify unsolvable

problems. Formulating the problem as a Constraint Satisfaction Problem tends to

be less complicated than traditional Operational Research (OR) techniques (e.g.

[119]). Though sometimes when fine-tuning the search for a CSP it requires

remodelling in a more complicated fashion than the less expressive [97] OR

techniques. In CSP variables and domain correlate directly to the problem entities

and the values they can take. In some cases constraint satisfaction techniques may

give a solution faster than OR techniques such as integer linear programming [8,

57, 118, 119].

1.1.1.2 Search Cost

Solving a CSP may be intended to achieve one of the following goals:

 demonstrate there is no solution;

 find any solution;

 find all solutions;

 find an optimal, or at least a good, solution given some objective
evaluation function.

According to Freuder and Wallace [44], a standard measure of effort for a CSP

algorithm is the number of constraint checks. Other properties such as time,

backtracking, and resumption are also commonly used to measure the cost of the

search, which depends on the following CSP properties:

 The structure of the problem; how the constraints interact to rule out
assignments.

 The individual constraints; some constraints are cheap to test/propagate,
while others are expensive. Some constraints even push the problem into
areas where there are no efficient solving methods [26].

 The number of solutions in a best-solution search or in an all-solution
search.

6

CHAPTER 2: Literature Review / Constraint Programming

1.1.1.3 Constraint Arity

The constraint arity is the number of variables that the constraint is connected to. A

‘unary constraint’ constrains one single variable while a constraint that constrains

two variables is called a ‘binary constraint’. A commonly used notation of arity is a

constraint that constrains the values of N variables and is a ‘N-ary constraint’.

Below (Table 2-1) are some example of constraints and their arity1.

Constraint Arity Name

X1#\=0 1 Unary constraint

X1#\=X2 2 Binary constraint

all_different (X1,X2,X3) 3 Non-binary constraint
with a arity of 3

… … …

X1#\=X2#\=…Xn n n-ary constraint

7

One of the reasons that researchers in the last 10 years, have mainly worked with

binary constraints is that all constraints of an arity greater than 2 can be

reformulated2 and represented with binary constraints [5, 7]. For instance, the arity

3 constraint ‘all_different(X1,X2,X3)’ can be reformulated to the following three

binary constraints ‘X1#\=X2, X2#\=X3, X3#\=X1. For more information about this

binary representation of a non-binary constraint, see [5]. I have reservations about

the practice of using solely binary constraints [5, 32, 31, 61, 102] and in section

4.1.2, I present the shortcomings of this practice and argue for introducing a

mixture of different constraint arities.

Table 2-1. Constraints with Different Arity

1.1.2 Constraint Graph & Constraint Hyper-graph

1 I used SICStus not-equal sign ‘#\=’ from its constraint library over finite domains.
2 Even though in practice this transformation is not likely to be worth doing.

CHAPTER 2: Literature Review / Constraint Programming

Graphical representations of the binary CSPs are normally done with Constraint

Graphs (left graph in Figure 2-1). The nodes of the graph represent the variables

and the constraints between them are represented by the edges joining two of the

nodes. Graphical representations of the non-binary CSPs are normally done with a

Constraint Hyper-graph, where the nodes represent the variables and the constraint

is circled around the variables that are involved in the constraint (right graph in

Figure 2-1).

Figure 2-1. Constraint Graph & Constraint Hyper-Graph.

1.1.3 Search Methods

The majority of search algorithms systematically assign possible values to the

variables. Although these types of algorithms are guaranteed to find existing

solutions, they have the drawback of sometimes requiring a lot of time for the search.

The effectiveness of an algorithm is normally judged by its time complexity; how

long it takes to find the solution. Note that search is also commonly referred to as

labelling.

One of the earlier systematic search algorithms is Generate and Test (GT)

that starts with randomly generating a value for each variable and checking if the set

is consistent with the existing constraints. The instantiation and checking procedure

iterates until a solution is found or until all possible instantiations have been tried.

The advantage of this algorithm is that it is easy to implement; however it also has

two major drawbacks: firstly, the run-time complexity of the algorithm is exponential

O(max(|Di|)n), where n is the number of variables and D is the domain size used.

Secondly, the algorithm is rather inefficient because the algorithm does not memorise
8

CHAPTER 2: Literature Review / Constraint Programming

previous inconsistent variable instantiations and it will continue to instantiate the

same inconstant values to the variables.

The Standard Backtracking algorithm (BT) is a more commonly used

systematic search algorithm and can be seen as a modified GT algorithm that

surmounts the last shortcoming of the GT. After the first domain-value is instantiated

to one of the variables, the Standard BT algorithm continues to instantiate another

variable and checks for consistency against the first instantiation (partial solution). If

consistent, it will extend the partial solution with the domain-value-instantiation and

continue by instantiating the next variable, checking for consistency against previous

partial solutions. This process will iterate until either a complete consistent assignment

is found or no solution is found. A solution is detected when a complete consistent

assignment is found, while no solution exists if no complete consistent assignment is

found. If during this iterative process an inconsistency is detected in the BT

instantiation process, it will ignore all further instantiations containing that partial

solution and backtrack to the last successful variable instantiation and re-assign it with

a new domain-value. This means that the algorithm avoids some of the inconsistent

search space the GT would examine. If BT can find a solution without any

backtracking its run-time complexity becomes linear. This is seldom the case as the

most non-trivial problems require backtracking and the worst time complexity then

becomes exponential O(dnm) and the space complexity linear O(dn). In order to reduce

the amount of backtracking it is possible to implement search heuristics (see section

2.2.5) that consider the ordering of variables and values in the instantiation process.

Standard BT has three drawbacks that affect its run-time complexity: firstly,

Thrashing; which is the failure of BT to detect the actual variable that makes the partial

instantiation test inconsistent. For example, if X1 is instantiated with value Da and the

search continues instantiating values on variables X2, X3,…, Xn without realising that it

is impossible to find any consistent assignment on these variables as long as Da is

instantiated to X1. Secondly, the algorithm does redundant work: even when the reason

for inconsistency is correctly detected, the reason would be forgotten when an identical

inconsistency occurs in the iterative process. Lastly, the late inconsistency detection;

the algorithm would only detect inconsistency after all variables in the partial

assignments have been instantiated. Intelligent BT algorithms have been developed to

9

CHAPTER 2: Literature Review / Constraint Programming

overcome the drawbacks of the standard BT, for example, Back-jumping (BJ), Back-

marking (BM), or Back-checking (BC). These are all Intelligent BT ‘Look Back

algorithms’ that, by using consistency to check among the assigned variables, can

overcome the first two limitations of standard BT. When backtracking takes place, this

algorithm can identify the source of inconsistency and backtrack to the place where the

inconsistent variables were assigned. In spite of the fact that these algorithms normally

perform better than standard BT, they still suffer from the drawback of only detecting

inconsistency after the assignment has been made. Algorithms that manage to

overcome the third weakness of standard BT enforce consistency techniques (see

section 2.2.4) during search, to avoid any inconsistent domain sets values before the

instantiation is done. Several of these so-called Intelligent BT ‘Look Ahead

algorithms’ have been proposed, see section 2.2.4.5.

 Even though search algorithms such as standard BT are guaranteed to find

any existing solution and its run-time complexity becomes linear if no backtracking

is needed, this is hardly ever the case, for the most non-trivial problems backtracking

is needed and the run-time complexity becomes exponential. Intelligent BT

algorithm bridges the three inadequacies of the standard BT which affect its run-time

complexity, but they are sometimes so costly to apply that standard BT is preferred.

For further information on search algorithms see [46, 67, 105, 118].

1.1.4 Consistency Algorithms

Consistency techniques were first introduced for picture recognition programs [132]

and later successfully applied on different hard search problems [46]. Consistency

techniques try to detect and remove inconsistent values from the domain sets of a

variable but can seldom discard all inconsistent domain values for a problem.

Because consistency algorithms do not remove any values that would take part in any

solutions, they can be considered to transform the original CSP to an equivalent one.

Note that although Consistency Algorithms are often called discrete relaxation

algorithms, they are completely different from the relaxation algorithms I have

introduced (See section 4.2).

The effectiveness of the consistency algorithms is normally judged by how

long it takes to find the solution (time complexity) as well as how much memory is

10

CHAPTER 2: Literature Review / Constraint Programming

needed to perform the search (space complexity). Because these algorithms can not

demonstrate consistency (are incomplete), they are more frequently used either

interleaved with the search or before the search as a preparation phase to remove

redundant domain values that might have been detected several times and thus slow

down the search. Researchers have long worked under the assumption that

consistency checks before the search are always valuable. It should be noted that

empirical results [106] have shown that the consistency checking before the search

can interfere with the interleaved checking inside a search algorithm, making the

search with pre-processing consistency checks more costly.

1.1.4.1 Node-Consistency

Node-consistency algorithms check that each variable (nodes) connected to unary

constraints are consistent. Node-consistency algorithms locate variables that are

constrained with unary constraints. When such a variable is found, the algorithm

checks each of the domain values of the variable against the unary constraint and

removes those that violate the constraint. A variable is Node Consistent (NC) if all

its domain size values satisfy the unary constraint and a CSP is considered NC if all

the variables connected with a unary constraint are NC.

