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Questions and comments ...

... are more than welcome, at any time !

Slides will be available on the web :
http://www.core.ucl.ac.be/~glineur/

References

This lecture’s material relies on several references (see at
the end), but most main ideas can be found in:

� Convex Optimization,

Stephen Boyd and Lieven Vandenberghe,

Cambridge University Press, 2004 (and on the web)

http://www.core.ucl.ac.be/~glineur/
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Motivation

Modelling and decision-making

Help to choose the best decision

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible domain

⇒ Optimization

Use

� Numerous applications in practice

� Resolution methods efficient in practice

� Modelling and solving large-scale problems
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Introduction

Applications

� Planning, management and scheduling

Supply chain, timetables, crew composition, etc.

� Design

Dimensioning, structural optimization, networks

� Economics and finance

Portfolio optimization, computation of equilibrium

� Location analysis and transport

Facility location, circuit boards, vehicle routing

� And lots of others ...
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Two facets of optimization

� Modelling

Translate the problem into mathematical language

(sometimes trickier than you might think)

m

Formulation of an optimization problem

m

� Solving

Develop and implement algorithms that are efficient
in theory and in practice



François Glineur, eVITA Winter School 2009 – Geilo - 6 - •First •Prev •Next •Last •Full Screen •Quit

Close relationship

� Formulate models that you know how to solve

l

� Develop methods applicable to real-world problems
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Classical formulation

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

(finite dimension)

Often, we define

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ E}
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Possible situations: optimal value

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

Optimal value f ∗ = inf{f (x) | x ∈ X}

a. X = ∅ : infeasible problem (convention: f ∗ = +∞)

b. X 6= ∅ : feasible problem ; in this case

(a) f ∗ > −∞ : bounded problem

(b) f ∗ = −∞ : unbounded problem
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Possible situations: optimal set

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

Optimal value f ∗ is not always attained
Consider the optimal set X∗ = {x∗ ∈ X | f (x∗) = f ∗}

a. X∗ 6= ∅ : solvable problem
(at least one optimal solution)

b. X∗ = ∅ : unsolvable problem.

There exists feasible, bounded unsolvable problems !

min 1
x such that x ∈ R+ gives f ∗ = 0 but X∗ = ∅
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Linear optimization: three examples

A. Diet problem

Consider a set of different foods for which you know

� Quantities of calories, proteins, glucids, lipids, vita-
mins contained per unit of weight

� Price per unit of weight

Given the nutritional recommendations with respect to
daily supply of proteins, glucids, etc, design an optimal,
i.e. meeting the constraints with the lowest cost
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Formulation

� Index i for the food types (1 ≤ i ≤ n)

� Index j for the nutritional components (1 ≤ j ≤ m)

� Data (per unit of weight) :

ci → price of food type i,

aji → amount of component j in food type i,

bj → daily recommendations for component j

� Unknowns:

Quantity xi of food type i in the optimal diet
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Formulation (continued)

This is a linear problem:

min

n∑
i=1

cixi

such that

xi ≥ 0 ∀i and

n∑
i=1

ajixi = bj ∀j

Using matrix notations

min cTx such that Ax = b and x ≥ 0

This is a one of the most simple problems, and can be
solved for large dimensions
(1947: 9× 77 ; today: m and n ≈ 107)
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B. Assignment problem

Given

� n workers

� n tasks to accomplish

� the amount of time needed for each worker to execute
each of the tasks

Assign (bijectively) the n tasks to the n workers so that
the total execution time is minimized

This is a discrete problem with an (a priori) exponential
number of potential solutions (n!)
→ explicit enumeration is impossible in practice
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Formulation

First idea: xi denotes the number of the task assigned to
person i (n integer variables between 1 and n)
Problem : how to force a bijection ?
Better formulation:

� Index i for workers (1 ≤ i ≤ n)

� Index j for tasks (1 ≤ j ≤ n)

� Data :

aij → duration of task j for worker i

� Unknowns:

xij binary variable {0, 1} indicating whether worker i
executes task j
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Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑
i=1

xij = 1 ∀j,
n∑
j=1

xij = 1 ∀i, and xij ∈ {0, 1} ∀i ∀j

� Higher number of variables (n2) → more difficult ?

� Linear problem with integer (binary) variables
→ requires completely different algorithms

� But bijection constraint is simplified and linearized

Although its looks more difficult than A., this problem
can also be solved very efficiently !
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C. Travelling salesman problem

Given

� a travelling salesman that has to visit n cities going
through each city once and only once

� the distance (or duration of the journey) between each
pair of cities

Find an optimal tour that visits each city once with min-
imal length (or duration)

Also a discrete and exponential problem

Other application : soldering on circuit boards
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Formulation

First idea: xi describes city visited in position i during
the tour (n integer variables between 1 and n)
Problem : how to require that each city is visited ?

Better formulation:

� Indices i and j for the cities (1 ≤ i, j ≤ n)

� Data :

aij → distance (or journey duration) between i and j

� Unknowns:

xij binary variable {0, 1} indicating whether the trip
from city i to city j is part of the trip



François Glineur, eVITA Winter School 2009 – Geilo - 20 - •First •Prev •Next •Last •Full Screen •Quit

Formulation (continued)

min

n∑
i=1

n∑
j=1

aijxij

such that
n∑
i=1

xij = 1 ∀j,
n∑
j=1

xij = 1 ∀i, xij ∈ {0, 1} ∀i ∀j

and
∑

i∈S,j /∈S

xij ≥ 1 ∀S with S ⊆ {1, . . . , n}, 1 < |S| < n

� High (exponential) number of constraints

� Problem is a lot harder than A./B. (maxn ≈ 104)
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Algorithms and complexity

Why are these three problems different ?

Three linear problems: a priori among the simplest ... ?

� A. Diet: continuous variables

→ (continuous) linear optimization

� B. Assignment: discrete variables + expon. # of soln.

→ linear integer optimization

� C. Salesman: discrete variables + exp. # of cons./soln.

→ linear integer optimization

However, B is not more difficult than A
while C is a lot harder than A and B !
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Algorithmic complexity

Difficulty of a problem depends on the

efficiency of methods that can be applied to solve it

⇒ what is a good algorithm ?

