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Integration Requirements for Cross-
Disciplinary Uncertainty Quantification 
turn Workflows into a Big-loop and Big-data 
Exercise?
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Abstract

• Reservoir model validation and uncertainty quantification workflows have 
significantly developed over recent years. Different optimization approaches were 
introduced and requirements for consistent uncertainty quantification workflows 
changed. Most of all integration requirements across multiple domains (big-loop) 
increase the complexity of workflow designs and amount of data (big-data) 
processed in the course of workflow execution. This triggers new requirements for 
the choice of optimization and uncertainty quantification methods in order to add 
value to decision processes in reservoir management. In this session we will 
discuss an overview on existing methods and perspectives for new methodologies 
based on parameter screening, proxy-based as well as analytical sensitivity 
approaches. 
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Modeling Consistency – A Polemic View
The contouring seismic 
model

The detailed geological 
model

The creative simulation model

The uncertainty model
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Modeling Consistency Challenges

What have we learnt from 

history matching? 

How do we incorporate results into the 

detailed model?

How do we ensure next modeling pass is better?

What are the pros and cons of different history matching 

approaches on behalf of providing information or 

models to ‘close-the-loop’?

What should be best practice based on 

current technology?

What is best practice in 

5 years’ time?
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Shared Earth Model

• The shared earth model is important in four ways: 

– It is a central part of the reservoir-characterization team’s work 

– It ensures cross-disciplinary data consistency 

– It allows each discipline to measure how its own interpretation fits 
with other specialty models 

– It leads to a more-consistent global model 
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Shared Earth Model

Basic 
interpretation

Premodeling 
organization

Data 
preparation 

and 
formatting

Exploratory 
data analysis

3D structural 
model

3D 
sedimentary 

model

3D 
petrophysical 

modeling

Upscaled 3D 
dynamic 
model

Flow 
simulation

Model 
assumptions 
iteration and 

updating

The 10 Basic 
Reservoir 

Characterization 
Steps
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Greenfield:

Uncertainty identification

Risk quantification and mitigation

Brownfield: 

Value optimization

Good Design

Poor Design Do Nothing

Production 
Strategy

Infill 
Drilling

Debottle-
necking

Appraisal

Concept

Design

Optimization

Many Revisions of the Shared Earth Model
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Challenge – Cross-disciplinary Modeling Consistency

Resolve the common challenge of having 

• geo models, 

• reservoir simulations models and 

• uncertainty estimates (p10, p50 and p90s etc) 

out of sync after history matching projects

Geological 

Model Uncertainty 
Model

Reservoir 
Simulation 

Model
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After successful history matching:

Is the model realization plausible 
and can be accounted for 
geologically?

Rigorous 
Analysis 

Fundamental 
Interpretations

-
Geo Modeling

Align 
Interpretations 

with HM 
Learnings

Static 
Data

Big ‘Asset Loop’

Manual Intervention 
Required

Workflow Framing

Geo 
Realizations  

Simulation 
Modeling

Continue History 
Matching?

Optimization 
Algorithm

YesNo
Model CollectionForecasting

Dynamic 
Data

Run Simulation 
Model

Compare Field 

Behavior

Compare Field 
and Sim Model 

Behavior

‘AHM Loop’

Automation 
Possible
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Workflow Design

Model parameters

Geo realizations

1. Model selection

2. History Matching

3. Analysis

Prediction

Φ, k,..

Φ, k,..Φ, k,..Φ, k,..

Feedback Loop
Φ, k,..
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Model Selection – Dimensional Reduction

• Screening of geological models based on, e.g., 

– Volumetric parameters

– Connectivity

– Field production rates, etc.

• Apply projection and clustering techniques for selecting set of distinct models.

• Combine existing and newly developed software components in an integrated 
workflow. 

Input:
Geological

Geophysical
Engineering

Output:
Response 
prediction

Model:
Basin
Flow

Facility

High dimensional Low dimensional
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History Matching – Optimization Techniques

A variety of history matching optimization 
approaches with a particular requirements and 
target areas are available. 

The future focus should be on the potential for 
successfully aligning the geo and reservoir 
simulation models

Criteria, e.g.:

• Reliability

• Universality

• Efficiency

• Automation

• Data storage requirements

• Feedback algorithms
History matching supporting 

modelling consistency
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Principal Component Analysis

Optimization Approach

Ref: SDR
Geologically constrained history matching with PCA
Michael D. Prange, Thomas P. Dombrowsky and William J. Bailey
first break volume 30, November 2012
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Principal Component Analysis

• (Linear) Principal Component Analysis (PCA) is 
often mentioned and discussed in connection with: 

– Multi-Dimensional Scaling (MDS)

– Proper Orthogonal Decomposition (POD)

– Karhunen–Loève Transform (K-LT)

• The main scope is to find key features in a number 
of models, i.e., components which can be included 
in an optimization approach, e.g., history matching.