Figure 2-2 shows a CSP example where X1 is the only variable with the

unary constraint. After the algorithm locates X1 it examines domain values of X1 to

see if any of the domain values violate the unary constraint. In the example X1

domain values are reduced from {1,2,3,4,5,6,7,8,9,10} to {1,2}, because

{3,4,5,6,7,8,9,10} violates the unary constraint that states the X1 can only take a

value less than 3.

11

Variable Domain Size Domain Size after
Node-Consistency

X1 {1,2,3,4,5,6,7,8,9,10} {1,2}
X2 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}
X4 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}

 X1

 X2

 X3

X4

<

<
=

=

3

Figure 2-2. Reduction in Domain Size with Node-Consistency

CHAPTER 2: Literature Review / Constraint Programming

The node-consistency algorithm can in some exceptional cases identify

inconsistent CSPs but can never demonstrate a CSP to be consistent. If the

algorithm removes all values in one of the variable domain sets, the CSP will then

be inconsistent. Because the algorithm is incomplete it does not eliminate the need

for search and should be used normally in a pre-processing phase to reduce the

search. The node-consistency algorithm has a linear time-complexity of O(dn),

where d is the maximum size of the domains and n is the number of variables to be

examined.

1.1.4.2 Arc-Consistency

Arc-consistency is the most frequently used consistency technique; it checks the

consistency for two variables connected with a constraint, and removes the domain

values from the variables that violate the constraint. Many different Arc-consistency

algorithms have been put forward; such as, AC-1 to AC-7 as well as variations of

them (AC+3d [12]). Even though most of the proposed algorithms are only

applicable on binary CSPs, corresponding non-binary algorithms (e.g. NAC4 and

GAC4 [26]) have been presented as well.

The procedure of making the CSP Arc Consistent (AC) is the iterative

process of making the variable of each binary constraint consistent. Figure 2-3,

shows an example where domain values that violate the binary constraints are

detected and removed: X1 and X2 with the constraint 5X1≤ X2 is made AC by

removing 3 to 10 from X1 and 1 to 5 from X2. None of the domain values for the X3

and X2 variables violate the constraint X2+X3<20, so it is already AC. Because all the

CSPs constraints in Figure 2-3 are now AC, the whole CSP is AC.

12

Variable Domain Size Domain Size after AC
X1 {1,2,3,4,5,6,7,8,9,10} {1,2}
X2 {1,2,3,4,5,6,7,8,9,10} {5,6,7,8,9,10}
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}

 X2

 X3 X1

X2+ X3<20 5X1≤ X2

Figure 2-3. Reduction in Domain Size with Arc-Consistency

CHAPTER 2: Literature Review / Constraint Programming

The arc-consistency can identify inconsistent CSPs only if one of its domain

sets becomes empty during the consistency process. In addition, if every domain set

only contains one value after the AC, the CSP is consistent and a solution is found.

In spite of the fact that AC in some cases can identify CSPs as consistent or

inconsistent, this is not the normal case [67]. More often, some domain sets will

contain more than one value (e.g. example in Figure 2-3) after the CSP is made AC,

which makes it impossible to demonstrate the CSP either consistent or inconsistent

without a search; the arc-consistency algorithm is incomplete. Because AC does not

normally eliminate the need for search it is used in the pre-processing phase to ease

the search or is interweaved with the search.

Table 2-2 shows the cost in time and memory that the different arc-

consistency algorithms have, where n is the number of nodes, d domain size, and e is

the number of constraints. The best arc-consistency algorithm is now generally

assumed to be AC-2001 [9, 16].

Arc-consistency Algorithm Worst Time Complexity Space Complexity

AC-1 O(n3d3) O(e+nd)

AC-2 O(ed3) O(n2d2)

AC-3 O(ed3) O(e+nd)

AC-4 O(ed2) O(ed2)

AC-6 O(ed2) O(ed)

AC-7 O(ed2) O(ed)

AC-2001 O(ed2) O(ed)

Table 2-2. Time- and Space-Complexity for Arc-consistency Algorithms [11, 12, 15, 16, 26, 67, 118]

1.1.4.3 Path-Consistency

Path-consistency algorithms examine the consistency for three of the variables

connected with two constraints and removes inconsistent domain values from the

variables. A binary CSP is only Path Consistent (PC), if every possible path in the

CSP is PC.

‘A binary CSP is path-consistent, if for any path in its constraint graph it

holds that if the assignments of the starting and ending variables are

13

CHAPTER 2: Literature Review / Constraint Programming

consistent, then this can be extended to a consistent partial instantiation

by assigning values to the remaining variables along the path.’ [105]

Several path-consistency algorithms (PC-1 to PC-5) have been proposed, which are

normally enforced after making the problem AC. Figure 2-3 in the previous section,

shows that the domain values are first reduced to make the CSP AC. From that

example it is possible to see that even though the problem is made AC, it can still

have inconsistent domain values; for example, there exists no consistent DX2 if X1 is

assigned the value 2 at the same time as the value 10 is assigned to X3. This

inconsistent assignment can be detected and discarded during the process of making

the problem path consistent.

The path-consistency algorithm identifies all inconsistent instantiation of X1

and X3. In my example it is only DX1{2} and DX3{10} that causes an inconsistency.

This means that there is an implicit constraint between X1 and X3 that forbids this

tuple to be instantiated with these values at the same time. By adding a constraint

equivalent to the implicit constraint to the constraint graph as shown in Figure 2-3,

and thereafter enforcing AC on the three variables, the path is made path consistent.

With the new constraint, the arc-consistency algorithm would now detect and remove

{2} from X1 domain set as well as {1,2,3,4,5} from X3 domain set. After this

procedure, the path of the triple X1, X2, and X3 is PC. Because there is only one triple

in my example the whole CSP has also become PC. If one of the domain sets

becomes empty during the path-consistency then the CSP is inconsistent. If each

domain set is left with only one value the CSP is consistent and the instantiation is

the only solution. If some of the variable domain lists have more than one value, like

example Figure 2-4, this does not normally demonstrate a CSP consistent or

inconsistent, but in this case it does, due to n-consistency which is explained in

section 2.2.4.

14

Variable Domain Values Domain Size After
AC

Domain Size
after PC

X2
5X1≤ X2 X2+ X3<20

X3 X1

5X1< X3

CHAPTER 2: Literature Review / Constraint Programming

X1 {1,2,3,4,5,6,7,8,9,10} {1,2} {1}
X2 {1,2,3,4,5,6,7,8,9,10} {5,6,7,8,9,10} {5,6,7,8,9,10}
X3 {1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10} {6,7,8,9,10}

In practice, while it is usually valuable to enforce arc-consistency, path-

consistency is often not worth applying for three reasons. Firstly, even though the

path-consistency algorithms remove more inconsistent values than arc-consistency

algorithms the time-complexity is much worse (compare Table 2-2 with Table 2-3).

The most efficient path-consistency algorithm has a worst case time-complexity of

O(d3n3) [67, 118]. The main reason for the large difference in time-complexity is

that the number of possible triples in a CSP to investigate is much larger than the

CSP’s number of constraints. Secondly, the constraints are rarely expressed in

allowed tuples, which makes it complicated to remove individual values in order to

tighten a binary constraint [118]. Thirdly, because the algorithms add extra

constraints into the constraint graphs (see Figure 2-3) there is a huge memory

requirement even for small problems [8]. Although path-consistency removes more

inconsistent values than any arc-consistency algorithm, it is incomplete and

normally does not eliminate the need for search.

Figure 2-4. Example of Path-Consistency, partly based on [118]

Path-consistency Algorithm Worst Time Complexity Space Complexity

PC-1 O(d5n5) O(d2n3)

PC-2 O(d5n3) O(d2n3 + n2)

PC-3 O(d5n3) O(d2n3 + n2)

PC-4 O(d3n3) O(d3n3)

PC-5 O(d3n3) O(d3n3)

Table 2-3. Time- and Space-Complexity for Path-Consistency Algorithm [66, 125]

1.1.4.4 Obtaining n- and k-Consistency

Freuder states [42] that a CSP is k-consistent, if any set of k-1 variables

surrounding constraints are consistent and there exists domain values for the k-th

variable that makes all k variables consistent. In addition, he states that a CSP is

said to be strongly k-consistent if it is [1-(k-1)]-consistent. The k-consistency and

15

CHAPTER 2: Literature Review / Constraint Programming

the strong k-consistency definition allow a general notation for the three different

consistency algorithms I have explained: node-consistency becomes strong 1-

consistency, arc-consistency becomes strong 2-consistency, and path-consistency

becomes strong 3-consistency. The time-complexity of the algorithm k-consistency

is O(dnk). The maximum k value for k-consistency is the CSP’s number of

variables (n), which allows a CSP with n variables to become n-consistent. If a

problem containing n nodes is strongly n-consistent, then a solution to the CSP can

be found without any search [42, 67]: this happened in the example in Figure 2-4

which was made strongly n-consistent because the CSP only had 3 variables (k = n

= 3). But if the problem is strongly k-consistent with k<n, undetected redundant

domain values can still exist, and so search is needed. The time-complexity of the

algorithm for obtaining n-consistency is O(dnn). For more information about

consistency algorithms I recommend the following papers [12, 15, 42, 67, 71].