� Solves the problem (approximately)

� Until the middle of the 20th century:

in finite time (number of elementary operations)

� Now (computers):

in bounded time (depending on the problem size)

→ algorithmic complexity (worst / average case)

Big distinction: polynomial ↔ exponential complexity
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Algorithms for linear optimization

For linear optimization with continuous variables:
very efficient algorithms (n ≈ 107)

� Simplex algorithm (Dantzig, 1947)

Exponential worst-case complexity but ...

Very efficient in practice (worst-case is rare)

� Ellipsoid method (analyzed by Khachiyan, 1978)

Polynomial worst-case complexity but ...

Poor practical performance (high-degree polynomial)

� Interior-point methods (Karmarkar, 1985)

Polynomial worst-case complexity and ...

Very efficient in practice (large-scale problems)
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Algorithms for linear optimization (continued)

For linear optimization with discrete variables:
algorithms a lot less efficient, because problem is intrin-
sically exponential (cf. class of NP-complete problems)

� Continuous relaxation (i.e. outer approximation)

� Branch and bound

(i.e. explore an exponential solution tree + pruning)

→ Very sophisticated algorithms/heuristics
but still exponential worst-case

→ Middle-scale or even small-scale problems (n ≈ 102)
can already be intractable

→ Discrete C. is a lot harder to solve than continuous A.
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What about the assignment problem B. ?

Why can it be solved efficiently, despite being discrete ?
One can relax variables xij ∈ {0, 1} by 0 ≤ xij ≤ 1
without changing the optimal value and solutions !
→ it was a fake discrete problem
→ we obtain a continuous linear optimization formulation
→ an example of why reformulation is sometimes crucial
In general, if one can replace the binary variables by con-
tinuous variables with an additional polynomial number
of linear constraints, the resulting problem can be solved
in polynomial time

Combinatorial/integer/discrete problems
are not always difficult !
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Nonlinear vs. convex optimization

Why nonlinear optimization ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

where X is defined (most of the time) by

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ E}

Linear optimization: any affine functions for f , gi and hj
but it does not permit satisfactory modelling of all prac-
tical problems

→ need to consider nonlinear f , gi and hj
→ nonlinear optimization
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A taxonomy

� Deterministic or stochastic problem

� Accurate data or inaccurate/fuzzy (robustness)

� Single or multiple objectives

� Constrained or unconstrained problem

� Functions described analytically or using a black box

� Continuous functions or not, differentiable or not

� General, polynomial, quadratic, linear functions

� Continuous or discrete variables

Switch categories: sometimes with reformulations
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Back to complexity

Discrete sets X can make the problem difficult
(with exponential complexity)
but even continuous problems can be difficult!

Consider a simple unconstrained minimization

min f (x1, x2, . . . , x10)

with smooth f (Lipschitz continuous with L = 2):

One can show that for any algorithm there exists some
functions where at least 1020 iterations (function evalua-
tions) are needed to find a global solution with accuracy
better than 1% ! (this is a theorem)
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Two paradigms

� Tackle all problems without any efficiency guarantee

– Traditional nonlinear optimization

– (Meta)-Heuristic methods

� Limit the scope to some classes of problems

and get in return an efficiency guarantee (complexity)

– Linear optimization

∗ very fast specialized algorithms

∗ but sometimes too limited in practice

– Convex optimization (this lecture)

∗ (slightly) less efficient but much more general

Compromise: generality ↔ efficiency
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Convex optimization

Introduction

min f (x) such that x ∈ X
A feasible solution x∗ is a

� global minimum iff f (x∗) ≤ f (x) ∀x ∈ X
� local minimum iff there exists an open neighborhood
V (x∗) such that

f (x∗) ≤ f (x) ∀x ∈ X ∩ V .

Global minimum ⇒ local minimum
Global minima are more interesting but also more difficult
to find ... but the notion of convexity can help us !
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Convexity definitions

� A set S ⊆ Rn is convex iff

λx + (1− λ)y ∈ S ∀x, y ∈ S, λ ∈ [0 1]

� A function f : S 7→ R is convex iff

f (λx+(1−λ)y) ≤ λf (x)+(1−λ)f (y) ∀x, y, λ ∈ [0 1]

(this imposes that the domain S is convex)

� Equivalently, a function f : S ⊆ Rn 7→ R is convex
iff its epigraph is convex

epi f = {(x, t) ∈ Rn × R | x ∈ S and f (x) ≤ t}

� An optimization problem is convex if it deals with
the minimization of a convex function on a convex set
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Examples

� ∅,Rn,Rn
+,Rn

++

� {x | ‖x− a‖ < r} and {x | ‖x− a‖ ≤ r}
� {x | bTx < β}, {x | bTx ≤ β} and {x | bTx = β}
� In R: intervals (open/closed, possibly infinite)

� x 7→ c, x 7→ bTy + β0, x 7→ ‖x‖ and x 7→ ‖x‖2,
x 7→ xTQx with Q ∈ Rn×n positive semidefinite

� In the case f : R 7→ R, we mention x 7→ ex, x 7→
− log x, x 7→ |x|p with p ≥ 1.

� f is concave iff−f is convex (i.e. reversing inequalities
in the definitions) ; there is no notion of concave set!
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Fundamental properties of convex optimization

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

When

� f is a convex function to be minimized

� X is a convex set

we are dealing with convex optimization problems and

� Every local minimum is global

� The optimal set is convex

� The KKT optimality conditions are sufficient
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Basic properties of convex sets

� If two sets S ⊆ Rn and T ⊆ Rn are convex, so is their
intersection S ∩ T ⊆ Rn

� If two sets S ⊆ Rn and T ⊆ Rm are convex, so is
their Cartesian product S × T ⊆ Rn+m

� For every set X ⊆ Rn, there is a smallest convex set
S ⊆ Rn which includes X , called the convex hull of X

a. all nonlinear problems admit a convex relaxation

b. for a linear objective function (which can be taken
w.l.o.g.) this relaxation is exact

(but this does not really help us ...)
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A linear objective ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

m
min

(x,t)∈Rn×R
t such that x ∈ X and (x, t) ∈ epi f

m
min

(x,t)∈Rn×R
t such that x ∈ X and f (x) ≤ t

⇒ equivalent convex problem with linear objective
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Basic properties of convex functions

� If two functions f (x) and g(x) are convex

– Product af (x) is convex for any scalar a ≥ 0

– Sum f (x) + g(x) is convex

– Maximum max{f (x), g(x)} is convex

� If f is twice differentiable, we have

f convex⇔ ∇2f � 0

� The only functions that are simultaneously convex
and concave are the affine functions
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Convexity plays nice with linearity

� If S ⊆ Rn is convex and Φ : Rn → Rm : x 7→ Ax+ b
a linear function, we have that

ΦS = {Φ(x) | x ∈ S} is convex

� This implies that if f : x 7→ f (x) is a convex function

g : x 7→ g(x) = f (Ax + b) is convex

(but of course not always true for af (x) + b !)

