Convex optimization Why? What? How ?

François Glineur
Université catholique de Louvain - EPL/INMA \& CORE Francois.Glineur@uclouvain.be

eVITA Winter School on eScience on Optimization January 13th 2009

Questions and comments ...

... are more than welcome, at any time!
Slides will be available on the web :
http://www.core.ucl.ac.be/~glineur/

References

This lecture's material relies on several references (see at the end), but most main ideas can be found in:
\diamond Convex Optimization,
Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2004 (and on the web)

Motivation

Modelling and decision-making
Help to choose the best decision
Decision \leftrightarrow vector of variables
Best \leftrightarrow objective function $\} \Rightarrow$ Optimization
Constraints \leftrightarrow feasible domain
Use
\diamond Numerous applications in practice
\diamond Resolution methods efficient in practice
\diamond Modelling and solving large-scale problems

Introduction

Applications

\diamond Planning, management and scheduling
Supply chain, timetables, crew composition, etc.
\diamond Design
Dimensioning, structural optimization, networks
\diamond Economics and finance
Portfolio optimization, computation of equilibrium
\diamond Location analysis and transport
Facility location, circuit boards, vehicle routing
\diamond And lots of others ...

Two facets of optimization

\diamond Modelling
Translate the problem into mathematical language (sometimes trickier than you might think)

§

Formulation of an optimization problem

ϑ

\diamond Solving
Develop and implement algorithms that are efficient in theory and in practice

Close relationship

\diamond Formulate models that you know how to solve

$$
\uparrow
$$

\diamond Develop methods applicable to real-world problems

Classical formulation

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } x \in X \subseteq \mathbb{R}^{n}
$$

(finite dimension)
Often, we define
$X=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0\right.$ and $h_{j}(x)=0$ for $\left.i \in \mathcal{I}, j \in \mathcal{E}\right\}$

Possible situations: optimal value

$\min _{x \in \mathbb{R}^{n}} f(x)$ such that $x \in X \subseteq \mathbb{R}^{n}$
Optimal value $f^{*}=\inf \{f(x) \mid x \in X\}$
a. $X=\emptyset$: infeasible problem (convention: $f^{*}=+\infty$)
b. $X \neq \emptyset$: feasible problem ; in this case
(a) $f^{*}>-\infty$: bounded problem
(b) $f^{*}=-\infty$: unbounded problem

Possible situations: optimal set

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } x \in X \subseteq \mathbb{R}^{n}
$$

Optimal value f^{*} is not always attained
Consider the optimal set $X^{*}=\left\{x^{*} \in X \mid f\left(x^{*}\right)=f^{*}\right\}$
a. $X^{*} \neq \emptyset$: solvable problem (at least one optimal solution)
b. $X^{*}=\emptyset:$ unsolvable problem.

There exists feasible, bounded unsolvable problems ! $\min \frac{1}{x}$ such that $x \in \mathbb{R}_{+}$gives $f^{*}=0$ but $X^{*}=\emptyset$

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Linear optimization: three examples

A. Diet problem

Consider a set of different foods for which you know
\diamond Quantities of calories, proteins, glucids, lipids, vitamins contained per unit of weight
\diamond Price per unit of weight

Given the nutritional recommendations with respect to daily supply of proteins, glucids, etc, design an optimal, i.e. meeting the constraints with the lowest cost

Formulation

\diamond Index i for the food types $(1 \leq i \leq n)$
\diamond Index j for the nutritional components $(1 \leq j \leq m)$
\diamond Data (per unit of weight) :
$c_{i} \rightarrow$ price of food type i,
$a_{j i} \rightarrow$ amount of component j in food type i,
$b_{j} \rightarrow$ daily recommendations for component j
\diamond Unknowns:
Quantity x_{i} of food type i in the optimal diet

Formulation (continued)

This is a linear problem:

$$
\min \sum_{i=1}^{n} c_{i} x_{i}
$$

such that

$$
x_{i} \geq 0 \forall i \text { and } \sum_{i=1}^{n} a_{j i} x_{i}=b_{j} \forall j
$$

Using matrix notations

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

This is a one of the most simple problems, and can be solved for large dimensions (1947: 9×77; today: m and $n \approx 10^{7}$)

B. Assignment problem

Given
$\diamond n$ workers
$\diamond n$ tasks to accomplish
\diamond the amount of time needed for each worker to execute each of the tasks

Assign (bijectively) the n tasks to the n workers so that the total execution time is minimized

This is a discrete problem with an (a priori) exponential number of potential solutions ($n!$)
\rightarrow explicit enumeration is impossible in practice

Formulation

First idea: x_{i} denotes the number of the task assigned to person i (n integer variables between 1 and n)
Problem : how to force a bijection?
Better formulation:
\diamond Index i for workers $(1 \leq i \leq n)$
\diamond Index j for tasks $(1 \leq j \leq n)$
\diamond Data :
$a_{i j} \rightarrow$ duration of task j for worker i
\diamond Unknowns:
$x_{i j}$ binary variable $\{0,1\}$ indicating whether worker i executes task j

Formulation (continued h_{n}

$$
\min \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i j}
$$

such that
$\sum_{i=1}^{n} x_{i j}=1 \forall j, \sum_{j=1}^{n} x_{i j}=1 \forall i$, and $x_{i j} \in\{0,1\} \forall i \forall j$
\diamond Higher number of variables $\left(n^{2}\right) \rightarrow$ more difficult ?
\diamond Linear problem with integer (binary) variables \rightarrow requires completely different algorithms
\diamond But bijection constraint is simplified and linearized
Although its looks more difficult than A., this problem can also be solved very efficiently!

C. Travelling salesman problem

Given

\diamond a travelling salesman that has to visit n cities going through each city once and only once
\diamond the distance (or duration of the journey) between each pair of cities

Find an optimal tour that visits each city once with minimal length (or duration)

Also a discrete and exponential problem
Other application : soldering on circuit boards

Formulation

First idea: x_{i} describes city visited in position i during the tour (n integer variables between 1 and n) Problem : how to require that each city is visited ?

Better formulation:
\diamond Indices i and j for the cities $(1 \leq i, j \leq n)$
\diamond Data :
$a_{i j} \rightarrow$ distance (or journey duration) between i and j
\diamond Unknowns:
$x_{i j}$ binary variable $\{0,1\}$ indicating whether the trip from city i to city j is part of the trip

Formulation (continued)

$$
\min \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i j}
$$

such that

$$
\sum_{i=1}^{n} x_{i j}=1 \forall j, \sum_{j=1}^{n} x_{i j}=1 \forall i, x_{i j} \in\{0,1\} \forall i \forall j
$$

and $\sum_{i \in S, j \notin S} x_{i j} \geq 1 \forall S$ with $S \subseteq\{1, \ldots, n\}, 1<|S|<n$
\diamond High (exponential) number of constraints
\diamond Problem is a lot harder than A./B. $\left(\max n \approx 10^{4}\right)$

Algorithms and complexity

Why are these three problems different ?
Three linear problems: a priori among the simplest ... ?
\diamond A. Diet: continuous variables
\rightarrow (continuous) linear optimization
\diamond B. Assignment: discrete variables + expon. \# of soln. \rightarrow linear integer optimization
\diamond C. Salesman: discrete variables + exp. \# of cons./soln.
\rightarrow linear integer optimization
However, B is not more difficult than A while C is a lot harder than A and B !

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Algorithmic complexity

Difficulty of a problem depends on the efficiency of methods that can be applied to solve it
\Rightarrow what is a good algorithm ?
\diamond Solves the problem (approximately)
\diamond Until the middle of the $20^{\text {th }}$ century: in finite time (number of elementary operations)
\diamond Now (computers):
in bounded time (depending on the problem size)
\rightarrow algorithmic complexity (worst / average case)
Big distinction: polynomial \leftrightarrow exponential complexity

Algorithms for linear optimization

For linear optimization with continuous variables:
very efficient algorithms ($n \approx 10^{7}$)
\diamond Simplex algorithm (Dantzig, 1947) Exponential worst-case complexity but ... Very efficient in practice (worst-case is rare)
\diamond Ellipsoid method (analyzed by Khachiyan, 1978)
Polynomial worst-case complexity but ...
Poor practical performance (high-degree polynomial)
\diamond Interior-point methods (Karmarkar, 1985)
Polynomial worst-case complexity and ... Very efficient in practice (large-scale problems)

Algorithms for linear optimization (continued)

For linear optimization with discrete variables: algorithms a lot less efficient, because problem is intrinsically exponential (cf. class of NP-complete problems)
\diamond Continuous relaxation (i.e. outer approximation)
\diamond Branch and bound
(i.e. explore an exponential solution tree + pruning)
\rightarrow Very sophisticated algorithms/heuristics
but still exponential worst-case
\rightarrow Middle-scale or even small-scale problems ($n \approx 10^{2}$) can already be intractable
\rightarrow Discrete C. is a lot harder to solve than continuous A.