1.1.4.5 Search Algorithms that use Consistency Techniques

One of the weaknesses of standard BT Search algorithms is the late detection of

inconsistency; the algorithm would only detect an inconsistency after all variables in

the partial assignments have been instantiated. By combining Standard BT with

consistency algorithms this limitation can be overcome by enforcing consistency

techniques (see section 2.2.4) during search, to avoid any inconsistent domain set

values before the instantiation is done. Several types of the latter algorithms, so-called

Look Ahead algorithms have been proposed such as, Forward Checking (FC) Partial

Look Ahead (PLA), Full Look (FL) and Maintaining Arc Consistency (MAC) etc. The

two most frequently used are FC and MAC, which differ in the amount of consistency

they enforce during search [106]; MAC enforces full arc-consistency [47, 106] while

FC enforces a limited form of arc-consistency [55, 106]. Initial research made the

wrong assumption that Look Ahead algorithms would do best in only enforcing a

limited arc-consistency [67]; Sabin and Freuder [106] showed that establishing and

maintaining full arc-consistency during search (MAC) was in many cases more

efficient than only implementing partial arc-consistency (FC). Research [13, 52, 106]

has now shown that different types of MAC-algorithms in general perform much better

than FC; MAC is significantly better than FC around the transition phase (see section

2.2.7) but inferior in the clearly over- and under-constrained area. Note that although

16

CHAPTER 2: Literature Review / Constraint Programming

the improved BT algorithms mentioned above manage to bridge the three inadequacies

of the standard BT they are sometimes very costly to apply.

For example, the MAC algorithm uses backtracking interleaved with

polynomial consistency techniques that have E combinations to consider; its worst

time complexity becomes E×(O(ednk))×max(|Di|)n. If I take the MAC-4 algorithm

that uses full AC-4 consistency checking, the total time complexity becomes

~k×(O(edn2))×max(|Di|)n; O(ed2) for AC-4 and max(|Di|)n for the time complexity of

search. To guarantee completeness, you need n-consistency O(dnn), which is the

same worst-case complexity as MAC.

1.1.4.6 Approaches that Reduce the Time Complexity

My research aim is to quickly identify inconsistent CSPs. A possible approach that

reduces the time complexity involved, is to use the latest search and higher order of

consistency algorithms described above, which have better worst time-complexity

than those commonly used in constraint packages (e.g. [59, 113]). For the following

reasons I am not interested using this approach:

1. The time-complexity of enforcing consistency algorithms is very high, and

unless n-consistency is enforced it does not guarantee the detection of

inconsistent CSPs. Achieving n-consistency can often be even more

expensive than simple backtracking [67].

2. My research aim is to help KBS people examine if existing KBs can be

reused. I can not assume that these people have the necessary knowledge to

implement the latest search and higher k-consistency algorithms on the CSPs.

Therefore standard CP toolkits are used. These toolkits have good search

algorithms but normally can only enforce 1 and 2-consistency.

3. Enforcing higher k-consistency is complicated: real-world constraints are

rarely expressed in allowed tuples (see section 4.1.3.1) and to enforce higher

k-consistency the algorithms need to remove individual parts of values in

order to tighten a binary constraint [118].

17

CHAPTER 2: Literature Review / Constraint Programming

4. Because the higher k-consistency algorithms adds extra constraints into the

constraint graphs they have substantial space requirements even for small

problems [8].

5. Even the latest most efficient search algorithms such as MAC are sometimes

very costly to apply.

My approach uses constraint relaxation strategies to quickly identify inconsistent

CSPs. Through empirical investigation I have created constraint relaxation strategies,

which relax the CSP by carefully removing constraints to create relaxed CSPs that

are easier to demonstrate inconsistent. If the relaxed CSP is inconsistent the original

CSP can be discarded without performing expensive search; empirical time-

complexity reduction. This means the two approaches do not compete, because

different search and consistency algorithms can and are used to demonstrate the

relaxed CSP inconsistent. Consequently, my approach can be seen as a contribution

and a complement to the existing search and consistency algorithms.

1.1.5 Search Heuristics.

When the search algorithm starts to instantiate the variables, it must know the order

in which variables are to be considered. This so-called ‘Variable Ordering’ can either

be static or dynamic. When using static ordering the variable order is decided before

the search starts. The dynamic ordering starts either with an order list that might

change depending on the state of the search or it starts by computing the next

variable afresh each time. A common ordering is ‘smallest domain’ which starts

working with variables with the smallest domain size. Other common ordering is

‘minimum width ordering’ and ‘minimum conflict first’. After the search algorithm

chooses a variable to instantiate another search heuristic comes in to play. This is the

so-called ‘Value Ordering’—the choice of domain value with which to start

instantiating the variable.

One set of heuristics is not always better than another. The heuristics are

chosen depending on the problem and search algorithm. These heuristic choices are

essential for the performance of the search and demand expertise. Smith [118] used a

small Cryptarithmetic puzzle to demonstrate that a specific heuristic can drastically

18

CHAPTER 2: Literature Review / Constraint Programming

improve the result. Some current research is investigating how novices could get help

choosing search heuristics from a Case Base Reasoning (CBR) system [48]. For

more information on search heuristics see [46, 105, 118].

1.1.6 Random Generated CSPs

Ideally, researchers would use real-world problems for empirical analyses of

different constraint satisfaction algorithms, such as search, relaxation, and

consistency algorithms etc. However, it is hard to find sufficient numbers of

analogous real-world problems to statistically verify the results of the algorithms,

the usage of a randomly generated CSPs have been used as a substitute in the

constraint community.

The main benefits of using random binary CSPs as a test-bed, is the large

numbers of analogous problems that can easily be generated, which allows the

researchers to statistically verify the results of their algorithms. Another benefit is a

test-bed which produces examples with specific properties; for example, the

possibility to generate a large number of problems close to the solution transition

phase (for more information about the transition phase, see next section), where the

problems are known to be harder [25, 96]. Hard areas like these are particularly

suited for comparing the performance of different algorithms [17]. In addition,

Bessière has highlighted the test-beds inter-changeability as one often forgotten

advantage of using random CSPs. No particular domain knowledge is needed to

understand the problems and neither do the problems contain sensitive or classified

information. The above reasons make it relatively easy for researchers to replicate

the problems, for example, when comparing the effectiveness of different

algorithms. However, although I list benefits obtained by using random CSPs as

test-beds, it should not be forgotten that the reason of random CSP existence is to

substitute real-world problems.

Random binary CSPs are normally generated according to one of four

common models; A, B, C, and D [70]. These are normally described by a 4-tuple

<n,m,p1,p2>, where n is the number of variables and m is the number of values in

19

CHAPTER 2: Literature Review / Constraint Programming

20

e problem class notation <n,m,c,t> is more frequently used: in

this no

iloptas

et al. [1] showed that all four models can generate flawed variables; a variable is

each domain3, p1 is the density of the constraint graph (the proportion of

constraints used in the CSP relative to the maximum number possible), and p2 is

the tightness (the proportion of forbidden tuples in each constraint, see section

4.1.1). The four models differ in how the CSP constraints are created and chosen.

Both A and C use probability p1 in selecting each one of the (n(n-1)/2) possible

constraints, while B and D uniformly select exactly p1(n(n-1)/2) constraints. Model

A and D use probability p2 to select each of the m2 forbidden tuples, while B and C

uniformly select exactly p2m2 pairs as forbidden tuples.

Recently th

tation p2 is changed to t but continues to represent the number of forbidden

tuples in each constraint (a measure of problem tightness). More important is that

p1 (density) is replaced with c (the number of constraints in the CSP). Density (p1)

describes how dense the CSP is with constraints; adding more constraints makes

the CSP denser. Density is normally calculated as a percentage by Equation 2-1

(page 25), often this leads to working with a rounded off percentage which could

lead to misinterpretations in the number of constraints used when the problem is

recreated. The reason for the change to c in notation is practical—working with an

integer is more exact then dealing with probabilities and proportions. For example,

if the choice is made to create a CSP with 40 variables (n = 40) and 503 constraints

(c = 503), the equation would give the CSP a density of ~0.6448718. Let us say

that the density is then rounded down to 0.64 and placed in the problem class

description <40,m,0.64,p2>. If the problem class needs to be replicated then 0.64 is

used as the density. Equation 2-1. would be used to calculate the number of

constraints required. With 0.64 the equation would then wrongly suggest 499 when

the original problem class had 503 constraints. Working with a percentage here

would create a completely new problem class when trying to replicate an old

problem class. It is due to this reason I use the number of constraints c (integer

value) as a density measurement in the problem class notation in this thesis.

Recent additions to these four models have been introduced after Ach

3 Normally a random generated CSP uses the same domain size for all its variables.

CHAPTER 2: Literature Review / Constraint Programming

21

flawed

better simulate real-

world

 if every one of its domain values are unsupported. ‘A value for a variable is

unsupported if, when the value is assigned to the variable, there exists an adjacent

variable in the constraint graph that cannot be assigned a value without violating

constraint’ [70]. Flawed variables make it easy to demonstrate the CSP

inconsistent: no search is needed as a simple arc-consistency algorithm would find

the CSP inconsistent. As my CSP-Suite is based on model B, a deeper discussion

on how the findings of Achiloptas et al. influence the results of my experiments, is

put forward in section 4.1.7.