� Similar result holds for Θ : Rm → Rn : x 7→ Ax + b
and

Θ−1S = {x | Θ(x) ∈ S} is convex
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Feasible set defined with functions

X = {x ∈ Rn | gi(x) ≤ 0 and hj(x) = 0 for i ∈ I, j ∈ E}

� Xg = {x ∈ Rn | g(x) ≤ 0} is convex if g is convex

�When E = ∅, X is convex when every gi is convex

� These two conditions are not necessary

� Allowing now equalities, we note that since hj(x) =
0 ⇔ hj(x) ≤ 0 and − hj(x) ≤ 0, we can guarantee
that X is convex when all functions hj are affine

� To summarize, X is convex as soon as every gi is
convex and every hj is affine
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A few classes of convex problems

General formulation

min
x∈Rn

f (x) s.t. gi(x) ≤ 0 ∀ i ∈ I and hj(x) = 0 ∀ j ∈ E

where f and gi for all i ∈ I are convex and hj are affine
for all j ∈ E

hj(x) = aT
j x− bj

1. Linear optimization (LO):

f and gi for all i ∈ I are also affine

f (x) = cTx and gi(x) = aT
i x− bi
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Linear optimization for data-mining

Given two sets of points in Rd

A = {ai}1≤i≤na and B = {bi}1≤i≤nb

find a hyperplane defined by h ∈ Rd and c ∈ R

hTx + c = 0

that (strictly) separates them

Applications (medical diagnosis, credit screening, etc.)

a. compute hyperplane with known points (learn)

b. classify new unknown points based on this hyperplane
(generalize)
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Formulation

min 0 such that

hTai + c ≥ +1 for all 1 ≤ i ≤ na
hTbi + c ≤ −1 for all 1 ≤ i ≤ nb

a. Can add objective function to find the best separator

b. Nonlinear separator can also be found with linear for-
mulation, e.g. pe||x|| + hTx + c = 0 leads to

pe||ai|| + hTai + c ≥ 1 and pe||bi|| + hTbi + c ≤ −1

since dependence on decision variables is still linear

c. Ability to solve large-scale problems often needed
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Quadratic optimization

min
x∈Rn

f (x) s.t. gi(x) ≤ 0 ∀ i ∈ I and hj(x) = 0 ∀ j ∈ E

where hj are affine for all j ∈ E , f is a convex quadratic

f (x) = xTQx+rTx+s with Q � 0 (positive semidefinite)

a. I = ∅: improper quadratic optimization problem
since (necessary and sufficient) optimality conditions
consist in a simple linear system of equations

b. gi(x) are affine: (standard) quadratic optimization
(QO), e.g. for Markowitz portfolio selection

c. gi(x) are also convex quadratic: quadratically con-
strained quadratic optimization (QCQO)

However remember quadratic equalities are forbidden !
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Geometric optimization

A posynomial is a sum of monomials in several positive
variables with positive leading coefficients and arbitrary
real exponents, such as

p(x1, x2, x3) = 3x1x3 +
1

2

√
x2x3 +

x2

x1x2
3

Geometric optimization (programming) corresponds to

min
x∈Rn++

f (x) s.t. gi(x) ≤ 1 ∀ i ∈ I

where f and every gi are posynomials
These problems are not necessarily convex !
(for example,

√
x1 is concave)
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Geometric optimization in convex form

min
x∈Rn++

f (x) s.t. gi(x) ≤ 1 ∀ i ∈ I

fortunately can be convexified by letting xi = eyi

p(x1, x2, x3) = 3x1x3 +
1

2

√
x2x3 +

x2

x1x2
3

↔ p̃(y1, y2, y3) = 3ey1+y3 +
1

2
e
y2+y3

2 + ey2−y1−2y3

min
y∈Rn

f̃ (x) s.t. g̃i(x) ≤ 1 ∀ i ∈ I

(linear equalities correspond here to monomial equalities)
Application example: geometric design, such as wire siz-
ing in circuit optimization
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Properties of convex optimization

Why is it interesting to consider (or restrict yourself to)
convex optimization problems?

Passive features:

� every local minimum is a global minimum

� set of optimal solutions is convex

� optimality (KKT) conditions are sufficient, in addi-
tion to necessary (with regularity assumption)

Any algorithm or solver applied to a convex problem will
automatically benefit from those features

but there is more ...
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Properties of convex optimization

Active features:

� possibility of designing dedicated algorithms with poly-
nomial worst-case algorithmic complexity

(in many situations: an interior-point method based
on the theory of self-concordant barriers)

� possibility of writing down a dual problem strongly
related to original problem

(solutions to the dual problem will provide optimality
certificates, i.e. guarantees for the original problem)
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Interior-point methods

Convex optimization

Let f : Rn 7→ R be a convex function, C ⊆ Rn be a
convex set : optimize a vector x ∈ Rn

inf
x∈Rn

f (x) s.t. x ∈ C (P)

Properties

� All local optima are global, optimal set is convex

� Lagrange duality → strongly related dual problem

� Objective can be taken linear w.l.o.g. (f (x) = cTx)



François Glineur, eVITA Winter School 2009 – Geilo - 51 - •First •Prev •Next •Last •Full Screen •Quit

Principle

Approximate a constrained problem by

a family of unconstrained problems

Use a barrier function F to replace the inclusion x ∈ C
� F is smooth

� F is strictly convex on intC

� F (x)→ +∞ when x→ ∂C

→ C = cl domF = cl {x ∈ Rn | F (x) < +∞}
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Central path

Let µ ∈ R++ be a parameter and consider

inf
x∈Rn

cTx

µ
+ F (x) (Pµ)

x∗µ → x∗ when µ↘ 0

where

� x∗µ is the (unique) solution of (Pµ) (→ central path)
� x∗ is a solution of the original problem (P)
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Ingredients