What about the assignment problem B. ?

Why can it be solved efficiently, despite being discrete?
One can relax variables $x_{i j} \in\{0,1\}$ by $0 \leq x_{i j} \leq 1$ without changing the optimal value and solutions !
\rightarrow it was a fake discrete problem
\rightarrow we obtain a continuous linear optimization formulation
\rightarrow an example of why reformulation is sometimes crucial
In general, if one can replace the binary variables by continuous variables with an additional polynomial number of linear constraints, the resulting problem can be solved in polynomial time

> Combinatorial/integer/discrete problems are not always difficult!

Nonlinear vs. convex optimization

Why nonlinear optimization?

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } x \in X \subseteq \mathbb{R}^{n}
$$

where X is defined (most of the time) by
$X=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0\right.$ and $h_{j}(x)=0$ for $\left.i \in \mathcal{I}, j \in \mathcal{E}\right\}$
Linear optimization: any affine functions for f, g_{i} and h_{j} but it does not permit satisfactory modelling of all practical problems
\rightarrow need to consider nonlinear f, g_{i} and h_{j}
\rightarrow nonlinear optimization

A taxonomy

\diamond Deterministic or stochastic problem
\diamond Accurate data or inaccurate/fuzzy (robustness)
\diamond Single or multiple objectives
\diamond Constrained or unconstrained problem
\diamond Functions described analytically or using a black box
\diamond Continuous functions or not, differentiable or not
\diamond General, polynomial, quadratic, linear functions
\diamond Continuous or discrete variables
Switch categories: sometimes with reformulations

Back to complexity

Discrete sets X can make the problem difficult (with exponential complexity)
but even continuous problems can be difficult!
Consider a simple unconstrained minimization

$$
\min f\left(x_{1}, x_{2}, \ldots, x_{10}\right)
$$

with smooth f (Lipschitz continuous with $L=2$):
One can show that for any algorithm there exists some functions where at least 10^{20} iterations (function evaluations) are needed to find a global solution with accuracy better than 1% ! (this is a theorem)

Two paradigms

\diamond Tackle all problems without any efficiency guarantee

- Traditional nonlinear optimization
- (Meta)-Heuristic methods
\diamond Limit the scope to some classes of problems
and get in return an efficiency guarantee (complexity)
- Linear optimization
* very fast specialized algorithms
* but sometimes too limited in practice
- Convex optimization (this lecture)
* (slightly) less efficient but much more general

Compromise: generality \leftrightarrow efficiency

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Convex optimization

Introduction

$$
\min f(x) \text { such that } x \in X
$$

A feasible solution x^{*} is a
\diamond global minimum iff $f\left(x^{*}\right) \leq f(x) \forall x \in X$
\diamond local minimum iff there exists an open neighborhood $V\left(x^{*}\right)$ such that

$$
f\left(x^{*}\right) \leq f(x) \forall x \in X \cap V
$$

Global minimum \Rightarrow local minimum
Global minima are more interesting but also more difficult to find ... but the notion of convexity can help us !

Convexity definitions

$\diamond \mathrm{A}$ set $S \subseteq \mathbb{R}^{n}$ is convex iff

$$
\lambda x+(1-\lambda) y \in S \forall x, y \in S, \lambda \in\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

\diamond A function $f: S \mapsto R$ is convex iff $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \forall x, y, \lambda \in[01]$ (this imposes that the domain S is convex)
\diamond Equivalently, a function $f: S \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex iff its epigraph is convex

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid x \in S \text { and } f(x) \leq t\right\}
$$

\diamond An optimization problem is convex if it deals with the minimization of a convex function on a convex set

Examples

$\diamond \emptyset, \mathbb{R}^{n}, \mathbb{R}_{+}^{n}, \mathbb{R}_{++}^{n}$
$\diamond\{x \mid\|x-a\|<r\}$ and $\{x \mid\|x-a\| \leq r\}$
$\diamond\left\{x \mid b^{\mathrm{T}} x<\beta\right\},\left\{x \mid b^{\mathrm{T}} x \leq \beta\right\}$ and $\left\{x \mid b^{\mathrm{T}} x=\beta\right\}$
$\diamond \operatorname{In} \mathbb{R}$: intervals (open/closed, possibly infinite)
$\diamond x \mapsto c, x \mapsto b^{\mathrm{T}} y+\beta_{0}, x \mapsto\|x\|$ and $x \mapsto\|x\|^{2}$, $x \mapsto x^{\mathrm{T}} Q x$ with $Q \in \mathbb{R}^{n \times n}$ positive semidefinite
\diamond In the case $f: \mathbb{R} \mapsto \mathbb{R}$, we mention $x \mapsto e^{x}, x \mapsto$ $-\log x, x \mapsto|x|^{p}$ with $p \geq 1$.
$\diamond f$ is concave iff $-f$ is convex (i.e. reversing inequalities in the definitions) ; there is no notion of concave set!

Fundamental properties of convex optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } x \in X \subseteq \mathbb{R}^{n}
$$

When
$\diamond f$ is a convex function to be minimized
$\diamond X$ is a convex set
we are dealing with convex optimization problems and
\diamond Every local minimum is global
\diamond The optimal set is convex
\diamond The KKT optimality conditions are sufficient

Basic properties of convex sets

\diamond If two sets $S \subseteq \mathbb{R}^{n}$ and $T \subseteq \mathbb{R}^{n}$ are convex, so is their intersection $S \cap T \subseteq \mathbb{R}^{n}$
\diamond If two sets $S \subseteq \mathbb{R}^{n}$ and $T \subseteq \mathbb{R}^{m}$ are convex, so is their Cartesian product $S \times T \subseteq \mathbb{R}^{n+m}$
\diamond For every set $X \subseteq \mathbb{R}^{n}$, there is a smallest convex set $S \subseteq \mathbb{R}^{n}$ which includes X, called the convex hull of X
a. all nonlinear problems admit a convex relaxation
b. for a linear objective function (which can be taken w.l.o.g.) this relaxation is exact
(but this does not really help us ...)

A linear objective?

$\min _{x \in \mathbb{R}^{n}} f(x)$ such that $x \in X \subseteq \mathbb{R}^{n}$

$$
\Uparrow
$$

$\min _{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}} t$ such that $x \in X$ and $(x, t) \in \operatorname{epi} f$ $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$

I
$\min _{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}} t$ such that $x \in X$ and $f(x) \leq t$
\Rightarrow equivalent convex problem with linear objective

Basic properties of convex functions

\diamond If two functions $f(x)$ and $g(x)$ are convex

- Product $a f(x)$ is convex for any scalar $a \geq 0$
$-\operatorname{Sum} f(x)+g(x)$ is convex
- Maximum $\max \{f(x), g(x)\}$ is convex
\diamond If f is twice differentiable, we have

$$
f \text { convex } \Leftrightarrow \nabla^{2} f \succeq 0
$$

\diamond The only functions that are simultaneously convex and concave are the affine functions

Convexity plays nice with linearity

\diamond If $S \subseteq \mathbb{R}^{n}$ is convex and $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: x \mapsto A x+b$ a linear function, we have that

$$
\Phi S=\{\Phi(x) \mid x \in S\} \text { is convex }
$$

\diamond This implies that if $f: x \mapsto f(x)$ is a convex function

$$
g: x \mapsto g(x)=f(A x+b) \text { is convex }
$$

(but of course not always true for $a f(x)+b!$)
\diamond Similar result holds for $\Theta: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}: x \mapsto A x+b$ and

$$
\Theta^{-1} S=\{x \mid \Theta(x) \in S\} \text { is convex }
$$

Feasible set defined with functions

$X=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0\right.$ and $h_{j}(x)=0$ for $\left.i \in \mathcal{I}, j \in \mathcal{E}\right\}$
$\diamond X_{g}=\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0\right\}$ is convex if g is convex
\diamond When $\mathcal{E}=\emptyset, X$ is convex when every g_{i} is convex
\diamond These two conditions are not necessary
\diamond Allowing now equalities, we note that since $h_{j}(x)=$ $0 \Leftrightarrow h_{j}(x) \leq 0$ and $-h_{j}(x) \leq 0$, we can guarantee that X is convex when all functions h_{j} are affine
\diamond To summarize, X is convex as soon as every g_{i} is convex and every h_{j} is affine

A few classes of convex problems

General formulation

$\min _{x \in \mathbb{R}^{n}} f(x)$ s.t. $g_{i}(x) \leq 0 \forall i \in \mathcal{I}$ and $h_{j}(x)=0 \forall j \in \mathcal{E}$ where f and g_{i} for all $i \in \mathcal{I}$ are convex and h_{j} are affine for all $j \in \mathcal{E}$

$$
h_{j}(x)=a_{j}^{\mathrm{T}} x-b_{j}
$$

1. Linear optimization (LO):
f and g_{i} for all $i \in \mathcal{I}$ are also affine

$$
f(x)=c^{\mathrm{T}} x \quad \text { and } \quad g_{i}(x)=a_{i}^{\mathrm{T}} x-b_{i}
$$