Surprisingly little attention has been given to modifying the conventional

CSPs (random binary CSPs with fixed internal tightness) to

 problems. Although real-world problems involve different types of non-

binary constraints with different arity, most CSP Generators, described in the

literature, only work with binary constraints. Another important shortcoming of the

conventional CSP Generators is that they fail to embody the constraint’s diversity

in tightness that occurs in a real-world problem. An implementation of non-binary

constraints of different arity and allowing implementation of different statistical

tightness distribution into the CSP Generator would create CSP test-beds that more

accurately simulate real-world problems. In section 4.1.5.2 I argue for the

importance of implementing different binary and non-binary constraints into my

CSPs generator. In section 4.1.2 I highlight the reasons, as well as explaining how

different tightness distributions were implemented in my CSP Generator. One

might argue that few parameters associated with conventional CSPs give the user a

beneficial controlled test environment. My thesis will demonstrate that even when

implementing non-binary constraints with different statistical internal tightness, the

user is still very much in control of the test environment. The rationale of striving

to implement real-world properties in a CSP Generator comes from the very

purpose of random CSPs test-beds, that is, to substitute for real-world problems. I

believe the conventional CSP test-bed still retains its purpose, when comparing a

new algorithm with an earlier one. If an earlier algorithm cannot be applied to

problems with non-binary CSP and different tightness distributions, the

performance comparison should be conducted on the conventional CSP test-bed. If

the algorithms cannot work on test-beds that better simulate real-world problems,

CHAPTER 2: Literature Review / Constraint Programming

22

n recent years

received considerable attention [25, 50, 69, 95, 96, 98, 139]. To study this phase

umbers of problem classes

y to verify that there is an inconsistency (many

constra

would they be applicable on real-world problems? If not, what is the reason behind

their creation, what contribution do they make? Maybe it is time to update these

algorithms so they can handle properties from real-world problems. I argue that the

algorithms should evaluated, if possible, on Random CSP with properties as close

to real-world problem before applying them on real-world problems.

1.1.7 Phase Transition Behaviour & Hardness Peak

The phase transition was first identified by [19, 38, 39] and has i

transition phenomena [96], researchers generated large n

with fixed n and m but varying c and t. Within each of the problem classes a large

number of CSPs are generated with identical parameters <n,m,c,t>. By measuring

the number of CSPs in each problem class that have a solution it is possible to

calculate the probability of finding a solution for a specific problem class. Figure

2-5 shows the phase transition, where the rapid change in the probability of finding

a solution occurs when density and tightness parameters are varied on problem

class 30<20,10,Stepped,Stepped>.

The transition phenomena occurs between an area where CSPs have many

solutions and are easy to demonstrate consistent, and a region where most CSPs are

inconsistent and it is relatively eas

ints allow effective pruning of domain values). In the phase transition, the

probability of finding a solution drastically shifts from 100% to 0%. When working

with a problem class close to the transition phase, small changes to some of the

control parameters of the problem class such as adding constraints to the CSP

(Density increase) or tightening the constraints of the CSPs, can push the CSP over

the phase transition from consistent to inconsistent. Note that if several CSPs from

the same problem class are generated in the middle of the transition phase, some

CSPs would turn up inconsistent while others would be consistent, which makes it

possible to calculate the probability of finding a solution for that problem class.

CHAPTER 2: Literature Review / Constraint Programming

In Figure 2-6 instead of measuring the probability of finding a solution I

have measured the average search effort (problem class hardness) when density and

the tightness parameters are varied. The figure shows how hard CSPs from certain

problem classes are, and research has shown [25, 96] that the hardness peak

coincides with the transition phase, i.e. CSPs close to or on the solution transition

phase are in general much harder to solve than others. This transition phase area of

very hard CSPs is of special interest to the constraint community, as it supports

empirical work, such as algorithm comparison [17].

23

Figure 2-5. Solution Transition Phase for 30<20,10,Stepped,Stepped>

Figure 2-6. Hardness Peak for 30<20,10, Stepped,Stepped>

CHAPTER 2: Literature Review / Constraint Programming

Figure 2-7 shows slices taken out of the 3D graph in Figure 2-6 and Figure 2-5,

when the tightness is fixed to 0.45. Figure 2-7 shows that the transition phase coincides

with the hardness peak and that the inconsistent CSP tends to become somewhat

harder than the consistent CSP. The aim of my relaxation strategies is to detect these

inconsistent CSPs using less search effort than is used by a normal search.

24

Research that tries to characterise problem hardness, for instance [103], and

understand the behaviour of the phase transition is important in my research

because my relaxation strategies (described in section 4.2) are only profitable when

constraints are removed from an inconsistent CSP in such a way that new

inconsistent CSP’s, which are easier to solve, are produced. Due to the CSPs

hardness peak at the transition phase (transition phase behaviour) this is a difficult

task.

Figure 2-7. Density & Solution Transition Graph for 30<20,10,Stepped,0.45>

Gent et al. [50] presented Equation 2-2 that predicts the location of the

phase transition. The relaxation strategies can use the equation when deciding the

number of constraints to remove, to reduce the possibility of passing over the

consistent side of the transition phase, i.e. the relaxed CSP will be inconsistent.

Equation 2-2 predicts the location of the phase transition, where k is a measurement

of constrainedness of the problem. Because I use the <n,m,c,t> notation while Gent

et al. used the somewhat older notation <n,m,p1,p2> I replace p1 in Equation 2-2

with the density Equation 2-1. Using this substitution, I get the phase transition

CHAPTER 2: Literature Review / Constraint Programming

prediction equation (Equation 2-3) for the notation <n,m,c,t>. Gent et al. [50] have

shown that for problem classes with <20,10, Step, Step> the phase-transition

occurs between 0.75 ≤ k ≤ 1. In my empirical chapter (section 5.2) there is a more

detailed discussion of the transition phase behaviour influencing my research.

25

⎟
⎠
⎞

⎜
⎝
⎛
−

=
tn

ck m

1
1log

1.1.8 Formulating the CSP

 formulated as a CSP, in many different ways. To

1.1.9 Examples of CSPs

A real-world problem can be

represent the problem as a CSP in an efficient way is difficult but important to get

an efficient search. It has been shown [118] that a simple change in representation

can dramatically improve the performance of the search algorithm. Ruttkay [105]

claims that there are exceptionally complicated problems where reformulation has

led to a solution. Evidently, the constraint programmers need knowledge and

experience of CSP formulation. Until now, only experienced constraint

programmers have sufficient knowledge to efficiently represent problems as CSPs.

There is interesting ongoing research into easing the formulation problem for

novice users with the help of the Case Based Systems approach [48]. Even though

representation is difficult in constraint programming it is still considered easier

than for OR techniques [97].

Equation 2-1. Density Calculation Equation 2-2. Constrainedness

Equation 2-3. Constrainedness using Number of

Constraint instead of Density

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
t

pnk m

1
1log

2
1

1()()
⎟
⎠
⎞

⎜
⎝
⎛ −

=

2
1

1

nn
cp

CHAPTER 2: Literature Review / Constraint Programming

26

pes of combinatorial problem, which can be represented

ematical problem in which the digits are replaced

There are many different ty

as a CSP. I will now describe three classical combinatorial problems and show how

these can be formulated as CSPs. The problems are the Cryptarithmetic Puzzle,

Graph Colouring, and a small scheduling problem. My formulations of the

problems are written in SICStus Prolog, using its library over finite domains [21]

and these CSPs are available online [89].

1.1.9.1 Cryptarithmetic Puzzles

Cryptarithmetic Puzzles is a math

by letters of the alphabet or other symbols. Solving the problem involves assigning

each letter a digit, in such a way that the resulting mathematical calculation is

correct. Code 2-2 shows the classical SEND+MORE=MONEY problem. Other

possibilities are: SEVEN-NINE = EIGHT, CROSS + ROADS = DANGER, etc.

:- use_module(library(clpfd)).

9), % Variables and their domain size

 % Constraint

e

+100* 100*N+10*E+Y.

N,D,M,O,R,Y],Type).

 mm([S,E,N,D,M,O,R,Y],Type) :-
 domain([S,E,N,D,M,O,R,Y],0,
 S#>0, M#>0,
 all_different([S,E,N,D,M,O,R,Y]), % Constraint

, Y), Constraint sum(S,E,N,D,M,O R, % Call Equation

 labeling([],[S,E,N,D,M,O,R,Y]). % Assign values to the variabl

sum(S,E,N,D,M,O,R,Y) :- % Equation Constraint
000*S+100*E+10*N+D+1000*M O+10*R+E#=10000*M+1000*O+1

% End of file

| ?- mm([S,E,

 = 7, D
E = 5,
M = 1,
N = 6,
O = 0,
R = 8,
S = 9,
Y = 2 ?
yes
| ?-

Code 2-1. Cryptarithmetic Puzzle 'Send+more=money', written in SICStus Prolog

CHAPTER 2: Literature Review / Constraint Programming

1.1.9.2 Graph Colouring

Given a map and a number of different colours, the graph colouring problem is

solved by colouring the map so that no regions sharing a boundary line have the

same colour. Code 2-3 shows an example, in SICStus Prolog, of the colouring

problem on the different states in Australia (See Figure 2-8).

p and a number of different colours, the graph colouring problem is

solved by colouring the map so that no regions sharing a boundary line have the

same colour. Code 2-3 shows an example, in SICStus Prolog, of the colouring

problem on the different states in Australia (See Figure 2-8).