� A method for unconstrained optimization

� A barrier function

Interior-point methods rely on

� Newton’s method to compute x∗µ
�When C is defined with convex constraints gi(x) ≤ 0,

one can introduce the logarithmic barrier function

F (x) = −
∑n

i=1 log(−gi(x))

but this is not the only choice

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov & Nemirovski, 1988]

F : intC 7→ R is called ν-self-concordant on C iff

� F is convex

� F is three times differentiable

� F (x)→ +∞ when x→ ∂C

� the following two conditions hold

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

)3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn
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A (simple?) example

For linear optimization, C = Rn
+: take F (x) = −

∑n
i=1 log xi

When n = 1, we can choose ν = 1

� ∇F (x) = −1
x and ∇F (x)Th = −h

x

� ∇2F (x) = 1
x2 and ∇2F (x)[h, h] = h2

x2

� ∇3F (x) = −2 1
x3 and ∇3F (x)[h, h, h] = −2h

3

x3

When n > 1, we have

� ∇F (x) = (−x−1
i ) and ∇F (x)Th = −

∑
hix
−1
i

� ∇2F (x) = diag(x−2
i ) and ∇2F (x)[h, h] =

∑
h2
ix
−2
i

� ∇3F (x) = diag3(−2x−3
i ),∇3F (x)[h, h, h] = −2

∑
h3
ix
−3
i

and one can show that ν = n is valid
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Barrier calculus

Barriers for basic convex sets, for example

� − log x for R+ ; − log(1− ||x||2) for unit Eucl. ball

� − log(log y − x)− log y for {(x, y) | ex ≤ y}
and convexity-preserving operations to combine them

� Sum:

F is a ν1-s.-c. barrier for C1 ⊆ Rn

G is a ν2-s.-c. barrier for C2 ⊆ Rn

⇒ (F + G) is a ν1 + ν2-s.-c. barrier

for the set C1 ∩ C2 (if nonempty)

� Linear transformations preserve self-concordancy
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Complexity result

Summary

Self-concordant barrier ⇒ polynomial number of
iterations to solve (P) within a given accuracy

Short-step method: follow the central path

� Measure distance to the central path with δ(x, µ)

� Choose a starting iterate with a small δ(x0, µ0) < τ

�While accuracy is not attained

a. Decrease µ geometrically (δ increases above τ )

b. Take a Newton step to minimize barrier
(δ decreases back below the τ threshold)
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Geometric interpretation

Two self-concordancy conditions: each has its role

� Second condition bounds the size of the Newton step
⇒ controls the increase of the distance to the central
path when µ is updated

� First condition bounds the variation of the Hessian
⇒ guarantees that the Newton step restores the initial
distance to the central path

Summarized complexity result

O
(√

ν log
1

ε

)
iterations lead a solution with ε accuracy on the objective
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Complexity result

� Let F be a ν-self-concordant barrier for C and let
x0 ∈ intC be a (well-chosen) feasible starting point,

a short-step interior-point algorithm can solve prob-
lem (P) up to ε accuracy within

O
(√

ν log
cTx0 − p∗

ε

)
iterations,

such that at each iteration the self-concordant barrier
and its first and second derivatives have to be evalu-
ated and a linear system has to be solved in Rn

� Complexity invariant w.r.t. to scaling of F

� Universal bound on complexity parameter: ν ≥ 1
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Corollary

Assume F , ∇F and ∇2F are polynomially computable
⇒ problem (P) can be solved in polynomial time

Existence

There exists a universal SC barrier with parameters

ν = O (n)

(But it is not necessarily efficiently computable (therefore
not a contradiction of the fact that some convex problems
are hard to solve)
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Other methods

� Long-step methods: more aggressive reduction of cen-
tral path parameter but several Newton steps needed
to restore proximity

� Techniques to deal with the lack of an acceptable
starting point

� Non path-following/non interior point techniques, e.g.
potential-reduction methods, ellipsoid method, first-
order methods (including smoothing techniques), etc.

A few complexity results
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� linear optimization with n inequalities: ν = n ⇒
O
(√

n log 1
ε

)
(best complexity known so far)

� quadratic optimization with equalities: ν = 1!

� quadratic optimization with m inequalities (linear or
quadratic): ν = m + 1⇒ O

(√
m log 1

ε

)
� geometric optimization with p monomials (objective

or constraints): ν = p⇒ O
(√

p log 1
ε

)
� similar results known for (nearly) all practically rele-

vant problems, such as entropy optimization, sum-of-
norm minimization, problems with logarithms, etc.

However the main cost of each iteration (i.e. mainly New-
ton step via a linear system) also grows with # of vars.



François Glineur, eVITA Winter School 2009 – Geilo - 63 - •First •Prev •Next •Last •Full Screen •Quit

Sketch of the proof

Define nµ(x) the Newton step taken from x to x∗µ

nµ(x) = 0 if and only if x = x∗µ

We take

δ(x, µ) = ‖nµ(x)‖x (size of the Newton step)

with a well-chosen (coordinate invariant) norm ‖·‖x
Set k ← 0, perform the following main loop:

a. µk+1 ← µk(1− θ) (decrease barrier param)

b. xk+1 ← xk + nµk+1
(xk) (take Newton step)

c. k ← k + 1
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Sketch of the proof (continued)

Key choice: parameters τ and θ such that

δ(xk, µk) < τ ⇒ δ(xk+1, µk+1) < τ

To relate δ(xk, µk) and δ(xk+1, µk+1),
introduce an intermediate quantity

δ(xk, µk+1)

We will also denote for simplicity

xk ↔ x

µk ↔ µ
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Sketch of the proof (end)

Given a ν-self-concordant barrier:

� x ∈ domF and µ+ = (1− θ)µ ⇒

δ(x, µ+) ≤ δ(x, µ) + θ
√
ν

1− θ
� x ∈ domF and δ(x, µ) < 1⇒ define x+ = x+nµ(x)

x+ ∈ domF and δ(x+, µ) ≤ 1
( δ(x, µ)

1− δ(x, µ)

)2

with e.g. possible choice for parameters

τ =
1

4
and θ =

1

16
√
ν

(hence the name short-step)
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Duality for linear optimization

Standard formulation

Consider the linear problem(with m variables yi)

max

m∑
i=1

biyi such that

m∑
i=1

aijyi ≤ cj ∀1 ≤ j ≤ n

(objective and n linear inequalities), or

max bTy such that ATy ≤ c

(matrix notation with b, y ∈ Rm, c ∈ Rn and A ∈ Rm×n)

All linear problems can be expressed in this format
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When is a problem infeasible ?