Linear optimization for data-mining

Given two sets of points in \mathbb{R}^{d}

$$
A=\left\{a_{i}\right\}_{1 \leq i \leq n_{a}} \quad \text { and } \quad B=\left\{b_{i}\right\}_{1 \leq i \leq n_{b}}
$$

find a hyperplane defined by $h \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$

$$
h^{T} x+c=0
$$

that (strictly) separates them
Applications (medical diagnosis, credit screening, etc.)
a. compute hyperplane with known points (learn)
b. classify new unknown points based on this hyperplane (generalize)

Formulation

min 0 such that

$$
\begin{aligned}
h^{\mathrm{T}} a_{i}+c & \geq+1 \text { for all } 1 \leq i \leq n_{a} \\
h^{\mathrm{T}} b_{i}+c & \leq-1 \text { for all } 1 \leq i \leq n_{b}
\end{aligned}
$$

a. Can add objective function to find the best separator
b. Nonlinear separator can also be found with linear formulation, e.g. $p e^{\|x\|}+h^{\mathrm{T}} x+c=0$ leads to

$$
p e^{\left\|a_{i}\right\|}+h^{\mathrm{T}} a_{i}+c \geq 1 \text { and } p e^{\left\|b_{i}\right\|}+h^{\mathrm{T}} b_{i}+c \leq-1
$$ since dependence on decision variables is still linear

c. Ability to solve large-scale problems often needed

Quadratic optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { s.t. } g_{i}(x) \leq 0 \forall i \in \mathcal{I} \text { and } h_{j}(x)=0 \forall j \in \mathcal{E}
$$

where h_{j} are affine for all $j \in \mathcal{E}, f$ is a convex quadratic
$f(x)=x^{\mathrm{T}} Q x+r^{\mathrm{T}} x+s$ with $Q \succeq 0$ (positive semidefinite)
a. $\mathcal{I}=\emptyset:$ improper quadratic optimization problem since (necessary and sufficient) optimality conditions consist in a simple linear system of equations
b. $g_{i}(x)$ are affine: (standard) quadratic optimization (QO), e.g. for Markowitz portfolio selection
c. $g_{i}(x)$ are also convex quadratic: quadratically constrained quadratic optimization (QCQO)
However remember quadratic equalities are forbidden!

Geometric optimization

A posynomial is a sum of monomials in several positive variables with positive leading coefficients and arbitrary real exponents, such as

$$
p\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1} x_{3}+\frac{1}{2} \sqrt{x_{2} x_{3}}+\frac{x_{2}}{x_{1} x_{3}^{2}}
$$

Geometric optimization (programming) corresponds to

$$
\min _{x \in \mathbb{R}_{++}^{n}} f(x) \text { s.t. } g_{i}(x) \leq 1 \forall i \in \mathcal{I}
$$

where f and every g_{i} are posynomials
These problems are not necessarily convex ! (for example, $\sqrt{x_{1}}$ is concave)

Geometric optimization in convex form

$$
\min _{x \in \mathbb{R}_{++}^{n}} f(x) \text { s.t. } g_{i}(x) \leq 1 \forall i \in \mathcal{I}
$$

fortunately can be convexified by letting $x_{i}=e^{y_{i}}$

$$
\begin{gathered}
p\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1} x_{3}+\frac{1}{2} \sqrt{x_{2} x_{3}}+\frac{x_{2}}{x_{1} x_{3}^{2}} \\
\leftrightarrow \tilde{p}\left(y_{1}, y_{2}, y_{3}\right)=3 e^{y_{1}+y_{3}}+\frac{1}{2} e^{\frac{y_{2}+y_{3}}{2}}+e^{y_{2}-y_{1}-2 y_{3}} \\
\min _{y \in \mathbb{R}^{n}} \tilde{f}(x) \text { s.t. } \tilde{g}_{i}(x) \leq 1 \forall i \in \mathcal{I}
\end{gathered}
$$

(linear equalities correspond here to monomial equalities) Application example: geometric design, such as wire sizing in circuit optimization

Properties of convex optimization

Why is it interesting to consider (or restrict yourself to) convex optimization problems?

Passive features:
\diamond every local minimum is a global minimum
\diamond set of optimal solutions is convex
\diamond optimality (KKT) conditions are sufficient, in addition to necessary (with regularity assumption)

Any algorithm or solver applied to a convex problem will automatically benefit from those features
but there is more ...

Properties of convex optimization

Active features:
\diamond possibility of designing dedicated algorithms with polynomial worst-case algorithmic complexity (in many situations: an interior-point method based on the theory of self-concordant barriers)
\diamond possibility of writing down a dual problem strongly related to original problem (solutions to the dual problem will provide optimality certificates, i.e. guarantees for the original problem)

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Interior-point methods

Convex optimization

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a convex function, $C \subseteq \mathbb{R}^{n}$ be a convex set : optimize a vector $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad x \in C \tag{P}
\end{equation*}
$$

Properties

\diamond All local optima are global, optimal set is convex
\diamond Lagrange duality \rightarrow strongly related dual problem
\diamond Objective can be taken linear w.l.o.g. $\left(f(x)=c^{\mathrm{T}} x\right)$

Principle

Approximate a constrained problem by
a family of unconstrained problems

Use a barrier function F to replace the inclusion $x \in C$
$\diamond F$ is smooth
$\diamond F$ is strictly convex on $\operatorname{int} C$
$\diamond F(x) \rightarrow+\infty$ when $x \rightarrow \partial C$
$\rightarrow \quad C=\operatorname{cl}$ dom $F=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid F(x)<+\infty\right\}$

Central path

Let $\mu \in \mathbb{R}_{++}$be a parameter and consider

$$
\inf _{x \in \mathbb{R}^{n}} \frac{c^{\mathrm{T}} x}{\mu}+F(x)
$$

$$
x_{\mu}^{*} \rightarrow x^{*} \text { when } \mu \searrow 0
$$

where
$\diamond x_{\mu}^{*}$ is the (unique) solution of $\left(\mathrm{P}_{\mu}\right)(\rightarrow$ central path $)$
$\diamond x^{*}$ is a solution of the original problem (P)

Ingredients

\diamond A method for unconstrained optimization
\diamond A barrier function
Interior-point methods rely on
\diamond Newton's method to compute x_{μ}^{*}
\diamond When C is defined with convex constraints $g_{i}(x) \leq 0$, one can introduce the logarithmic barrier function

$$
F(x)=-\sum_{i=1}^{n} \log \left(-g_{i}(x)\right)
$$

but this is not the only choice
Question: What is a good barrier, i.e. a barrier for which Newton's method is efficient?
Answer: A self-concordant barrier

Self-concordant barriers

Definition [Nesterov \& Nemirovski, 1988]
$F: \operatorname{int} C \mapsto \mathbb{R}$ is called ν-self-concordant on C iff
$\diamond F$ is convex
$\diamond F$ is three times differentiable
$\diamond F(x) \rightarrow+\infty$ when $x \rightarrow \partial C$
\diamond the following two conditions hold

$$
\begin{gathered}
\nabla^{3} F(x)[h, h, h] \leq 2\left(\nabla^{2} F(x)[h, h]\right)^{\frac{3}{2}} \\
\quad \nabla F(x)^{\mathrm{T}}\left(\nabla^{2} F(x)\right)^{-1} \nabla F(x) \leq \nu
\end{gathered}
$$

for all $x \in \operatorname{int} C$ and $h \in \mathbb{R}^{n}$

A (simple?) example

For linear optimization, $C=\mathbb{R}_{+}^{n}$: take $F(x)=-\sum_{i=1}^{n} \log x_{i}$ When $n=1$, we can choose $\nu=1$

$$
\begin{aligned}
& \diamond \nabla F(x)=-\frac{1}{x} \text { and } \nabla F(x)^{\mathrm{T}} h=-\frac{h}{x} \\
& \diamond \nabla^{2} F(x)=\frac{1}{x^{2}} \text { and } \nabla^{2} F(x)[h, h]=\frac{h^{2}}{x^{2}} \\
& \diamond \nabla^{3} F(x)=-2 \frac{1}{x^{3}} \text { and } \nabla^{3} F(x)[h, h, h]=-2 \frac{h^{3}}{x^{3}}
\end{aligned}
$$