Western
Australia

Northern
Territory

Queensland

South
Australia

New South
Wales

Victoria

Figure 2-8. The Different States of Australia; a Map Colouring Problem :- use_module(library(clpfd)).

solve_AUSTRALIA(WA,NT,Q,SA,NSW,V):-

domain([WA,NT,Q,SA,NSW,V], 1, 3), % Variables & their domain size colour 1=blue, 2=red
 or 3= green.

WA#\=NT, % Constraints
WA#\= SA, % WA abbreviation of Western Australia
NT#\= SA, % NT abbreviation of Northern Territory
NT#\= Q, % Q abbreviation of Queensland
SA#\=Q, % SA abbreviation of South Australia
SA#\=NSW, % NSW abbreviation of New South Wales
SA#\=V, % V abbreviation of Victoria
Q#\=NSW,
NSW#\=V,

labeling([],[WA,NT,Q,SA,NSW,V]). % assign values to the Variables

%% End of file

| ?- solve_AUSTRALIA(WA,NT,Q,SA,NSW,V).
Q = 1,
V = 1,
NT = 2,
SA = 3,
WA = 1,
NSW = 2 ?
yes
| ?-

27

CHAPTER 2: Literature Review / Constraint Programming

28

1.1.9.3 Scheduling

Since my relaxation approach is exemplified on a production schedule problem, I

show here an example of a scheduling problem. The problem below is taken from

the SICStus manual [114]. The scheduling problem below aims to minimize the

completion time for seven tasks without exceeding the resource capacity of 13.

Each task has its specific duration, and resource needs. If this problem is put in a

real-world context (See Code 2-4) with real-world scheduling variable names it

could look like this: A manufacturing line is divided into seven workstations and

has access to 13 workers. At each of the seven workstations a task is performed

which has a minimum need of workers (resources) and will take a certain amount

of time (duration). The manager would like to find the most efficient scheduling

with regard to time and resources.

Code 2-2. Graph Colouring Problem for the States of Australia, written in SICStus Prolog

 */ TASK DURATION RESOURCE
 ==== ======== ========
 t1 16 2
 t2 6 9
 t3 13 3
 t4 7 7
 t5 5 10
 t6 18 1
 t7 4 11 /*

:- use_module(library(clpfd)).
:- use_module(library(lists), [append/3]).

schedule(Ss, Rs, End) :-
 length(Ss, 7),
 Ds = [16,6,13,7,5,18,4],
 Rs = [2,9,3,7,10,1,11],
 domain(Ss,1,30),
 domain([End],1,50),
 after(Ss, Ds, End),
 cumulative(Ss, Ds, Rs, 13),
 append(Ss, [End], Vars),
 labeling([minimize(End)], Vars).

after([], [], _).
after([S|Ss], [D|Ds], E) :-
E #>= S+D, after(Ss, Ds, E).

%% End of file

| ?- schedule(Ss,Rs,End).
Rs = [2,9,3,7,10,1,11],
Ss = [1,17,10,10,5,5,1],
End = 23 ?
yes
| ?-

Code 2-3. Simple Scheduling Program, written in SICStus Prolog [114]

KB-Survey Bibliography

‘All things of this world are nothing, unless

they have reference to the next.’

Spanish Proverb

Bibliography

1. Achiloptas, D., L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy, and C.

Stamation, (1997) 'Random Constraint Satisfaction: A more accurate picture.' in
Third International Conference on Principles and Practice of Constraint
Programming (CP97), Schloss Hagenberg, Austria: Springer Verlag, pp. 107-
120

2. ACM, (1998) 'The ACM Computing Classification System', [WWW] Available
from: http://www.acm.org/class/1998/ccs98.html [Accessed 5 August 2004]

3. AKT, (2003) 'Reuse Knowledge', The Advanced Knowledge Technologies
project (AKT) [WWW] Available from:
http://www.aktors.org/publications/reuse/ [Accessed 10 June 2004]

4. Anon, (2001) 'Timeline of the history of Artificial Intelligence', [WWW]
Available from: Http://web.mit.edu/STS001/www/Team7/timeline.html
[Accessed 7 August 2001]

5. Bacchus, F., X. Chen, P.v. Beek, and T. Walsh, (2002) 'Binary vs. non-binary
constraints', Artificial Intelligence, Volume 140, Issue 1-2. September, pp. 1-37

6. Barker, V.E., D.E. O'Connor, J. Bachant, and E. Soloway, (1989) 'Expert
systems for configuration at Digital: XCON and beyond', Communications of the
ACM, Volume 32, Issue 3. pp. 298-318

7. Barták, R., (1998) 'Online Guide to Constraint Programming', Roman Barták
[WWW] Available from:
http://kti.ms.mff.cuni.cz/~bartak/constraints/binary.html [Accessed March 2003]

 -29-

http://www.acm.org/class/1998/ccs98.html
http://www.aktors.org/publications/reuse/
http://web.mit.edu/STS001/www/Team7/timeline.html
http://kti.ms.mff.cuni.cz/%7Ebartak/constraints/binary.html

KB-Survey Bibliography

8. Barták, R., (1999) 'Constraint Programming: In Pursuit of the Holy Grail' in
Eigth Annual Conference of Doctoral Students (WDS'99), Prague,
Czechoslovakia: MatFyzPress, pp. 555-564

9. Barták, R., (2004) 'Propagating Deletions in Tabular Constraints' in Joint Annual
Workshop of ERCIM/CoLogNet on Constraint Solving and Constraint Logic
Programming (CSCLP -2004), Lausanne, Switzerland, pp. 1-11

10. Bennett, J. and R. Engelmore, (1983) 'Experience using EMYCIN. In Rule-
Based Expert Systems', E. Shortliffe, Editor, Addison-Wesley, London, pp. 314-
328

11. Bessière, C., (1994) 'Arc-consistency and arc-consistency again', Artificial
Intelligence, Volume 65, Issue 1. pp. 179-190

12. Bessière, C., E.C. Freuder, and J.-C. Regin, (1995) 'Using inference to reduce arc
consistency computation.' in Eleventh International Joint Conference on
Artificial Intelligence (IJCAI'95), Montreal Quebec: Morgan Kaufmann
Publishers, Inc, pp. 592--598

13. Bessière, C., (1996) 'MAC and Combined Heuristics: Two Reasons to Forsake
FC (and CBJ?) on Hard Problems' in Second International Conference on
Principles and Practice of Constraint Programming (CP96), Cambridge,
Massachusetts, USA: Springer-Verlag, pp. 61-75

14. Bessière, C., (1999) 'Non-binary constraints' in Fifth International Conference on
Principles and Practice of Constraint Programming (CP99), Alexandria VA, pp.
24-27

15. Bessière, C., E.C. Freuder, and J.-C. Regin, (1999) 'Using constraint
metaknowledge to reduce arc consistency computation' in Fifteen International
Joint Conference on Artificial Intelligence (IJCAI'99), Montreal Quebec: Morgan
Kaufmann Publishers, Inc, pp. 125-148

16. Bessière, C. and J.-C. Regin, (2001) 'Refining the basic constraint propagation
algorithm' in Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI'01), Seattle, WA, pp. 309-315

17. Bessière, C., (2004) 'Random Uniform CSP Generators', [WWW] Available
from: http://www.lirmm.fr/~bessiere/generator.html [Accessed 3 July 2004]

18. Bistarelli, S., U. Montanari, and F. Rossi, (1995) 'Constraint Solving over Semi-
rings' in IJCAI, pp. 624-630

19. Bollobás, B. and A. Thomason, (1987) 'Threshold functions', Combinatorica,
Volume 7, Issue 1. January, pp. 35-38

 -30-

http://www.lirmm.fr/%7Ebessiere/generator.html

KB-Survey Bibliography

20. Burke, P. and P. Prosser, (1991) 'A Distributed Asynchronous System for
Predictive and Reactive Scheduling', The International Journal for Artificial
Intelligence in Engineering, Volume 6, Issue 3. pp. 106-124

21. Carlsson, M., G. Ottosson, and B. Carlsson, (1997) 'An Open-Ended Finite
Domain Constraint Solver' in Programming Languages: Implementations,
Logics, and Programs., pp. 345-381

22. Carlsson, M., (2004) 'Re: Run time complexity for the global constraints in
SICStus', Google Newsgroups: comp.lang.prolog [WWW] Available from:
http://groups.google.com/groups?selm=77bbf36a.0402030748.70045c4c%40post
ing.google.com [Accessed 2 January 2004]

23. Chandrasekaran, B., J.R. Josephson, and V.R. Benjamins, (1999) 'What Are
Ontologies, and Why Do We Need Them?' IEEE Intelligent Systems, Volume 14,
Issue 1. pp. 20-26

24. Chaudhri, V.K., M.E. Stickel, J.F. Thomere, and R.J. Waldinger, (2000) 'Using
Prior Knowledge: Problems and Solutions' in Seventeenth National Conference
on Artificial Intelligence and Twelfth Innovative Applications of Artificial
Intelligence Conference (AAAI/IAAI'00), Austin, Texas, USA: AAAI Press/MIT
Press, pp. 437