In other terms: when is ATy ≤ c inconsistent ?
And, more importantly: how can we be sure ?

� Feasible → exhibit a feasible solution

� Infeasible → ??

3y1 + 2y2 ≤ 8, −y2 ≤ −3, −y1 ≤ −1

Add constraints with weights 1, 2 and 3 to obtain
0y1 + 0y2 ≤ −1⇔ 0 ≤ −1⇔ a contradiction

In general: consider ATy ≤ c or, equivalently, a set
of inequalities aT

i y ≤ ci
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Proving infeasibility

Multiply each inequality by aT
i y ≤ ci by a nonnegative

constant xi and take the sum to obtain a consequence
n∑
i=1

(aT
i y)xi ≤

n∑
i=1

cixi with xi ≥ 0

( n∑
i=1

aixi
)T
y ≤ cTx with x ≥ 0

(Ax)Ty ≤ cTx with x ≥ 0

Contradiction arises only for 0Ty ≤ α with α < 0

This happens iff Ax = 0 et cTx < 0 → sufficient condi-
tion for infeasibility but ...
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Farkas’ Lemma

Theorem: ATy ≤ c is inconsistent if and only if there
exists x ≥ 0 such that Ax = 0 et cTx < 0

In other words:
Exactly one of the following two systems is consistent

Ax = 0, x ≥ 0 and cTx < 0

ATy ≤ c

Proof relies on topological notions (separation argument)

There always exists a linear proof for the infeasibility of
a system of linear inequalities !
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Bounds and optimality

Let ȳ a feasible solution (satisfying ATy ≤ c)
→ bTȳ is a lower bound on the optimal value f ∗

But how to

� obtain upper bounds on the optimal value ?

� prove that a feasible solution y∗ is optimal ?

Those questions are linked since

proving that y∗ is optimal
m

proving that bTy∗ is an upper bound
on the optimal value f ∗
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Generating upper bounds

Consider

max y1 + 2y2 + 3y3 such that
y1 + y2 ≤ 1 (a)
y2 + y3 ≤ 2 (b)

y3 ≤ 3 (c)

Solution y = (1, 0, 2) is feasible with objective value 7
→ lower bound f ∗ ≥ 7
Let us combine constraints: (a) + (b) + 2(c)

y1+y2+y2+y3+2y3 ≤ 1+2+2×3⇔ y1+2y2+3y3 ≤ 9

→ upper bound on the optimal value f ∗ ≤ 9
Moreover, considering the feasible solution y = (2,−1, 3)
with objective 9 provides a proof that f ∗ = 9 is the opti-
mal value of the problem
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The best upper bound

Let us find the best upper bound using this procedure

max

m∑
i=1

biyi such that

m∑
i=1

aijyi ≤ cj ∀1 ≤ j ≤ n

Introducing again n (multiplying) variables xi ≥ 0
we get
n∑
j=1

xj

m∑
i=1

aijyi ≤
n∑
j=1

xjcj ⇔
m∑
i=1

yi(

n∑
j=1

aijxj) ≤
n∑
j=1

cjxj
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The best upper bound (continued)

This provides an upper bound on the objective equal to∑n
j=1 cjxj, assuming that x satisfies

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m

Minimizing now this upper bound

min

n∑
j=1

cjxj s.t.

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m and xi ≥ 0

or
min cTx such that Ax = b and x ≥ 0

We find another linear optimization problem which is dual
to our first problem!
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Standard denominations

Using a similar reasoning, we could have started with
the minimization problem and, looking for the best lower
bound, derive the original maximization problem

In fact, it is customary in the literature to call

min cTx such that Ax = b and x ≥ 0

the primal (P) problem with optimal value p∗

and

max bTy such that ATy ≤ c

the dual (D) problem with optimal value d∗
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Duality properties

�Weak duality: any feasible solution for the primal
(resp. dual) provides an upper (resp. lower) bound
for the dual (resp. primal)

(immediate consequence of our dualizing procedure)

� Inequality bTy ≤ cTx holds for any x, y such that
Ax = b, x ≥ 0 and ATy ≤ c (corollary)

� If the primal (resp. dual) is unbounded, the dual (resp.
primal) must be infeasible

(but the converse is not true !)
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Duality properties (continued)

� Strong duality: If x∗ is an optimal solution for the
primal, there exists an optimal solution y∗ for the dual
such that cTx∗ = bTy∗ (in other words: p∗ = d∗)

� This property (and its dual) is not trivial, and is a
generalization of the Farkas Lemma → it is always
possible to exhibit a proof that a given solution is
optimal !

� However, there are cases where both problems are in-
feasible: c = (−1 0)T, b = −1 et A = (0 1)
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Other properties and consequences

d∗ = −∞ d∗ finite d∗ = +∞
p∗ = −∞ Possible, p∗ = d∗ Impossible Impossible
p∗ finite Impossible Possible, p∗ = d∗ Impossible
p∗ = +∞ Possible, p∗ 6= d∗ Impossible Possible, p∗ = d∗

� One can also write down the dual to a general linear
optimization problem

� Dual variables can often be interpreted as prices on
primal constraints

� One can indifferently solve the primal or the dual to
find the optimal objective value

� Primal-dual algorithms solve both problems simulta-
neously
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Convex optimization: plan

Why

a. Nice case: linear optimization

b. Algorithms and guarantees

What

a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods

b. Guarantees: duality

c. Framework: conic optimization
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Conic optimization

Motivation

Objective: generalize linear optimization

max bTy such that ATy ≤ c

min cTx such that Ax = b and x ≥ 0

while trying to preserve the nice duality properties
→ change as little as possible

Idea: generalize the inequalities ≤ and ≥

What are properties of nice inequalities ?
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Generalizing ≥ and ≤

Let K ⊆ Rn. Define

a �K 0⇔ a ∈ K
We also have

a �K b⇔ a− b �K 0⇔ a− b ∈ K
as well as

a �K b⇔ b �K a⇔ b− a �K 0⇔ b− a ∈ K
Let us also impose two sensible properties

a �K 0⇒ λa �K 0 ∀λ ≥ 0 (K is a cone)

a �K 0 and b �K 0⇒ a + b �K 0

(K is closed under addition)
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Properties of admissible sets K

� K is a convex set!