When $n>1$, we have

$$
\begin{aligned}
& \diamond \nabla F(x)=\left(-x_{i}^{-1}\right) \text { and } \nabla F(x)^{\mathrm{T}} h=-\sum h_{i} x_{i}^{-1} \\
& \diamond \nabla^{2} F(x)=\operatorname{diag}\left(x_{i}^{-2}\right) \text { and } \nabla^{2} F(x)[h, h]=\sum h_{i}^{2} x_{i}^{-2} \\
& \diamond \nabla^{3} F(x)=\operatorname{diag}_{3}\left(-2 x_{i}^{-3}\right), \nabla^{3} F(x)[h, h, h]=-2 \sum h_{i}^{3} x_{i}^{-3}
\end{aligned}
$$

and one can show that $\nu=n$ is valid

Barrier calculus

Barriers for basic convex sets, for example
$\diamond-\log x$ for $\mathbb{R}_{+} ;-\log \left(1-\|x\|^{2}\right)$ for unit Eucl. ball
$\diamond-\log (\log y-x)-\log y$ for $\left\{(x, y) \mid e^{x} \leq y\right\}$
and convexity-preserving operations to combine them
\diamond Sum:
F is a ν_{1}-s.-c. barrier for $\mathcal{C}_{1} \subseteq \mathbb{R}^{n}$
G is a ν_{2}-S.-c. barrier for $\mathcal{C}_{2} \subseteq \mathbb{R}^{n}$
$\Rightarrow(F+G)$ is a $\nu_{1}+\nu_{2}$-S.-c. barrier for the set $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ (if nonempty)
\diamond Linear transformations preserve self-concordancy

Complexity result

Summary

Self-concordant barrier \Rightarrow polynomial number of iterations to solve (P) within a given accuracy

Short-step method: follow the central path
\diamond Measure distance to the central path with $\delta(x, \mu)$
\diamond Choose a starting iterate with a small $\delta\left(x_{0}, \mu_{0}\right)<\tau$
\diamond While accuracy is not attained
a. Decrease μ geometrically (δ increases above τ)
b. Take a Newton step to minimize barrier (δ decreases back below the τ threshold)

Geometric interpretation

Two self-concordancy conditions: each has its role
\diamond Second condition bounds the size of the Newton step \Rightarrow controls the increase of the distance to the central path when μ is updated
\diamond First condition bounds the variation of the Hessian \Rightarrow guarantees that the Newton step restores the initial distance to the central path

Summarized complexity result

$$
\mathcal{O}\left(\sqrt{\nu} \log \frac{1}{\epsilon}\right)
$$

iterations lead a solution with ϵ accuracy on the objective

Complexity result

\diamond Let F be a ν-self-concordant barrier for C and let $x_{0} \in \operatorname{int} C$ be a (well-chosen) feasible starting point, a short-step interior-point algorithm can solve problem (P) up to ϵ accuracy within

$$
\mathcal{O}\left(\sqrt{\nu} \log \frac{c^{T} x_{0}-p^{*}}{\epsilon}\right) \text { iterations, }
$$

such that at each iteration the self-concordant barrier and its first and second derivatives have to be evaluated and a linear system has to be solved in \mathbb{R}^{n}
\diamond Complexity invariant w.r.t. to scaling of F
\diamond Universal bound on complexity parameter: $\nu \geq 1$

Corollary

Assume $F, \nabla F$ and $\nabla^{2} F$ are polynomially computable \Rightarrow problem (P) can be solved in polynomial time

Existence

There exists a universal SC barrier with parameters

$$
\nu=\mathcal{O}(n)
$$

(But it is not necessarily efficiently computable (therefore not a contradiction of the fact that some convex problems are hard to solve)

Other methods

\diamond Long-step methods: more aggressive reduction of central path parameter but several Newton steps needed to restore proximity
\diamond Techniques to deal with the lack of an acceptable starting point
\diamond Non path-following/non interior point techniques, e.g. potential-reduction methods, ellipsoid method, firstorder methods (including smoothing techniques), etc.

A few complexity results
\diamond linear optimization with n inequalities: $\nu=n \Rightarrow$ $\mathcal{O}\left(\sqrt{n} \log \frac{1}{\varepsilon}\right)$ (best complexity known so far)
\diamond quadratic optimization with equalities: $\nu=1$!
\diamond quadratic optimization with m inequalities (linear or quadratic): $\nu=m+1 \Rightarrow \mathcal{O}\left(\sqrt{m} \log \frac{1}{\varepsilon}\right)$
\diamond geometric optimization with p monomials (objective or constraints): $\nu=p \Rightarrow \mathcal{O}\left(\sqrt{p} \log \frac{1}{\varepsilon}\right)$
\diamond similar results known for (nearly) all practically relevant problems, such as entropy optimization, sum-ofnorm minimization, problems with logarithms, etc.

However the main cost of each iteration (i.e. mainly Newton step via a linear system) also grows with \# of vars.

Sketch of the proof

Define $n_{\mu}(x)$ the Newton step taken from x to x_{μ}^{*}

$$
n_{\mu}(x)=0 \text { if and only if } x=x_{\mu}^{*}
$$

We take

$$
\delta(x, \mu)=\left\|n_{\mu}(x)\right\|_{x} \quad(\text { size of the Newton step })
$$

with a well-chosen (coordinate invariant) norm $\|\cdot\|_{x}$ Set $k \leftarrow 0$, perform the following main loop:
a. $\mu_{k+1} \leftarrow \mu_{k}(1-\theta) \quad$ (decrease barrier param)
b. $x_{k+1} \leftarrow x_{k}+n_{\mu_{k+1}}\left(x_{k}\right) \quad$ (take Newton step)
c. $k \leftarrow k+1$

Sketch of the proof (continued)

Key choice: parameters τ and θ such that

$$
\delta\left(x_{k}, \mu_{k}\right)<\tau \quad \Rightarrow \quad \delta\left(x_{k+1}, \mu_{k+1}\right)<\tau
$$

To relate $\delta\left(x_{k}, \mu_{k}\right)$ and $\delta\left(x_{k+1}, \mu_{k+1}\right)$, introduce an intermediate quantity

$$
\delta\left(x_{k}, \mu_{k+1}\right)
$$

We will also denote for simplicity

$$
\begin{aligned}
& x_{k} \leftrightarrow x \\
& \mu_{k} \leftrightarrow \mu
\end{aligned}
$$

Sketch of the proof (end)

Given a ν-self-concordant barrier:
$\diamond x \in \operatorname{dom} F$ and $\mu^{+}=(1-\theta) \mu \Rightarrow$

$$
\delta\left(x, \mu^{+}\right) \leq \frac{\delta(x, \mu)+\theta \sqrt{\nu}}{1-\theta}
$$

$\diamond x \in \operatorname{dom} F$ and $\delta(x, \mu)<1 \Rightarrow$ define $x^{+}=x+n_{\mu}(x)$

$$
x^{+} \in \operatorname{dom} F \text { and } \delta\left(x^{+}, \mu\right) \leq 1\left(\frac{\delta(x, \mu)}{1-\delta(x, \mu)}\right)^{2}
$$

with e.g. possible choice for parameters

$$
\tau=\frac{1}{4} \text { and } \theta=\frac{1}{16 \sqrt{\nu}}
$$

(hence the name short-step)

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Duality for linear optimization

Standard formulation

Consider the linear problem(with m variables y_{i})

$$
\max \sum_{i=1}^{m} b_{i} y_{i} \text { such that } \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} \forall 1 \leq j \leq n
$$

(objective and n linear inequalities), or

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \leq c
$$

(matrix notation with $b, y \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$)
All linear problems can be expressed in this format

When is a problem infeasible ?

In other terms: when is $A^{\mathrm{T}} y \leq c$ inconsistent?
And, more importantly: how can we be sure ?
\diamond Feasible \rightarrow exhibit a feasible solution
\diamond Infeasible \rightarrow ??

$$
3 y_{1}+2 y_{2} \leq 8,-y_{2} \leq-3,-y_{1} \leq-1
$$

Add constraints with weights 1,2 and 3 to obtain $0 y_{1}+0 y_{2} \leq-1 \Leftrightarrow 0 \leq-1 \Leftrightarrow$ a contradiction In general: consider $A^{\mathrm{T}} y \leq c$ or, equivalently, a set of inequalities $a_{i}^{\mathrm{T}} y \leq c_{i}$

Proving infeasibility

Multiply each inequality by $a_{i}^{\mathrm{T}} y \leq c_{i}$ by a nonnegative constant x_{i} and take the sum to obtain a consequence

$$
\begin{gathered}
\sum_{i=1}^{n}\left(a_{i}^{\mathrm{T}} y\right) x_{i} \leq \sum_{i=1}^{n} c_{i} x_{i} \text { with } x_{i} \geq 0 \\
\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{\mathrm{T}} y \leq c^{\mathrm{T}} x \text { with } x \geq 0 \\
(A x)^{\mathrm{T}} y \leq c^{\mathrm{T}} x \text { with } x \geq 0
\end{gathered}
$$

Contradiction arises only for $0^{\mathrm{T}} y \leq \alpha$ with $\alpha<0$
This happens iff $A x=0$ et $c^{\mathrm{T}} x<0 \rightarrow$ sufficient condition for infeasibility but ...