25. Cheeseman, P., B. Kanefsky, and W.M. Taylor, (1991) 'Where the really hard
problems are' in Seventh International Joint Conference on Artificial Intelligence
(IJCAI'91), Sydney, Australia, pp. 331-337

26. Chopra, R., R. Srihari, and A. Ralston, (1995) 'Hyper-Arc Consistency and
Expensive Constraints', State University of New York at Buffalo, Technical
Report: 95-21, pp. 1-6

27. Clarke, R., (1992) 'Fundamentals of 'Information Systems', [WWW] Available
from: http://www.anu.edu.au/people/Roger.Clarke/SOS/ISFundas.html
[Accessed 11 March 2004]

28. Collinot, A., C.L. Pape, and G. Pinoteau, (1988) 'SONIA --- a knowledge-based
scheduling system.' Artificial Intelligence in Engineering, Volume 3, Issue 4. pp.
86-94

29. Compton, P. and R. Jansen, (1989) 'A philosophical basis for knowledge
acquisition' in Third European Workshop on Knowledge Acquisition for
Knowledge-Based systems (EKAW'89), Paris, pp. 75-89

30. Davis, R., H. Shrobe, and P. Szolovits, (1993) 'What is a Knowledge
Representation?' AI Magazine, Volume 14, Issue 1. pp. 17-33

 -31-

http://groups.google.com/groups?selm=77bbf36a.0402030748.70045c4c%40posting.google.com
http://groups.google.com/groups?selm=77bbf36a.0402030748.70045c4c%40posting.google.com
http://www.anu.edu.au/people/Roger.Clarke/SOS/ISFundas.html

KB-Survey Bibliography

31. Dechter, R. and J. Pearl, (1989) 'Tree clustering for constraint networks (research
note)', Artificial Intelligence, Volume 38, Issue 3. April, pp. 353-366

32. Dechter, R., (1990) 'On the expresiveness of networks with hiden variables' in
Eighth National Conference on Artificial Intelligence (AAAI-90), Boston: MA,
pp. 556-562

33. Devedzic, V., (2001) ' Knowledge modeling--State of the art', Integrated
Computer-Aided Engineering, Volume 8, Issue 3. pp. 257-281

34. Dieng, R., O. Corby, A. Giboin, and M. Ribière, (1998) 'Methods and Tools for
Corporate Knowledge Management' in 11th Banff Workshop on Knowledge
Acquisition, Modelling and Management (KAW’98), pp. 42

35. Drucker, P.F., (1989) 'The new realities : in government and politics, in
economics and business, in society and world view', New York: Harper & Row,
pp. 276

36. Eisenstadt, M. and M. Brayshaw, (1990) 'Build your own knowledge engineering
toolkit', [WWW] Available from:
http://kmi.open.ac.uk/people/marc/mike/mike2.03/how-mike-works.htm
[Accessed 17 March 2004]

37. Elleby, P., H.E. Fargher, and T.R. Addis, (1988) 'A Constraint-Based Scheduling
System for VLSI Wafer Fabrication', Department of Computer Science,
University of Reading, Technical Report: 1988b

38. Erdös, P. and A. Rényi, (1959) 'On random graphs', Math. Debrecen, Volume 6.
pp. 290-297

39. Erdös, P. and A. Rényi, (1960) 'On the evolution of random graphs', Publ. Math.
Inst. Hungarian Acad. Sci., Volume 5. pp. 17-61

40. Feigenbaum, E., P. McCorduck, and H.P. Nii, (1988) 'The rise of the expert
company', New york: MIT press

41. Fox, M.S., B.P. Allen, S.F. Smith, and G.A. Strohm, (1983) 'ISIS: A Constraint-
Directed Reasoning Approach to Job Shop Scheduling System Summary',
Robotics Institute, Carnegie Mellon University, Technical Report: CMU-RI-TR-
83-08

42. Freuder, E., (1978) 'Synthesizing constraint expressions' in Communication of
the ACM (CACM), pp. 958-966

43. Freuder, E. and R. Wallace, (1992) 'Partial Constraint Satisfaction', Artificial
Intelligence, Volume 58. pp. 2170

 -32-

http://kmi.open.ac.uk/people/marc/mike/mike2.03/how-mike-works.htm

KB-Survey Bibliography

44. Freuder, E. and R. Wallace, (1992) 'Partial Constraint Satisfaction', Artificial
Intelligence, Volume 58, Issue 1-3. December, pp. 21-70

45. Freuder, E.C., (1997) 'In Pursuit of the Holy Grail.' Constraints, Volume 2. pp.
57-61

46. Fruhwirth, T., A. Herold, V. Kuchenhoff, T.L. Provost, P. Lim, E. Monfroy, and
M. Wallace, (1993) 'Constraint Logic Programming: An informal introduction',
European Computer-Industry Research Centre, Technical Report: ECRC-93-5

47. Gashing, J., (1979) 'Performance measurement and analysis of certain search
algorithms', Carnegie-Mellon University, PhD Thesis

48. Gebruers, C., A. Guerri, B. Hnich, and M. Milano, (2004) 'Making Choices at the
Instance Level with a Case Based Reasoning Framework' in Proceedings of the
1st International Conference on the Integration of AI and OR Technologies,
Nice, France: Springer

49. Gennari, J.H., M.A. Musen, R. Fergerson, and . (2003) 'The Evolution of
Protégé: An Environment for Knowledge-Based Systems Development.'
International Journal of Human-Computer Studies, Volume 58, Issue 1. pp. 89-
123

50. Gent, I., E. MacIntyre, P. Prosser, and T. Walsh, (1996) 'The Constrainedness of
Search' in Thirteenth National Conference on Artificial Intelligence (AAAI-96),
pp. 246-252

51. Graner, N. and D. Sleeman, (1993) 'MUSKRAT: A Multistrategy Knowledge
Refinement and Acquisition Toolbox.' in Proceedings of the Second
International Workshop on Multistrategy Learning, Harpers Ferry, West
Vergina, USA, pp. 107-119

52. Grant, S.A. and B.M. Smith, (1995) 'The phase transition behaviour of
maintaining arc consistency', School of Computer Studies, University of Leeds,
Technical Report: 95:25

53. Hadavi, K., W. Hsu, T. Chen, and C. Lee, (1992) 'An Architecture for Real-Time
Distributed Scheduling', AI Magazine, Volume 13, Issue 3. pp. 46-56

54. Hameed, A., D. Sleeman, and A. Preece, (2001) 'Detecting Mismatches Among
Experts' Ontologies Acquired through Knowledge Elicitation' in 21 st SGES
International Conference on Knowledge Based Systems and Applied Artificial
Intelligence, Cambridge: Springer Verlag, pp. 9-22

 -33-

KB-Survey Bibliography

55. Haralick, R.M. and G.L. Elliott, (1980) 'Increasing tree search efficiency for
constraint satisfaction problems', Artificial Intelligence, Volume 14, Issue 3.
October, pp. 263-313

56. Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, (1983) 'Building Expert
Systems'. Teknowledge series in knowledge engineering ; v. 1, Reading, Mass.:
Addison-Wesley, pp. 444

57. Hentenryck, P.V. and J.P. Carillon, (1988) 'Generality versus specificity: An
experience with AI and OR techniques.' in Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI'90), pp. 660-664

58. Hooker, J., (2000) 'Logic-based methods for optimization: combining
optimization and constraint satisfaction', New York, pp. 209

59. ILOG Solver, (2003) Version: 5.3, from ILOG Inc., [WWW]:
http://www.ilog.com/

60. SPSS for Windows, (2003) Version: 11, [WWW]: http://www.spss.com/

61. Janssen, P., P. Jegou, B. Jougier, and M.C. Vilarem, (1989) ' A filtering process
for general constraint satisfaction problems: achieving pairewise-consistency
using an associated binary representation.' in IEEE-89 Workshop on Tools for
Artificial Intelligence, Ottawa, Ontario, Canada, pp. 420-427

62. Kalfoglou, Y., T. Menzies, E. Motta, and K.-D. Althoff, (2000) 'Metaknowledge
in systems design: panacea...or undelivered promise', The Knowledge
Engineering Review, Volume 15, Issue 4. pp. 381-404

63. Kiziltan, Z., P. Flener, and B. Hnich, (2001) 'Towards inferring labelling
heuristics for CSP application domains' in Advances in Artificial Intelligence,
Joint German/Austrian Conference on AI (KI/ÖGAI), Vienna, Austria: Springer,
pp. 275-289

64. Kodratoff, Y., D. Sleeman, M. Uszynski, K. Causse, and S. Craw, (1992)
'Building a Machine Learning Toolbox', in Enhancing the knowledge
engineering process : contributions from ESPRIT, European Strategic
Programme of Research and Development in Information Technology., Editor,
North-Holland, Amsterdam ; New York, pp. 81-108

65. Kolodner, J.L., (1993) 'Case-Based Reasoning', San Mateo, CA: Morgan
Kaufmann Publishers, pp. 668

 -34-

http://www.ilog.com/
http://www.spss.com/

KB-Survey Bibliography

66. Kreuger, P. and M. Bohlin, (2002) 'Introduction to constraint programming
Lecture IV', SICStus Swedish Institute of Computer Science [WWW] Available
from: http://www.idt.mdh.se/phd/courses/constraints/slides/cp-slides-IV.pdf
[Accessed 13 July 2004]