� In fact, if K is a cone, we have

K is closed under addition ⇔ K is convex

Conic optimization

We can then generalize

max bTy such that ATy ≤ c

to
max bTy such that ATy �K c

⇒ This problem is convex
The standard linear cases corresponds to K = Rn

+
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More requirements for K

� x � 0 and x � 0⇒ x = 0

which means K ∩ (−K) = {0} (the cone is pointed)

�We define the strict inequality by a � 0⇔ a ∈ intK
(and a � b iff a− b ∈ intK)

Hence we require intK 6= ∅ (the cone is solid)

� Finally, we would like to be able to take limits:

If {xi}i→∞ with xi �K 0 ∀i, then lim
i→∞

xi = x̄⇒ x̄ �K 0

which is equivalent to saying that K is closed

Example: second-order (or Lorentz or ice-cream) cone

Ln = {(x0, . . . , xn) ∈ Rn+1 |
√
x2

1 + · · · + x2
n ≤ x0}
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Another example: semidefinite cone K = Sn+ (symmetric
positive semidefinite matrices)

Back to conic optimization

A convex cone K ⊆ Rn that is solid, pointed and closed
will be called a proper cone
In the following, we will always consider proper cones
We obtain

max
y∈Rm

bTy such that ATy �K c

or, equivalently,

max
y∈Rm

bTy such that c− ATy ∈ K

with problem data b ∈ Rm, c ∈ Rn and A ∈ Rm×n
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Combining several cones

Considering several conic constraints

AT
1 y �K1 c1 and AT

2 y �K2 c2

which are equivalent to

c1 − AT
1 y ∈ K1 and c2 − AT

2 y ∈ K2

one introduces the product cone K = K1 ×K2 to write

(c1 − AT
1 y, c2 − AT

2 y) ∈ K1 ×K2

⇔
(
c1

c2

)
−
(
AT

1

AT
2

)
∈ K1×K2 ⇔

(
c1

c2

)
−
(
AT

1

AT
2

)
�K1×K2 0

If K1 and K2 are proper, K1 ×K2 is also proper
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Equivalence with convex optimization

Conic optimization is clearly a special case of convex op-
timization: what about the reverse statement ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

� The objective of a convex problem can be assumed
w.l.o.g. to be linear w.l.o.g.: f (x) = cTx

� The feasible region of a convex problem can be as-
sumed w.l.o.g. to be in the conic standard format:

X = {x ∈ K and Ax = b}

⇒ conic optimization equivalent to convex optimization
Conic format is a standard form for convex optimization
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A linear objective ?

min
x∈Rn

f (x) such that x ∈ X ⊆ Rn

m
min

(x,t)∈Rn×R
t such that x ∈ X and (x, t) ∈ epi f

m
min

(x,t)∈Rn×R
t such that x ∈ X and f (x) ≤ t

⇒ equivalent problem with linear objective
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Conic constraints ?

KX = cl{(x, u) ∈ Rn × R++ |
x

u
∈ X}

is called the (closed) conic hull of X
We have that KX is a closed convex cone and

x ∈ X ⇔ (x, u) ∈ KX and u = 1

min
x∈Rn

cTx such that x ∈ X ⊆ Rn

m
min

(x,u)∈Rn×R
cTx such that (x, u) �KX

0 and u = 1

⇒ equivalent problem with a conic constraint
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Duality properties

Since we generalized

max bTy such that ATy ≤ c

to
max bTy such that ATy �K c

it is tempting to generalize

min cTx such that Ax = b and x ≥ 0

to
min cTx such that Ax = b and x �K 0

But this is not the right primal-dual pair !



François Glineur, eVITA Winter School 2009 – Geilo - 90 - •First •Prev •Next •Last •Full Screen •Quit

Dualizing a conic problem

Remembering the dualizing procedure for linear optimiza-
tion, a crucial point lied in the ability to derive conse-
quences by taking nonnegative linear combinations of in-
equalities
Consider now the following statement 2

−1
−1

 �L2

0
0
0


which is true since (−1)2 + (−1)2 ≤ 22

Multiplying the first line by 0, 1 and the next two by 1,
we get 0.1× 2− 1× 1− 1× 1 ≥ 0 or −1.8 ≥ 0:
⇒ this is a contradiction!
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We obtained a contraction although the original system
of inequalities was consistent ⇒ something is wrong!
Some nonnegative linear combinations do not work!

Rescuing duality

Starting with

x ∈ K ⊆ Rn ⇔ x �K 0

we identify all vectors (of multipliers) z ∈ Rn such that
the consequence zTx ≥ 0 holds as soon as x �K 0

Hence we define the set

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}
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The dual cone

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}
� For any x ∈ K and z ∈ K∗, we have zTx ≥ 0

� K∗ is a convex cone, called the dual cone of K

� K∗ is always closed, and if K is closed, (K∗)∗ = K

� K is pointed (resp. solid)⇒ K∗ is solid (resp. pointed)

� Cartesian products: (K1 ×K2)∗ = K∗1 ×K∗2
� (Rn

+)∗ = Rn
+, (Ln)∗ = Ln, (Sn+)∗ = Sn+ :

these cones are self-dual

� But there exists (many) cones that are not self-dual
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Bounds and optimality

Let ȳ a feasible solution (satisfying ATy �K c)
→ bTȳ is a lower bound on the optimal value f ∗

But how to

� obtain upper bounds on the optimal value ?

� prove that a feasible solution y∗ is optimal ?