Farkas' Lemma

Theorem: $A^{\mathrm{T}} y \leq c$ is inconsistent if and only if there exists $x \geq 0$ such that $A x=0$ et $c^{\mathrm{T}} x<0$

In other words:
Exactly one of the following two systems is consistent

$$
\begin{gathered}
A x=0, x \geq 0 \text { and } c^{\mathrm{T}} x<0 \\
A^{\mathrm{T}} y \leq c
\end{gathered}
$$

Proof relies on topological notions (separation argument)
There always exists a linear proof for the infeasibility of a system of linear inequalities !

Bounds and optimality

Let \bar{y} a feasible solution (satisfying $A^{\mathrm{T}} y \leq c$)
$\rightarrow b^{\mathrm{T}} \bar{y}$ is a lower bound on the optimal value f^{*}
But how to
\diamond obtain upper bounds on the optimal value ?
\diamond prove that a feasible solution y^{*} is optimal ?
Those questions are linked since
proving that y^{*} is optimal
I
proving that $b^{\mathrm{T}} y^{*}$ is an upper bound on the optimal value f^{*}

Generating upper bounds

Consider

$$
\begin{aligned}
y_{1}+y_{2} \leq 1 & (a) \\
y_{2}+y_{3} \leq 2 & (b) \\
y_{3} \leq 3 & (c)
\end{aligned}
$$

Solution $y=(1,0,2)$ is feasible with objective value 7
\rightarrow lower bound $f^{*} \geq 7$
Let us combine constraints: $(a)+(b)+2(c)$
$y_{1}+y_{2}+y_{2}+y_{3}+2 y_{3} \leq 1+2+2 \times 3 \Leftrightarrow y_{1}+2 y_{2}+3 y_{3} \leq 9$
\rightarrow upper bound on the optimal value $f^{*} \leq 9$
Moreover, considering the feasible solution $y=(2,-1,3)$ with objective 9 provides a proof that $f^{*}=9$ is the optimal value of the problem

The best upper bound

Let us find the best upper bound using this procedure

$$
\max \sum_{i=1}^{m} b_{i} y_{i} \text { such that } \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j} \forall 1 \leq j \leq n
$$

Introducing again n (multiplying) variables $x_{i} \geq 0$ we get
$\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{i j} y_{i} \leq \sum_{j=1}^{n} x_{j} c_{j} \Leftrightarrow \sum_{i=1}^{m} y_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \leq \sum_{j=1}^{n} c_{j} x_{j}$

The best upper bound (continued)

This provides an upper bound on the objective equal to
$\sum_{j=1}^{n} c_{j} x_{j}$, assuming that x satisfies

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \forall 1 \leq i \leq m
$$

Minimizing now this upper bound
$\min \sum_{j=1}^{n} c_{j} x_{j}$ s.t. $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \forall 1 \leq i \leq m$ and $x_{i} \geq 0$
or

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

We find another linear optimization problem which is dual to our first problem!

Standard denominations

Using a similar reasoning, we could have started with the minimization problem and, looking for the best lower bound, derive the original maximization problem

In fact, it is customary in the literature to call $\min c^{\mathrm{T}} x$ such that $A x=b$ and $x \geq 0$
the primal (P) problem with optimal value p^{*} and

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \leq c
$$

the dual (D) problem with optimal value d^{*}

Duality properties

\diamond Weak duality: any feasible solution for the primal (resp. dual) provides an upper (resp. lower) bound for the dual (resp. primal) (immediate consequence of our dualizing procedure)
\diamond Inequality $b^{\mathrm{T}} y \leq c^{\mathrm{T}} x$ holds for any x, y such that $A x=b, x \geq 0$ and $A^{\mathrm{T}} y \leq c$ (corollary)
\diamond If the primal (resp. dual) is unbounded, the dual (resp. primal) must be infeasible (but the converse is not true !)

Duality properties (continued)

\diamond Strong duality: If x^{*} is an optimal solution for the primal, there exists an optimal solution y^{*} for the dual such that $c^{\mathrm{T}} x^{*}=b^{\mathrm{T}} y^{*}$ (in other words: $p^{*}=d^{*}$)
\diamond This property (and its dual) is not trivial, and is a generalization of the Farkas Lemma \rightarrow it is always possible to exhibit a proof that a given solution is optimal!
\diamond However, there are cases where both problems are infeasible: $c=(-10)^{\mathrm{T}}, b=-1$ et $A=\left(\begin{array}{ll}0 & 1\end{array}\right)$

Other properties and consequences

	$d^{*}=-\infty$	d^{*} finite	$d^{*}=+\infty$
$p^{*}=-\infty$	Possible, $p^{*}=d^{*}$	Impossible	Impossible
p^{*} finite	Impossible	Possible, $p^{*}=d^{*}$	Impossible
$p^{*}=+\infty$	Possible, $p^{*} \neq d^{*}$	Impossible	Possible, $p^{*}=d^{*}$

\diamond One can also write down the dual to a general linear optimization problem
\diamond Dual variables can often be interpreted as prices on primal constraints
\diamond One can indifferently solve the primal or the dual to find the optimal objective value
\diamond Primal-dual algorithms solve both problems simultaneously

Convex optimization: plan

Why
a. Nice case: linear optimization
b. Algorithms and guarantees

What
a. Convex problems: definitions and examples

How

a. Algorithms: interior-point methods
b. Guarantees: duality
c. Framework: conic optimization

Conic optimization

Motivation

Objective: generalize linear optimization

$$
\begin{gathered}
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \leq c \\
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
\end{gathered}
$$

while trying to preserve the nice duality properties
\rightarrow change as little as possible

Idea: generalize the inequalities \leq and \geq

What are properties of nice inequalities ?

Generalizing \geq and \leq

Let $K \subseteq \mathbb{R}^{n}$. Define

$$
a \succeq_{K} 0 \Leftrightarrow a \in K
$$

We also have

$$
a \succeq_{K} b \Leftrightarrow a-b \succeq_{K} 0 \Leftrightarrow a-b \in K
$$

as well as

$$
a \preceq_{K} b \Leftrightarrow b \succeq_{K} a \Leftrightarrow b-a \succeq_{K} 0 \Leftrightarrow b-a \in K
$$

Let us also impose two sensible properties

$$
\begin{gathered}
a \succeq_{K} 0 \Rightarrow \lambda a \succeq_{K} 0 \forall \lambda \geq 0(K \text { is a cone }) \\
a \succeq_{K} 0 \text { and } b \succeq_{K} 0 \Rightarrow a+b \succeq_{K} 0 \\
(K \text { is closed under addition })
\end{gathered}
$$

Properties of admissible sets K

$\diamond K$ is a convex set!
\diamond In fact, if K is a cone, we have

$$
K \text { is closed under addition } \Leftrightarrow K \text { is convex }
$$

Conic optimization
We can then generalize

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \leq c
$$

to

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \preceq_{K} c
$$

\Rightarrow This problem is convex
The standard linear cases corresponds to $K=\mathbb{R}_{+}^{n}$

More requirements for K

$\diamond x \succeq 0$ and $x \preceq 0 \Rightarrow x=0$ which means $K \cap(-K)=\{0\}$ (the cone is pointed)
\diamond We define the strict inequality by $a \succ 0 \Leftrightarrow a \in \operatorname{int} K$ (and $a \succ b$ iff $a-b \in \operatorname{int} K$) Hence we require int $K \neq \emptyset$ (the cone is solid)
\diamond Finally, we would like to be able to take limits: If $\left\{x_{i}\right\}_{i \rightarrow \infty}$ with $x_{i} \succeq_{K} 0 \forall i$, then $\lim _{i \rightarrow \infty} x_{i}=\bar{x} \Rightarrow \bar{x} \succeq_{K} 0$ which is equivalent to saying that K is closed
Example: second-order (or Lorentz or ice-cream) cone

$$
\mathbb{L}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \leq x_{0}\right\}
$$

Another example: semidefinite cone $K=\mathbb{S}_{+}^{n}$ (symmetric positive semidefinite matrices)

Back to conic optimization
A convex cone $K \subseteq \mathbb{R}^{n}$ that is solid, pointed and closed will be called a proper cone
In the following, we will always consider proper cones We obtain

$$
\max _{y \in \mathbb{R}^{m}} b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \preceq_{K} c
$$

or, equivalently,

$$
\max _{y \in \mathbb{R}^{m}} b^{\mathrm{T}} y \text { such that } c-A^{\mathrm{T}} y \in K
$$

with problem data $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$

Combining several cones

Considering several conic constraints

$$
A_{1}^{\mathrm{T}} y \preceq_{K_{1}} c_{1} \text { and } A_{2}^{\mathrm{T}} y \preceq_{K_{2}} c_{2}
$$

which are equivalent to

$$
c_{1}-A_{1}^{\mathrm{T}} y \in K_{1} \text { and } c_{2}-A_{2}^{\mathrm{T}} y \in K_{2}
$$

one introduces the product cone $K=K_{1} \times K_{2}$ to write

$$
\begin{gathered}
\left(c_{1}-A_{1}^{\mathrm{T}} y, c_{2}-A_{2}^{\mathrm{T}} y\right) \in K_{1} \times K_{2} \\
\Leftrightarrow\binom{c_{1}}{c_{2}}-\binom{A_{1}^{\mathrm{T}}}{A_{2}^{\mathrm{T}}} \in K_{1} \times K_{2} \Leftrightarrow\binom{c_{1}}{c_{2}}-\binom{A_{1}^{\mathrm{T}}}{A_{2}^{\mathrm{T}}} \succeq_{K_{1} \times K_{2}} 0
\end{gathered}
$$

If K_{1} and K_{2} are proper, $K_{1} \times K_{2}$ is also proper

Equivalence with convex optimization

Conic optimization is clearly a special case of convex optimization: what about the reverse statement?