67. Kumar, V., (1992) 'Algorithms for constraint satisfaction problems: a survey',
Artificial Intelligence Magazine, Volume 13, Issue 1. pp. 32-44

68. Leeuwen, P.v., H.H. Hesselink, and J.H.T. Rohling, (2002) 'Scheduling Aircraft
Using Constraint Satisfaction' in 11th International Workshop on Functional and
(Constraint) Logic Programming (WFLP'2002), Grado, Italy, pp. 1-17

69. Lozinskii, E.L., (2004) 'Another look at the phenomenon of phase transition',
[WWW] Available from: http://www.cs.huji.ac.il/~lozinski/tran.ps [Accessed 1
August 2004

70. MacIntyre, E., P. Prosser, B. Smith, and T. Walsh., (1998) 'Random Constraint
Satisfaction: Theory meets Practice' in Fourth International Conference on
Principles and Practice of Constraint Programming (CP98), pp. 325-339

71. Mackworth, A.K. and E.C. Freuder, (1985) 'The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems [AC1-3]',
Artificial Intelligence, Volume 25, Issue 1. pp. 65-74

72. Maple, (2001) Version: 7.00, from Waterloo Maple Inc, [WWW]:
http://www.maplesoft.com/

73. S-Plus 2000, (1999) Version: 1, from MathSoft, Inc., [WWW]:
http://www.mathsoft.com/

74. McCarthy, J., (2003) 'Applications of AI', [WWW] Available from: http://www-
formal.stanford.edu/jmc/whatisai/node3.html [Accessed 16 March 2004]

75. MINITAB Statistical Software, (2003) Version: 13.31, from Minitab Inc,
[WWW]: http://www.minitab.com/

76. Musen, M.A., N. Fridman, and M. Crubezy, (1999) 'Reusable Problem-Solving
Methods', [WWW] Available from: http://smi-
web.stanford.edu/courses/mis230/week8/index.htm [Accessed 17 March 2004]

77. Newman, D.R., (1998) 'Advantages of KBS', [WWW] Available from:
http://www.qub.ac.uk/mgt/intsys/kbsadvan.html [Accessed 12 March 2004]

78. Newman, D.R., (1998) 'What are KBS used for', [WWW] Available from:
http://www.qub.ac.uk/mgt/intsys/kbsused.html [Accessed 14 March 2004]

 -35-

http://www.idt.mdh.se/phd/courses/constraints/slides/cp-slides-IV.pdf
http://www.cs.huji.ac.il/%7Elozinski/tran.ps
http://www.maplesoft.com/
http://www.mathsoft.com/
http://www-formal.stanford.edu/jmc/whatisai/node3.html
http://www-formal.stanford.edu/jmc/whatisai/node3.html
http://www.minitab.com/
http://smi-web.stanford.edu/courses/mis230/week8/index.htm
http://smi-web.stanford.edu/courses/mis230/week8/index.htm
http://www.qub.ac.uk/mgt/intsys/kbsadvan.html
http://www.qub.ac.uk/mgt/intsys/kbsused.html

KB-Survey Bibliography

79. Nonaka, I. and H. Takeuchi, (1995) 'The knowledge-creating company : how
Japanese companies create the dynamics of innovation', New York: Oxford
University Press, pp. 284

80. Nordlander, T., (2001) 'AI Surveying: Artificial Intelligence in Business', Del
Montfort University, MSc Thesis

81. Nordlander, T., (2002) 'First Year Report', University of Aberdeen, Report, pp.
10

82. Nordlander, T., D. Sleeman, and K. Brown, (2002) 'Manipulation of Constraints
within the MUSKRAT framework', University of Aberdeen, Internal Report, pp.
14

83. Nordlander, T., K. Brown, and D. Sleeman, (2003) 'Constraint Relaxation
Techniques to Aid the Reuse of Knowledge Bases and Problem Solvers' in The
Twenty-third SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, Cambridge: Springer Verlag, pp. 323-336

84. Nordlander, T., K. Brown, and D. Sleeman, (2003) 'Identifying Inconsistent
CSPs by Relaxation', University of Aberdeen, Technical Report: TR0304

85. Nordlander, T., K. Brown, and D. Sleeman, (2003) 'Identifying inconsistent
CSPs by Relaxation' in Ninth International Conference on Principles and
Practice of Constraint Programming (CP03), Cork, Ireland: Springer Verlag, pp.
987

86. Nordlander, T., D. Sleeman, and K. Brown, (2003) 'Exploring Relaxation
Strategies in: Random Binary Constraint Satisfaction Problems', University of
Aberdeen, Internal Report, pp. 1-18

87. Nordlander, T., D. Sleeman, and K. Brown, (2003) 'Exploring Relaxation
Strategies in: Random Binary Constraint Satisfaction Problems with Internal
Random Tightness', University of Aberdeen, Internal Report, pp. 1-19

88. Prototyp of a Mobile Phone Manufacturing Scheduling System, (2004) Version:
1.1, from University of Aberdeen, [WWW]:
http://www.csd.abdn.ac.uk/~tnordlan/Proglog%20programs

89. Examples of CSPs, (2004) from University of Aberdeen, [WWW]:
http://www.csd.abdn.ac.uk/~tnordlan/Proglog%20programs

90. Data from the Knowledge Base Survey, (2004) from University of Aberdeen,
[WWW]: http://www.csd.abdn.ac.uk/~tnordlan/Proglog%20programs

 -36-

http://www.csd.abdn.ac.uk/%7Etnordlan/Proglog%20programs
http://www.csd.abdn.ac.uk/%7Etnordlan/Proglog%20programs
http://www.csd.abdn.ac.uk/%7Etnordlan/Proglog%20programs

KB-Survey Bibliography

91. Constraint Tightness Test Program, (2004) Version: 2.40, from University of
Aberdeen, [WWW]: http://www.csd.abdn.ac.uk/~tnordlan/Proglog%20programs

92. Pape, C.L., (1994) 'Constraint-Based Programming for Scheduling: a Historical
Perspective.' in Working Notes of the Operations Research Society Seminar on
Constraint Handling Techniques, London, UK, pp. 12

93. Park, J.Y., J.H. Gennari, and M.A. Musen, (1998) 'Mappings for Reuse in
Knowledge-based Systems' in 11 th Workshop on Knowledge Acquisition,
Modelling and Management (KAW), Calgary Canada: Springer, pp. 1-21

94. Parunak, H.V.D., (1987) 'Manufacturing experience with the contract net.' in
Distributed Artificial Intelligence, I.M.N. Huhns, Editor, Pitman, London, pp.
285-310

95. Pemberton, J.C. and W.X. Zhang, (1996) 'Epsilon-transformation: Exploiting
phase transitions to solve combinatorial optimization problems', Artificial
Intelligence, Volume 81, Issue 1-2. pp. 297- 325

96. Prosser, P., (1994) 'Binary constraint satisfaction problems: Some are harder than
others' in Eleventh European Conference on Artificial Intelligence (ECAI-94),
Amsterdam, the Netherlands, pp. 95-99

97. Prosser, P. and I. Buchanan, (1994) 'Intelligent scheduling: past, present and
future', Intelligent system engineering, Volume 3, Issue 2. Summer, pp. 67-78

98. Prosser, P., (1996) 'An empirical study of phase transitions in binary constraint
satisfaction problems', Artificial Intelligence, Volume 81, Issue 1-2. March, pp.
81-109

99. Puppe, F., (1998) 'Knowledge Reuse among Diagnostic Problem Solving
Methods in the Shell-Kit D3', International Journal of Human-Computer
Studies, Volume 49, Issue 4. pp. 627-649

100. Purvis, L. and P. Jeavons, (1999) 'Constraint Tractability Theory And Its
Application to the Product Development Process for a Constraint-Based
Scheduler' in Proceedings of the 1st International Conference on The Practical
Application of Constraint Technologies and Logic Programming (PACLP'99),
London, United Kingdom, pp. 63-79

101. Rajpathak, D., E. Motta, and R. Roy, (2001) 'The Generic Task Ontology For
Scheduling Applications' in Proceedings of the International Conference on
Artificial Intelligence (IC-AI'2001), Las Vegas, USA

 -37-

http://www.csd.abdn.ac.uk/%7Etnordlan/Proglog%20programs

KB-Survey Bibliography

102. Rossi, F., V. Dahr, and C. Petrie, (1990) 'On the equivalence of constraint
satisfaction problems.' in Nineth European Conference on Artificial Intelligence
(ECAI-90), Stockholm, pp. 550-556

103. Ruan, Y., H.A. Kautz, and E. Horvitz:, (2004) 'The Backdoor Key: A Path to
Understanding Problem Hardness.' in Nineteenth National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI-04), San Jose, California, USA.: The MIT
Press, pp. 12-130

104. Runcie, T., (2004) 'Reuse of Knowledge Bases and Problem Solvers Explored in
the VT Domain', University of Aberdeen, Thesis Proposal Report, pp. 22