Source: SDR
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Example: PCA Dimension Reduction

This is a cartoon representing just one point –
model ‘A’ – in a high-dimensional model space. 

Source: SDR
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How: Model Space � Feature Space

Correlated points in model space

Compute Covariance Matrix

• Eigenvectors are axes of ellipse

• Eigenvalues are axis lengths

These axes define a new (optimal) 
rotated coordinate system

Axes of small variation are crushed to zero

• Dimension reduction

• Points are projected onto remaining axes

Axes of large variation are unaffected

Step 1
“Model Space”

Step 2
After “crushing” we enter 
“Feature Space”

Source: SDR
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How: PCA Retains Structure

Example:

The essential structure appears to have been 
retained

Model Space A projection of Model Space into Feature Space

Source: SDR
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How: Some Structure Still Visible

Example:

Pre-compute “information loss” 
and evaluate degree to reduction

Source: SDR
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History Matching Loop using PCA

• Geological Concept

• Realization

• Dimensional Reduction

• History Matching

– Parameterization

– Small-scale 
Optimizer

Φ, k,..

Simulator

Φ, k,..

⋅a ⋅+ b ⋅+ c

',',' cba

Φ, k,..

Optimizer
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Example: History Matching – Principal Component Analysis

• Generate a number of  realizations

• Find a projection from model to 
feature space which allows to 
decompose features

• Keep relevant features and reduce 
number of components
→ “dimension reduction”

• Use principal components in a history 
matching workflow

• Note: 
Key geological features are 
preserved; consistency is kept

Model Space

Feature Space

PCA Analysis
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• Benchmark case
prepared by TNO
cf. Peters et al. SPE119094

• Scope

– Closed loop production
optimization workflow

• Delivery

– 100+ realizations

– 10 injectors, 20 producers

– Production data for 10 years

– Well constraints for future production 
scenarios

21

Application to Brugge Model

22

Optimization To Reduce Misfit

Downhill Simplex used

Source: SDR
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Validation

Source: SDR

• PCA approach was capable to find a model which reproduces well production data.

• All implemented model changes conform with the geological information provided

24

Summary:  PCA Application

• Well-by-well match

• All conform with the geological 
information provided

• 20 producers
• 10 injectors
• 3 formations

Analysis

• Investigate modifications, differences, trends across multiple models. 
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Adjoints

Deterministic Approach
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Deterministic Solution – e.g., Adjoint Approach 

• The adjoint system is solved with the sole aim of finding a deterministic  solutions to 
the problem

• The mismatch is quantified by an objective function, Q

• Minimize  Q; calculate  
��(�)
�� on a cell-by-cell basis.

• Regression step

• Optimization, e.g., Levenberg-Marquardt 
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SPE 164337: Schulze-Riegert et al.,2013 
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Application/Results – History Matching

• A semi-synthetic reservoir model 

• Base case model chosen from 81 
realisations provided.

• Fluid phases present = Oil and Water

• Model grid size = 226 x 59 x 21

• 7 injectors consisting of 5 horizontal 
and 2 vertical wells and 16  horizontal 
producers 

• Reservoir drive mechanism = Solution 
gas (depletion) drive

• Approximately 8 years of history

Watt Field Description

28

History Matching Result – Field Level
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Results Well Oil Production Rate – Selected Profiles

30

Results Well Water Production Rate – Selected Profiles
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Results Well Bottom Hole Pressure – Selected Profiles

32

Results – Impact on Rock Property Distribution

Base Case Optimized Case Difference Map
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Results – Impact on Volumetric Parameters 

Base Case Optimized Case Relative diff.  [%]

PORV 21.460.906.026 21.500.848.891 0.2

OOIP [STB] 3.841.092.109 3.886.724.103 1

OWIP [STB] 16.395.959.920 16.379.474.077 0.1

OGIP [MSCF] 1.344.382.238 1.360.353.436 1

Base Case Optimized Case Difference Map

34

History Matching using Analytical Sensitivities

Application project 

• Analytical sensitivity calculation (Adjoints)
on grid cell level

• Workflow – Extension 

– Ranking

– History Matching
of multiple models

– Analysis and modeling
consistency – feedback loop

• Visualization and Analysis

m

mQ

∂

∂ )(
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Ensemble Kalman Filter (EnKF)

Bayesian Formulation

36

• Dynamic state variables md at time t
depend on state at t-1 and static 
model parameters ms