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } x \in X \subseteq \mathbb{R}^{n}
$$

\diamond The objective of a convex problem can be assumed w.l.o.g. to be linear w.l.o.g.: $f(x)=c^{\mathrm{T}} x$
\diamond The feasible region of a convex problem can be assumed w.l.o.g. to be in the conic standard format:

$$
X=\{x \in K \text { and } A x=b\}
$$

\Rightarrow conic optimization equivalent to convex optimization
Conic format is a standard form for convex optimization

A linear objective?

$\min _{x \in \mathbb{R}^{n}} f(x)$ such that $x \in X \subseteq \mathbb{R}^{n}$

$$
\Uparrow
$$

$\min _{(x) \in \mathbb{R}^{n} \times \mathbb{R}} t$ such that $x \in X$ and $(x, t) \in \operatorname{epi} f$ $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$

$$
\uparrow
$$

$\min _{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}} t$ such that $x \in X$ and $f(x) \leq t$ $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$
\Rightarrow equivalent problem with linear objective

Conic constraints ?

$$
K_{X}=\operatorname{cl}\left\{(x, u) \in \mathbb{R}^{n} \times \mathbb{R}_{++} \left\lvert\, \frac{x}{u} \in X\right.\right\}
$$

is called the (closed) conic hull of X
We have that K_{X} is a closed convex cone and

$$
x \in X \Leftrightarrow(x, u) \in K_{X} \text { and } u=1
$$

ϑ
$\min _{(x, u) \in \mathbb{R}^{n} \times \mathbb{R}^{2}} c^{\mathrm{T}} x$ such that $(x, u) \succeq_{K_{X}} 0$ and $u=1$
\Rightarrow equivalent problem with a conic constraint

Duality properties

Since we generalized

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \leq c
$$

to

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \preceq_{K} c
$$

it is tempting to generalize

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

to

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \succeq_{K} 0
$$

But this is not the right primal-dual pair !

Dualizing a conic problem

Remembering the dualizing procedure for linear optimization, a crucial point lied in the ability to derive consequences by taking nonnegative linear combinations of inequalities
Consider now the following statement

$$
\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right) \succeq_{\mathbb{L}^{2}}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is true since $(-1)^{2}+(-1)^{2} \leq 2^{2}$
Multiplying the first line by 0,1 and the next two by 1 , we get $0.1 \times 2-1 \times 1-1 \times 1 \geq 0$ or $-1.8 \geq 0$: \Rightarrow this is a contradiction!

We obtained a contraction although the original system of inequalities was consistent \Rightarrow something is wrong! Some nonnegative linear combinations do not work!

Rescuing duality

Starting with

$$
x \in K \subseteq \mathbb{R}^{n} \Leftrightarrow x \succeq_{K} 0
$$

we identify all vectors (of multipliers) $z \in \mathbb{R}^{n}$ such that the consequence $z^{\mathrm{T}} x \geq 0$ holds as soon as $x \succeq_{K} 0$

Hence we define the set

$$
K^{*}=\left\{z \in \mathbb{R}^{n} \text { such that } x^{\mathrm{T}} z \geq 0 \forall x \in K\right\}
$$

The dual cone

$$
K^{*}=\left\{z \in \mathbb{R}^{n} \text { such that } x^{\mathrm{T}} z \geq 0 \forall x \in K\right\}
$$

\diamond For any $x \in K$ and $z \in K^{*}$, we have $z^{\mathrm{T}} x \geq 0$
$\diamond K^{*}$ is a convex cone, called the dual cone of K
$\diamond K^{*}$ is always closed, and if K is closed, $\left(K^{*}\right)^{*}=K$
$\diamond K$ is pointed (resp. solid) $\Rightarrow K^{*}$ is solid (resp. pointed)
\diamond Cartesian products: $\left(K_{1} \times K_{2}\right)^{*}=K_{1}^{*} \times K_{2}^{*}$
$\diamond\left(\mathbb{R}_{+}^{n}\right)^{*}=\mathbb{R}_{+}^{n},\left(\mathbb{L}^{n}\right)^{*}=\mathbb{L}^{n},\left(\mathbb{S}_{+}^{n}\right)^{*}=\mathbb{S}_{+}^{n}:$ these cones are self-dual
\diamond But there exists (many) cones that are not self-dual

Bounds and optimality

Let \bar{y} a feasible solution (satisfying $A^{\mathrm{T}} y \preceq_{K} c$)
$\rightarrow b^{\mathrm{T}} \bar{y}$ is a lower bound on the optimal value f^{*}
But how to
\diamond obtain upper bounds on the optimal value?
\diamond prove that a feasible solution y^{*} is optimal ?
Those questions are linked since
proving that y^{*} is optimal
$\mathbb{1}$
proving that $b^{\mathrm{T}} y^{*}$ is an upper bound on the optimal value f^{*}

Generating upper bounds

Consider
$\max 2 y_{1}+3 y_{2}+2 y_{3}$ such that $\left(\begin{array}{c}y_{1}+y_{2} \\ y_{2}+y_{3} \\ y_{3}\end{array}\right) \preceq_{\mathbb{L}^{2}}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
Solution $y=(-2,1,2)$ is feasible with objective value 3
\rightarrow lower bound $f^{*} \geq 3$ (since $(2,-1,1) \in \mathbb{L}^{2}$)
Let us combine constraints: $2(a)+(b)+(c)$
(we have the right to do so since $(2,1,1) \in\left(\mathbb{L}^{2}\right)^{*}=\mathbb{L}^{2}$)
$2 y_{1}+2 y_{2}+y_{2}+y_{3}+y_{3} \leq 2+2+3 \Leftrightarrow 2 y_{1}+3 y_{2}+2 y_{3} \leq 7$
\rightarrow upper bound on the optimal value $f^{*} \leq 7$

The best upper bound

Let us find the best upper bound using this procedure

$$
\max \sum_{i=1}^{m} b_{i} y_{i} \text { such that }\left(\sum_{i=1}^{m} a_{i j} y_{i}\right)_{1 \leq j \leq n} \preceq_{K}\left(c_{j}\right)_{1 \leq j \leq n}
$$

Introducing again n (multiplying) variables x_{i}
we get
$\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{i j} y_{i} \leq \sum_{j=1}^{n} x_{j} c_{j} \Leftrightarrow \sum_{i=1}^{m} y_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \leq \sum_{j=1}^{n} c_{j} x_{j}$
under the assumption that $x \in K^{*}$

The best upper bound (continued)

This provides an upper bound on the objective equal to
$\sum_{j=1}^{n} c_{j} x_{j}$, assuming that x satisfies

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \forall 1 \leq i \leq m
$$

Minimizing now this upper bound
$\min \sum_{j=1}^{n} c_{j} x_{j}$ s.t. $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \forall 1 \leq i \leq m$ and $x \in K^{*}$
or
$\min c^{\mathrm{T}} x$ such that $A x=b$ and $x \succeq_{K^{*}} 0$
We find another conic optimization problem which is dual to our first problem!