Those questions are linked since

proving that y∗ is optimal
m

proving that bTy∗ is an upper bound
on the optimal value f ∗
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Generating upper bounds

Consider

max 2y1+3y2+2y3 such that

y1 + y2

y2 + y3

y3

 �L2

1
2
3

 (a)
(b)
(c)

Solution y = (−2, 1, 2) is feasible with objective value 3
→ lower bound f ∗ ≥ 3 (since (2,−1, 1) ∈ L2)

Let us combine constraints: 2(a) + (b) + (c)
(we have the right to do so since (2, 1, 1) ∈ (L2)∗ = L2)

2y1 +2y2 +y2 +y3 +y3 ≤ 2+2+3⇔ 2y1 +3y2 +2y3 ≤ 7

→ upper bound on the optimal value f ∗ ≤ 7
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The best upper bound

Let us find the best upper bound using this procedure

max

m∑
i=1

biyi such that
( m∑
i=1

aijyi

)
1≤j≤n

�K
(
cj

)
1≤j≤n

Introducing again n (multiplying) variables xi
we get
n∑
j=1

xj

m∑
i=1

aijyi ≤
n∑
j=1

xjcj ⇔
m∑
i=1

yi(

n∑
j=1

aijxj) ≤
n∑
j=1

cjxj

under the assumption that x ∈ K∗
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The best upper bound (continued)

This provides an upper bound on the objective equal to∑n
j=1 cjxj, assuming that x satisfies

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m

Minimizing now this upper bound

min

n∑
j=1

cjxj s.t.

n∑
j=1

aijxj = bi ∀1 ≤ i ≤ m and x ∈ K∗

or
min cTx such that Ax = b and x �K∗ 0

We find another conic optimization problem which is dual
to our first problem!
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Duality for conic optimization

We have completely mimicked the dualizing procedure
used for linear optimization
The problem of finding the best upper bound

min cTx such that Ax = b and x ≥ 0

becomes thus

min cTx such that Ax = b and x �K∗ 0

The correct primal-dual pair is thus

max bTy such that ATy �K c

min cTx such that Ax = b and x �K∗ 0
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Primal-dual pair

Again, for historical reasons, the min problem is called
the primal. Since our cones are closed, (K∗)∗ = K∗,
which means we can write the primal conic problem

min cTx such that Ax = b and x �K 0

and the dual conic problem

max bTy such that ATy �K∗ c

� Very symmetrical formulation

� Computing the dual essentially amounts to findingK∗

� All nonlinearities are confined to the cones K and K∗
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Duality properties

�Weak duality: any feasible solution for the primal
(resp. dual) provides an upper (resp. lower) bound
for the dual (resp. primal)

(immediate consequence of our dualizing procedure)

� Inequality bTy ≤ cTx holds for any x, y such that
Ax = b, x �K 0 and ATy �K∗ c (corollary)

� If the primal (resp. dual) is unbounded, the dual (resp.
primal) must be infeasible

(but the converse is not true!)

Completely similar to the situation for linear optimization
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Duality properties (continued)

What about strong duality ?
If y∗ is an optimal solution for the dual, does there exist an
optimal solution x∗ for the primal such that cTx∗ = bTy∗

(in other words: p∗ = d∗) ?

Consider K = L2 with

A =

(
−1 0 −1
0 −1 0

)
, b =

(
0 −1

)T
and c =

(
0 0 0

)T

We can easily check that

� the primal is infeasible

� the dual is bounded and solvable
⇒ strong duality does not hold for conic optimization ...
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Other troublesome situations

Let λ ∈ R+: consider

minλx3−2x4 s.t.

x1 x4 x5

x4 x2 x6

x5 x6 x3

 �S3
+

0,

(
x3 + x4

x2

)
=

(
1
0

)
In this case, p∗ = λ but d∗ = 2: duality gap!

minx1 such that x3 = 1 and

(
x1 x3

x3 x2

)
�S2

+
0

In this case, p∗ = 0 but the problem is unsolvable!
In all cases, one can identify the cause for our troubles:
the affine subspace defined by the linear constraints is
tangent to the cone (it does not intersect its interior)
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Rescuing strong duality

A feasible solution to a conic (primal or dual) problem is
strictly feasible iff it belongs to the interior of the cone
In other words, we must have Ax = b and x �K 0 for
the primal and ATy ≺K∗ c for the dual

Strong duality: If the dual problem admits a strictly fea-
sible solution, we have either

� an unbounded dual, in which case d∗ = +∞ = p∗

and the primal is infeasible

� a bounded dual, in which case the primal is solvable
with p∗ = d∗ (hence there exists at least one feasible
primal solution x∗ such that cTx∗ = p∗ = d∗)
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Strong duality (continued)

� If the primal problem admits a strictly feasible solu-
tion, we have either

– an unbounded primal, in which case p∗ = −∞ =
d∗ and the dual is infeasible

– a bounded primal, in which case the dual is solv-
able with d∗ = p∗ (hence there exists at least one
feasible dual solution y∗ such that bTy∗ = d∗ = p∗)

� The first case is a mere consequence of weak duality

� Finally, when both problems admit a strictly feasible
solution, both problems are solvable and we have

cTx∗ = p∗ = d∗ = bTy∗
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Conic modelling with three cones

A first cone: Rn
+

Standard meaning for inequalities:

�Rn+ ⇔ ≥

⇒ linear optimization
But we can also model some nonlinearities!

|x1 − x2| ≤ 1 ⇔ −1 ≤ x1 − x2 ≤ 1

|x1 − x2| ≤ t ⇔
(
x1 − x2 − t
x2 − x1 − t

)
≤
(

0
0

)
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Terminology: conic representability

� Set S is K-representable if can be expressed as

feasible region of conic problem using cone K

� Closed under intersection and Cartesian product

� Function f is K-representable iff

its epigraph is K-representable

� Closed under sum, positive multiplication and max

�What we can do in practice: minimize aK-representable
function over a K-representable set

where K is a product of cones Rn
+, Ln, Sn+ and Rn
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A simple example

Consider set
S = {x2

1 + x2
2 ≤ 1}

→ can be modelled as

(x0, x1, x2) ∈ L2 and x0 = 1

⇒ S is L2-representable
but an additional variable x0 was needed
⇒ formally, S ⊆ Rn is K-representable
iff there exists a set T ⊆ Rn+m such that

a. T is K-representable

b. x ∈ S iff there exists t ∈ Rm such that (x, t) ∈ T
(i.e. S is the projection of T on Rn)
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Back to Rn
+

� Polyhedrons and polytopes are Rn
+-representable

� Hyperplanes and half-planes are Rn
+-representable

� Affine functions x 7→ aTx + b are Rn
+-representable

� Absolute values x 7→
∣∣aTx + b

∣∣ are Rn
+-representable

� Convex piecewise linear function are Rn
+-representable

Two potential issues with Rn
+ :

a. free variables in the primal → x = x+ − x−

b. equalities in the dual → aTx ≤ c and aTx ≥ c

But these are wrong solutions !
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What use is K = Rn ?