105. Ruttkay, Z., (1998) 'Constraint Satisfaction - a Survey', CWI Quarterly, Volume
11. pp. 123-161

106. Sabin, D. and E.C. Freuder, (1994) 'Contradicting Conventional Wisdom in
Constraint Satisfaction' in Proceedings of the Second International Workshop on
Principles and Practice of Constraint Programming (PPCP-94), Washington,
USA, pp. 10-20

107. Saraswat, V. and P.V. Hentenryck, (1995) 'Principles and practice of constraint
programming: the Newport papers', Cambridge, Mass.: The MIT Press, pp. 475

108. Sauer, J. and H.-J. Appelrath, (1997) 'Knowledge-Based Design of Scheduling
System' in World Manufacturing Congress (WMC-97), International Symposium
on Manufacturing Systems, Auckland: ICSC Academic Press, pp. 247-252

109. Sauer, J. and R. Bruns, (1997) 'Knowledge-Based Scheduling Systems in
Industry and Medicine', IEEE-Expert, Volume 12, Issue 1. pp. 24-31

110. Schiex, T., H. Fargier, and G. Verfaillie, (1995) 'Valued Constraint Satisfaction
Problems: hard and easy problems' in IJCAI, pp. 631-637

111. Schreiber, G., H. Akkermans, A. Anjewierden, R.d. Hoog, N. Shadbolt, W.V.d.
Velde, and B. Wielinga, (1999) 'KNOWLEDGE ENGINEERING AND
MANAGEMENT The CommonKADS Methodology', MIT press, pp. 91

112. Shortliffe, E.H., (1976) 'Computer-based medical consultations, MYCIN'.
Artificial Intelligence Series, New York, USA: Elsevier, pp. 264

113. SICStus Prolog, (2001) Version: 3.10.0, from Swedish Institute of Computer
Science, [WWW]: http://www.sics.se/sicstus/

 -38-

http://www.sics.se/sicstus/

KB-Survey Bibliography

114. SICStus, (2002) 'Constraint Logic Programming over Finite Domains', in
SICStus Prolog User’s Manual, R. 3.9.1, Editor, Intelligent Systems Laboratory
Swedish Institute of Computer Science, Kista, pp. 357-359

115. Sleeman, D. and S. White, (2002) 'Uses of a Grammar-Driven Case Acquisition
Tool', University of Aberdeen, Technical Report: AUCS/TR0202

116. Sleeman, D., (2003) 'Knowledge Acquisition/Capture 'TYPES of
KNOWLEDGE'', [WWW] Available from:
http://www.csd.abdn.ac.uk/~sleeman/abdn.only/teaching/CS4021/info-
LecturesandPracticals/Lectures/kt/KA-3-actual.ppt [Accessed 17 March 2004]

117. Sleeman, D., Y. Zhang, and W. Vasconcelos, (2003) 'Characterisation of
Knowledge Bases' in The Twenty-third SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelligence, Cambridge:
Springer Verlag, pp. 235-246

118. Smith, B.M., (1995) 'A Tutorial on Constraint Programming', University of
Leeds, Technical Report: 95.14

119. Smith, B.M., S.C. Brailsford, P.M. Hubbard, and H.P. Williams, (1995) 'The
Progressive Party Problem: Integer Linear Programming and Constraint
Programming Compared', University of Leeds, Technical Report: 95.8

120. Smith, S.F., N. Muscettola, D.C. Matthys, P.S. Ow, and J.-Y. Potvin, (1990)
'OPIS: An Opportunistic Factory Scheduling System.' in Third International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems (IEA/AIE-90), Knoxville, Texas, pp. 268-274

121. Smith, S.F., (1991) 'Knowledge-Based Production Management: Approaches,
Results and Prospects', Robotics Institute at Carnegie Mellon University,
Technical Report: CMU-RI-TR-91-21

122. Smith, S.F. and M.A. Becker, (1997) 'An Ontology for Constructing Scheduling
Systems' in Fourteenth National Conference on Artificial Intelligence:Spring
Symposium on Ontological Engineering (AAAI'97), Providence, Rhode Island,
USA: AAAI Press, pp. 1-10

123. SPSS for Windows, (2003) Version: 11, [WWW]: http://www.spss.com/

124. Stergiou, K. and T. Walsh, (1999) 'The Difference All-Difference Makes' in
Fifteen International Joint Conference on Artificial Intelligence (IJCAI'99),
Montreal Quebec: Morgan Kaufmann Publishers, Inc, pp. 414-419

 -39-

http://www.csd.abdn.ac.uk/%7Esleeman/abdn.only/teaching/CS4021/info-LecturesandPracticals/Lectures/kt/KA-3-actual.ppt
http://www.csd.abdn.ac.uk/%7Esleeman/abdn.only/teaching/CS4021/info-LecturesandPracticals/Lectures/kt/KA-3-actual.ppt
http://www.spss.com/

KB-Survey Bibliography

125. Sukpan, A., (2004) 'A Survey on Constraint Satisfaction Problems', Department
of computing science at University of Regina [WWW] Available from:
http://www2.cs.uregina.ca/~sukpan1a/csp/csp.htm#2.2.3%20Path%20Consistenc
y [Accessed 13 July 2004]

126. Szykman, S. and R.D. Sriram, (2001) 'The role of knowledge in next-generation
product development systems', Journal of Computation and Information Science
in Engineering, Volume 1, Issue 1. March, pp. 3-11

127. Tsang, E., (1993) 'Foundations of Constraint Satisfaction', Academic Press,
London & San Diego, pp. 421

128. Uschold, M., P. Clark, M. Healy, K. Williamson, and S. Woods, (1998) 'An
Experiment in Ontology Reuse' in 11th Banff Knowledge Acquisition Workshop
(KAW'98), Calgary Canada: SRDG Publications, pp. 33

129. Vasconcelos, W.W. and M.A.T. Aragao, (2000) 'Slicing Knowledge-Based
Systems: Techniques and Applications', Knowledge-Based Systems Journal.,
Volume 13, Issue 4. pp. 177-198

130. Wallace, M., (1996) 'Practical application of constraint programming',
Constraints, Volume 1, Issue 1-2. pp. 139-168

131. Walsh, T., (2001) 'Search on high degree graphs' in Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI'01), Seattle, WA, pp. 266-274

132. Waltz, D., (1972) 'Generating semantic description from drawing of scenes with
shadows', MIT, Technical Report: AI271

133. White, S. and D. Sleeman, (1998) 'Providing Advice on the Acquisition and
Reuse of Knowledge Bases in Problem Solving' in 11th Banff Knowledge
Acquisition Workshop (KAW'98), Calgary Canada: SRDG Publications, pp. 21

134. White, S. and D. Sleeman, (1999) 'A Constraint-Based Approach to the
Description of Competence' in Workshop on Knowledge Acquisition, Modelling,
and Management (EKAW'99), Dagstuhl Castle, Germany: Springer Verlag, pp.
291-308

135. White, S., (2000) 'Enhancing Knowledge Acquisition with Constraint
Technology', University of Aberdeen, PhD Thesis, pp. 345

136. White, S. and D. Sleeman, (2000) 'A Constraint-Based Approach to the
Description & Detection of Fitness-for-Purpose', Electronic Transactions on
Artificial Intelligence (ETAI), Volume 4. pp. 155-183

 -40-

http://www2.cs.uregina.ca/~sukpan1a/csp/csp.htm#2.2.3%20Path%20Consistency
http://www2.cs.uregina.ca/~sukpan1a/csp/csp.htm#2.2.3%20Path%20Consistency

KB-Survey Bibliography

-41-

137. White, S. and D. Sleeman, (2001) 'A Grammar-Driven Knowledge Acquisition
Tool that incorporates Constraint Propagation' in Proceedings of the
international conference on Knowledge capture (KCAP-01), Victoria, British
Columbia, Canada: ACM Press, New York, USA, pp. 187-193

138. Wielinga, B.J., A.T. Schreiber, and J.A. Breuker, (1992) 'KADS: a modelling
approach to knowledge engineering.' Knowledge Acquisition, Volume 4. pp. 5-53

139. Xu, K. and W. Li, (2000) 'Exact Phase Transitions in Random Constraint
Satisfaction Problems', Journal of Artificial Intelligence Research, Volume 12.
pp. 93-103

	1 Literature Review
	1.1 Constraint Programming
	1.1.1 Constraint Satisfaction
	1.1.1.1 CSP Definition
	1.1.1.2 Search Cost
	1.1.1.3 Constraint Arity

	1.1.2 Constraint Graph & Constraint Hyper-graph
	1.1.3 Search Methods
	1.1.4 Consistency Algorithms
	1.1.4.1 Node-Consistency
	1.1.4.2 Arc-Consistency
	1.1.4.3 Path-Consistency
	1.1.4.4 Obtaining n- and k-Consistency
	1.1.4.5 Search Algorithms that use Consistency Techniques
	1.1.4.6 Approaches that Reduce the Time Complexity

	1.1.5 Search Heuristics.
	1.1.6 Random Generated CSPs
	1.1.7 Phase Transition Behaviour & Hardness Peak
	1.1.8 Formulating the CSP
	1.1.9 Examples of CSPs
	1.1.9.1 Cryptarithmetic Puzzles
	1.1.9.2 Graph Colouring
	1.1.9.3 Scheduling

	Bibliography