Duality for conic optimization

We have completely mimicked the dualizing procedure used for linear optimization
The problem of finding the best upper bound

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

becomes thus

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \succeq_{K^{*}} 0
$$

The correct primal-dual pair is thus

$$
\begin{gathered}
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \preceq_{K} c \\
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \succeq_{K^{*}} 0
\end{gathered}
$$

Primal-dual pair

Again, for historical reasons, the min problem is called the primal. Since our cones are closed, $\left(K^{*}\right)^{*}=K^{*}$, which means we can write the primal conic problem

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \succeq_{K} 0
$$

and the dual conic problem

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y \preceq_{K^{*}} c
$$

\diamond Very symmetrical formulation
\diamond Computing the dual essentially amounts to finding K^{*}
\diamond All nonlinearities are confined to the cones K and K^{*}

Duality properties

\diamond Weak duality: any feasible solution for the primal (resp. dual) provides an upper (resp. lower) bound for the dual (resp. primal) (immediate consequence of our dualizing procedure)
\diamond Inequality $b^{\mathrm{T}} y \leq c^{\mathrm{T}} x$ holds for any x, y such that $A x=b, x \succeq_{K} 0$ and $A^{\mathrm{T}} y \preceq_{K^{*}} c$ (corollary)
\diamond If the primal (resp. dual) is unbounded, the dual (resp. primal) must be infeasible (but the converse is not true!)

Completely similar to the situation for linear optimization

Duality properties (continued)

What about strong duality?
If y^{*} is an optimal solution for the dual, does there exist an optimal solution x^{*} for the primal such that $c^{\mathrm{T}} x^{*}=b^{\mathrm{T}} y^{*}$ (in other words: $p^{*}=d^{*}$) ?
Consider $K=\mathbb{L}^{2}$ with
$A=\left(\begin{array}{ccc}-1 & 0 & -1 \\ 0 & -1 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & -1\end{array}\right)^{\mathrm{T}}$ and $c=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{\mathrm{T}}$
We can easily check that
\diamond the primal is infeasible
\diamond the dual is bounded and solvable
\Rightarrow strong duality does not hold for conic optimization ...

Other troublesome situations

Let $\lambda \in \mathbb{R}_{+}$: consider
$\min \lambda x_{3}-2 x_{4}$ s.t. $\quad\left(\begin{array}{lll}x_{1} & x_{4} & x_{5} \\ x_{4} & x_{2} & x_{6} \\ x_{5} & x_{6} & x_{3}\end{array}\right) \succeq_{\mathbb{S}_{+}^{3}} 0,\binom{x_{3}+x_{4}}{x_{2}}=\binom{1}{0}$
In this case, $p^{*}=\lambda$ but $d^{*}=2$: duality gap!

$$
\min x_{1} \text { such that } x_{3}=1 \text { and }\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq_{\mathbb{S}_{+}^{2}} 0
$$

In this case, $p^{*}=0$ but the problem is unsolvable!
In all cases, one can identify the cause for our troubles: the affine subspace defined by the linear constraints is tangent to the cone (it does not intersect its interior)

Rescuing strong duality

A feasible solution to a conic (primal or dual) problem is strictly feasible iff it belongs to the interior of the cone In other words, we must have $A x=b$ and $x \succ_{K} 0$ for the primal and $A^{\mathrm{T}} y \prec_{K^{*}} c$ for the dual

Strong duality: If the dual problem admits a strictly feasible solution, we have either
\diamond an unbounded dual, in which case $d^{*}=+\infty=p^{*}$ and the primal is infeasible
\diamond a bounded dual, in which case the primal is solvable with $p^{*}=d^{*}$ (hence there exists at least one feasible primal solution x^{*} such that $c^{\mathrm{T}} x^{*}=p^{*}=d^{*}$)

Strong duality (continued)

\diamond If the primal problem admits a strictly feasible solution, we have either

- an unbounded primal, in which case $p^{*}=-\infty=$ d^{*} and the dual is infeasible
- a bounded primal, in which case the dual is solvable with $d^{*}=p^{*}$ (hence there exists at least one feasible dual solution y^{*} such that $b^{\mathrm{T}} y^{*}=d^{*}=p^{*}$)
\diamond The first case is a mere consequence of weak duality
\diamond Finally, when both problems admit a strictly feasible solution, both problems are solvable and we have

$$
c^{\mathrm{T}} x^{*}=p^{*}=d^{*}=b^{\mathrm{T}} y^{*}
$$

Conic modelling with three cones

A first cone: \mathbb{R}_{+}^{n}
Standard meaning for inequalities:

$$
\succeq_{\mathbb{R}_{+}^{n}} \Leftrightarrow \geq
$$

\Rightarrow linear optimization
But we can also model some nonlinearities!

$$
\begin{gathered}
\left|x_{1}-x_{2}\right| \leq 1 \quad \Leftrightarrow \quad-1 \leq x_{1}-x_{2} \leq 1 \\
\left|x_{1}-x_{2}\right| \leq t \quad \Leftrightarrow \quad\binom{x_{1}-x_{2}-t}{x_{2}-x_{1}-t} \leq\binom{ 0}{0}
\end{gathered}
$$

Terminology: conic representability

\diamond Set S is K-representable if can be expressed as feasible region of conic problem using cone K
\diamond Closed under intersection and Cartesian product
\diamond Function f is K-representable iff its epigraph is K-representable
\diamond Closed under sum, positive multiplication and max
\diamond What we can do in practice: minimize a K-representable function over a K-representable set where K is a product of cones $\mathbb{R}_{+}^{n}, \mathbb{L}^{n}, \mathbb{S}_{+}^{n}$ and \mathbb{R}^{n}

A simple example

Consider set

$$
S=\left\{x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

\rightarrow can be modelled as

$$
\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{L}^{2} \text { and } x_{0}=1
$$

$\Rightarrow S$ is \mathbb{L}^{2}-representable
but an additional variable x_{0} was needed
\Rightarrow formally, $S \subseteq \mathbb{R}^{n}$ is K-representable
iff there exists a set $T \subseteq \mathbb{R}^{n+m}$ such that
a. T is K-representable
b. $x \in S$ iff there exists $t \in \mathbb{R}^{m}$ such that $(x, t) \in T$
(i.e. S is the projection of T on \mathbb{R}^{n})

Back to \mathbb{R}_{+}^{n}

\diamond Polyhedrons and polytopes are \mathbb{R}_{+}^{n}-representable
\diamond Hyperplanes and half-planes are \mathbb{R}_{+}^{n}-representable
\diamond Affine functions $x \mapsto a^{\mathrm{T}} x+b$ are \mathbb{R}_{+}^{n}-representable
\diamond Absolute values $x \mapsto\left|a^{\mathrm{T}} x+b\right|$ are \mathbb{R}_{+}^{n}-representable
\diamond Convex piecewise linear function are \mathbb{R}_{+}^{n}-representable
Two potential issues with \mathbb{R}_{+}^{n} :
a. free variables in the primal $\rightarrow x=x^{+}-x^{-}$
b. equalities in the dual $\rightarrow a^{\mathrm{T}} x \leq c$ and $a^{\mathrm{T}} x \geq c$

But these are wrong solutions !

What use is $K=\mathbb{R}^{n}$?
$\diamond K=\mathbb{R}^{n}$ and $K^{*}=\{0\}$
\diamond Can be used to introduce free variables in the primal $A x=b, x \succeq_{K} 0$

$$
x \succeq_{\mathbb{R}^{n}} 0 \quad \Leftrightarrow \quad x \text { is free }
$$

\diamond or equalities in the dual $A^{\mathrm{T}} y \preceq_{K^{*}} c$

$$
A^{\mathrm{T}} y \preceq_{\{0\}} c \quad \Leftrightarrow \quad A^{\mathrm{T}} y=c
$$

in combination with other cones
$\diamond \mathbb{R}^{n}$ in dual or $\{0\}$ is primal is useless!

What use is \mathbb{L}^{n} ?

everything both convex and quadratic ...

$\diamond f: x \mapsto\|x\|, f: x \mapsto\|x\|^{2}$ and $f:(x, z) \mapsto \frac{\|x\|^{2}}{z}$
$\diamond B_{r}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq r\right\}$
$\diamond\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid x y \geq 1\right\}$
$\diamond\left\{(x, y, z) \in \mathbb{R}_{+}^{2} \times \mathbb{R} \mid x y \geq z^{2}\right\}$
$\diamond\left\{(a, b, c, d) \in \mathbb{R}_{+}^{4} \mid a b c d \geq 1\right\}$
$\diamond\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \times \mid x^{\mathrm{T}} Q x \leq t\right\}$ with $Q \in \mathbb{S}_{+}^{n}$
\Rightarrow second-order cone optimization
Very useful trick: $x y \geq z^{2} \Leftrightarrow(x+y, x-y, 2 z) \in \mathbb{L}^{2}$
Unfortunately, $(x, y) \mapsto \frac{x}{y}$ is not convex!

What use is \mathbb{S}_{+}^{n} ?