� K = Rn and K∗ = {0}
� Can be used to introduce free variables in the primal
Ax = b, x �K 0

x �Rn 0 ⇔ x is free

� or equalities in the dual ATy �K∗ c

ATy �{0} c ⇔ ATy = c

in combination with other cones

� Rn in dual or {0} is primal is useless!
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What use is Ln ?

everything both convex and quadratic ...

� f : x 7→ ‖x‖, f : x 7→ ‖x‖2 and f : (x, z) 7→ ‖x‖2
z

� Br = {x ∈ Rn | ‖x‖ ≤ r}
� {(x, y) ∈ R2

+ | xy ≥ 1}
� {(x, y, z) ∈ R2

+ × R | xy ≥ z2}
� {(a, b, c, d) ∈ R4

+ | abcd ≥ 1}
� {(x, t) ∈ Rn × R× | xTQx ≤ t} with Q ∈ Sn+
⇒ second-order cone optimization
Very useful trick: xy ≥ z2 ⇔ (x + y, x− y, 2z) ∈ L2

Unfortunately, (x, y) 7→ x
y is not convex!
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What use is Sn+ ?

Preliminary remark: for the purpose of conic optimiza-
tion, members of Sn are viewed as vectors in Rn×n

What about constraint Ax = b ?

Ax = b⇔ aT
i x = bi ∀i

aT
i x can be views as the inner product between ai and x

Let X, Y ∈ Sn: their inner product is

X • Y =
∑

1≤i,j≤n
Xi,jYi,j = trace(XY )

→ replace aT
i x by Ai •X with Ai, X ∈ Sn
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Standard format for semidefinite optimization

The primal becomes

minC•X such that Ai•X = bi ∀1 ≤ i ≤ m and X � 0

In the conic dual, we have

ATy =
∑

aiyi, an application from Rm 7→ Rn

⇒ with the Sn+ cone, we have

A(y) =
∑

Aiyi, an application from Rm 7→ Sn

which gives for the dual

max bTy such that

m∑
i=1

Aiyi � C
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What use is Sn+ (continued) ?

� Sn+ generalizes both Rn
+ and Ln (arrow matrices)

(however, using Rn
+ and Ln is more efficient)

� f : X 7→ λmax(X) and f : X 7→ −λmin(X)

� f : X 7→ maxi |λi| (X) (spectral norm)

� Describing ellipsoids {x ∈ Rn | (x−c)TE(x−c) ≤ 1}
with E � 0

� Matrix constraint XXT � Y

using the Schur Complement lemma

When A � 0 :

(
A B
BT C

)
� 0⇔ C−BTA−1B � 0

� And more ...
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Primal-dual algorithms

Advantage of conic optimization over standard convex
optimization is (symmetric) duality
However previous approach does not seem to use it !
⇒ a better approach that uses duality is needed

The linear case (again)

Introduce additional vector of variables s ∈ Rn

min cTx such that Ax = b and x ≥ 0

and

max bTy such that ATy + s = c and s ≥ 0
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Primal-dual optimality conditions

min cTx such that Ax = b and x ≥ 0

and

max bTy such that ATy + s = c and s ≥ 0

Duality tells us x∗ and y∗ are optimal iff they satisfy

Ax = , x ≥ 0, ATy + s = c, s ≥ 0 and cTx = bTy

or

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0 and xisi = 0 ∀i
Both problems are handled simultaneously
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Perturbed optimality conditions

Introducing a logarithmic barrier term in both problems

min cTx− µ
∑
i

log xi such that Ax = b and x > 0

max bTy + µ
∑
i

log si such that ATy + s = c and s > 0

one can derive new perturbed optimality conditions

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0 and xisi = µ ∀i

Again, both problems are handled simultaneously
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Primal-dual path following algorithm

Same principle as in the general case:

� Follow the central path

� Not wandering too far from it

� Until (primal-dual) optimality

� Using a polynomial number of iterations

Complexity is also the same:

O
(√

n log
1

ε

)
iterations to get ε accuracy

But this scheme is very efficient in practice (long steps)
(all practical implementations use it nowadays)
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What about other convex/conic problems ?

This primal-dual scheme is only generalizable
to cones that are

a. self-dual (K = K∗)

b. homogeneous

(linear automorphism group acts transitively on intK)

([Nesterov & Todd 97])

There exists a complete classification of these cones :
in the real case, they are ...

Rn
+ , Ln and Sn+

and their Cartesian products!



François Glineur, eVITA Winter School 2009 – Geilo - 118 - •First •Prev •Next •Last •Full Screen •Quit

Complexity

Complexity for a product of Rn
+,Ln,Sn+

O
(√

ν log
1

ε

)
iterations to get ε accuracy

where ν is the sum of

� n for Rn
+ (see above) (barrier term is −

∑
log xi)

� n for Sn+ (although there are n(n + 1)/2 variables)

(barrier term is − log detX = −
∑

log λi)

� 2 for Ln (independently of n !)

(barrier term is − log(x2
0−
∑
x2
i ) ; no − log x0 term!)

→ these problems are solved very efficiently in practice
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More applications

Using semidefinite optimization:

Positive polynomials

� Single variable case: exact formulation

� Test positivity and minimize on an interval

� Multiple variable case: relaxation only

The MAX-CUT relaxation

� Relaxation of a difficult discrete problem

�With a quality guarantee (0.878)
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Thank you for your attention
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Does linear optimization exist at all ?

Let us only mention the following not so well-known
theorem, due to Dr. Addock Prilfirst

Theorem
The objective function of any linear program is constant
on its feasible region

Proof

{min cTx | Ax = b, x ≥ 0} = {max bTy | ATy ≤ c}
≥ {min bTy | ATy ≤ c} = {max cTx | Ax = b, x ≤ 0}
≥ {min cTx | Ax = bx ≤ 0} = {max bTy | ATy ≥ c}
≥ {min bTy | ATy ≥ c} = {max cTx | Ax = b, x ≥ 0}
≥ {min cTx | Ax = b, x ≥ 0}