Preliminary remark: for the purpose of conic optimization, members of \mathbb{S}^{n} are viewed as vectors in $\mathbb{R}^{n \times n}$
What about constraint $A x=b$?

$$
A x=b \Leftrightarrow a_{i}^{\mathrm{T}} x=b_{i} \forall i
$$

$a_{i}^{\mathrm{T}} x$ can be views as the inner product between a_{i} and x

Let $X, Y \in \mathbb{S}^{n}$: their inner product is

$$
X \bullet Y=\sum_{1 \leq i, j \leq n} X_{i, j} Y_{i, j}=\operatorname{trace}(X Y)
$$

\rightarrow replace $a_{i}^{\mathrm{T}} x$ by $A_{i} \bullet X$ with $A_{i}, X \in \mathbb{S}^{n}$

Standard format for semidefinite optimization

The primal becomes $\min C \bullet X$ such that $A_{i} \bullet X=b_{i} \forall 1 \leq i \leq m$ and $X \succeq 0$ In the conic dual, we have

$$
A^{\mathrm{T}} y=\sum a_{i} y_{i}, \text { an application from } \mathbb{R}^{m} \mapsto \mathbb{R}^{n}
$$

\Rightarrow with the \mathbb{S}_{+}^{n} cone, we have

$$
\mathcal{A}(y)=\sum A_{i} y_{i}, \text { an application from } \mathbb{R}^{m} \mapsto \mathbb{S}^{n}
$$

which gives for the dual

$$
\max b^{\mathrm{T}} y \text { such that } \sum_{i=1}^{m} A_{i} y_{i} \preceq C
$$

What use is \mathbb{S}_{+}^{n} (continued) ?
$\diamond \mathbb{S}_{+}^{n}$ generalizes both \mathbb{R}_{+}^{n} and \mathbb{L}^{n} (arrow matrices) (however, using \mathbb{R}_{+}^{n} and \mathbb{L}^{n} is more efficient)
$\diamond f: X \mapsto \lambda_{\max }(X)$ and $f: X \mapsto-\lambda_{\min }(X)$
$\diamond f: X \mapsto \max _{i}\left|\lambda_{i}\right|(X)$ (spectral norm)
\diamond Describing ellipsoids $\left\{x \in \mathbb{R}^{n} \mid(x-c)^{\mathrm{T}} E(x-c) \leq 1\right\}$ with $E \succeq 0$
\diamond Matrix constraint $X X^{\mathrm{T}} \preceq Y$ using the Schur Complement lemma When $A \succ 0: \quad\left(\begin{array}{cc}A & B \\ B^{\mathrm{T}} & C\end{array}\right) \succeq 0 \Leftrightarrow C-B^{\mathrm{T}} A^{-1} B \succeq 0$
\diamond And more ...

Primal-dual algorithms

Advantage of conic optimization over standard convex optimization is (symmetric) duality However previous approach does not seem to use it !
\Rightarrow a better approach that uses duality is needed
The linear case (again)
Introduce additional vector of variables $s \in \mathbb{R}^{n}$

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

and

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y+s=c \text { and } s \geq 0
$$

Primal-dual optimality conditions

$$
\min c^{\mathrm{T}} x \text { such that } A x=b \text { and } x \geq 0
$$

and

$$
\max b^{\mathrm{T}} y \text { such that } A^{\mathrm{T}} y+s=c \text { and } s \geq 0
$$

Duality tells us x^{*} and y^{*} are optimal iff they satisfy

$$
A x=, x \geq 0, A^{\mathrm{T}} y+s=c, s \geq 0 \text { and } c^{\mathrm{T}} x=b^{\mathrm{T}} y
$$

or

$$
A x=b, x \geq 0, A^{\mathrm{T}} y+s=c, s \geq 0 \text { and } x_{i} s_{i}=0 \forall i
$$

Both problems are handled simultaneously

Perturbed optimality conditions

Introducing a logarithmic barrier term in both problems

$$
\min c^{\mathrm{T}} x-\mu \sum_{i} \log x_{i} \text { such that } A x=b \text { and } x>0
$$

$\max b^{\mathrm{T}} y+\mu \sum_{i} \log s_{i}$ such that $A^{\mathrm{T}} y+s=c$ and $s>0$
one can derive new perturbed optimality conditions

$$
A x=b, x \geq 0, A^{\mathrm{T}} y+s=c, s \geq 0 \text { and } x_{i} s_{i}=\mu \forall i
$$

Again, both problems are handled simultaneously

Primal-dual path following algorithm

Same principle as in the general case:
\diamond Follow the central path
\diamond Not wandering too far from it
\diamond Until (primal-dual) optimality
\diamond Using a polynomial number of iterations
Complexity is also the same:

$$
\mathcal{O}\left(\sqrt{n} \log \frac{1}{\varepsilon}\right) \text { iterations to get } \varepsilon \text { accuracy }
$$

But this scheme is very efficient in practice (long steps) (all practical implementations use it nowadays)

What about other convex/conic problems ?

This primal-dual scheme is only generalizable to cones that are
a. self-dual $\left(K=K^{*}\right)$
b. homogeneous
(linear automorphism group acts transitively on int K)
([Nesterov \& Todd 97])
There exists a complete classification of these cones : in the real case, they are ...

$$
\mathbb{R}_{+}^{n}, \quad \mathbb{L}^{n} \quad \text { and } \quad \mathbb{S}_{+}^{n}
$$

and their Cartesian products!

Complexity

Complexity for a product of $\mathbb{R}_{+}^{n}, \mathbb{L}^{n}, \mathbb{S}_{+}^{n}$
$\mathcal{O}\left(\sqrt{\nu} \log \frac{1}{\varepsilon}\right)$ iterations to get ε accuracy
where ν is the sum of
$\diamond n$ for \mathbb{R}_{+}^{n} (see above) (barrier term is $-\sum \log x_{i}$)
$\diamond n$ for \mathbb{S}_{+}^{n} (although there are $n(n+1) / 2$ variables) (barrier term is $-\log \operatorname{det} X=-\sum \log \lambda_{i}$)
$\diamond 2$ for \mathbb{L}^{n} (independently of $n!$)
(barrier term is $-\log \left(x_{0}^{2}-\sum x_{i}^{2}\right) ;$ no $-\log x_{0}$ term!)
\rightarrow these problems are solved very efficiently in practice

More applications

Using semidefinite optimization:
Positive polynomials
\diamond Single variable case: exact formulation
\diamond Test positivity and minimize on an interval
\diamond Multiple variable case: relaxation only
The MAX-CUT relaxation
\diamond Relaxation of a difficult discrete problem
\diamond With a quality guarantee (0.878)

References

Convex analysis, optimization and modelling
\diamond Convex Analysis, Rockafellar, Princeton University Press, 1980
\diamond Convex optimization, Boyd and Vandenberghe, Cambridge University Press, 2004 (on the web)

Conic convex modelling
\diamond Lectures on Modern Convex Optimization, Analysis, Algorithms, and Engineering Applications, BEN-TAL and Nemirovski,
MPS/SIAM Series on Optimization, 2001

Interior-point methods (linear)
\diamond Primal-Dual Interior-Point Methods, Wright SIAM, 1997
\diamond Theory and Algorithms for Linear Optimization, Roos, Terlaky, Vial, John Wiley \& Sons, 1997

Interior-point methods (convex)
\diamond Interior-point polynomial algorithms in convex programming, Nesterov \& Nemirovski, SIAM, 1994
\diamond A Mathematical View of Interior-Point Methods in Convex Optimization, Renegar, MPS/SIAM Series on Optimization, 2001

Semidefinite optimization applications

\diamond Handbook of Semidefinite Programming, Wolkowicz, Saigal, Vandenberghe (eds.) Kluwer, 2000
\diamond Semidefinite programming, Boyd, VANDENBERGHE, SIAM Review 38 (1), 1996

Software: a few choices among many others
\diamond Linear \& second-order cone: MOSEK (commercial)
\diamond Linear, sec.-ord. \& semidefinite: SeDuMi (free)
\diamond Modeling languages: AMPL, YALMIP

Thank you for your attention

Does linear optimization exist at all ?

Let us only mention the following not so well-known theorem, due to Dr. Addock Prilfirst
Theorem
The objective function of any linear program is constant on its feasible region
Proof

$$
\left\{\min c^{\mathrm{T}} x \mid A x=b, x \geq 0\right\}=\left\{\max b^{\mathrm{T}} y \mid A^{\mathrm{T}} y \leq c\right\}
$$

$\geq\left\{\min b^{\mathrm{T}} y \mid A^{\mathrm{T}} y \leq c\right\}=\left\{\max c^{\mathrm{T}} x \mid A x=b, x \leq 0\right\}$
$\geq\left\{\min c^{\mathrm{T}} x \mid A x=b x \leq 0\right\}=\left\{\max b^{\mathrm{T}} y \mid A^{\mathrm{T}} y \geq c\right\}$
$\geq\left\{\min b^{\mathrm{T}} y \mid A^{\mathrm{T}} y \geq c\right\}=\left\{\max c^{\mathrm{T}} x \mid A x=b, x \geq 0\right\}$
$\geq\left\{\min c^{\mathrm{T}} x \mid A x=b, x \geq 0\right\}$