• State evolves with known model 
operator G

• State is only accessible indirectly 
via (noisy) measurement operator H

Ensemble Kalman Filter (EnKF): Central Assumptions

Accessible Data

tt-1 tt+1
t

md
t-1 md

t md
t+1

dt-1 dt dt+1

H(md
t-1 ,     ) H(md

t ,     ) H(md
t+1 ,     )

G(md
t-1 , m

s) G(md
t , ms)

ωω ω

Hidden Markow Model 
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State Vector 
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Update and Kalman-

Gain at Time t
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• State Initialization

EnKF: Progression of static state

40

• Update and uncertainty reduction 
in uncertainty and response parameter space

EnKF: Progression of static state
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EnKF: Progression of static state
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EnKF: Progression of static state
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Start                     5th update               10th update            15th update           19th update

PERMX

EnKF
Update 
Steps

Production History

Wells
Oil
Water
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• Well suited for updating entire property fields

• Consistent uncertainty handling for establishing a posterior probability distribution

• Also used for updating alternative parameters 
(WOC, relative permability, fault transmissiblities) 
cf. A. Seidler 2009, Y. Chen 2009. 

• Sequential update scheme supports closed-loop approaches. 

• Changing dynamical parameters remains conceptually difficult.

44

Summary EnKF
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MCMC + Proxy

Bayesian Approach

46

Bayesian Update using MCMC

Sampling

Simulation
Multiple-Realizations

Objective function calculation
Proxy generation

MCMC
Sampling

1

2

3

• Sample from proxy based 
model

• Respect history data
• Only full field results used

in ensemble calculation 

6

1

2 3

4

5

6

Update
Proxy

MCMC 
Optimization

5 4
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Background: Bayesian Update using MCMC

• Mismatch

• Posterior weight

uncertainty distribution

time
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Background: Bayesian Update using MCMC

distribution update
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P
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ct

io
n

• Markow Chain, i.e., update depends on previous state only

• Sampling new candidate
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Application Case

• Under-saturated oil reservoir 

• 3 main sand layers and 
4 main faults 

• Porosity varies between 
0.027 to 0.280 

• Permeability varies between 
90 to 1000 [mD]. 

• Aquifer acts at the North-western edge 
flank of the reservoir 

• 3 production wells, 1 injector

• 7-year production history .

50

Wells

50

INJ1 PROD2 PROD1 PROD3

About 11,000 cells
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Faults

Fault 1 Fault 2 Fault 3 Fault 4

51

52

Layer A

52
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History MatchScreening

History Matching using MCMC Optimization

54

Results: Ensemble Improvement

Prior Ensemble
Posterior 
Ensemble
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Results: Prior and Posterior Parameter Distribution

Prior Distribution Posterior Distribution

MULTFLT MULTZ PERMXY

56

• Proxy-based approach allows to apply MCMC 
workflows to complex simulation cases

• Fast convergence behavior

• Efficient technique for global optimization, i.e., 
calibration of global uncertainty parameters

• Technique offers extensive potential for accelerating 
optimization workflows based on proxy modelling 
support.

• Method is less well prepared to handle large multi-
dimensional parameter spaces in the current 
application scenario

• Variance estimation may still be expensive

Summary MCMC-Proxy – Workflow 
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Stochastic Proxy Modeling - gPCE

Probabilistic Formulation

58

Make Expensive Uncertain Parametric Problems Cheap

• � expensive to evaluate (e.g. reservoir model) �
replace by “cheaper version” ��: a proxy model

Uncertain about �

E
ffe

ct
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f u
nc

er
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ty
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n 
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Problem:

• Monte Carlo (MC) is often used to perform uncertainty propagation for random 
variables (RVs)

– is flexible and

– independent on the dimensionality of the problem

• but exhibits very slow convergence ( �), where N is the sample size.

Scope:

• Find “better” proxy model for probabilistic uncertainty quantification & optimization 
of hydrocarbon reservoirs

Requirements on proxy model:

• Fast creation, fast evaluation

• Use in existing workflows, with existing simulators

• Precision advantages for probabilistic workflows

Methodology

• We choose (generalized) Polynomial Chaos Expansion (gPCE)

Improved Proxy Modeling

60

gPCE: A Probabilistic Proxy Model

• Introduce parameter ω for uncertainty, use probability theory to quantify it

• Primary quantities: random variables (RVs): 
 � ∈ "# $; &; '

o $: sample space of possible outcomes, 
&: vector space,
'	: probability measure.

• Generalized Polynomial Chaos Expansion (gPCE): 
spectral representation of RVs:

o Here: Series of known Legendre polynomials and uniform basis RVs; 
unknown “spectral” coefficients

• How to compute the coefficients?

 � = * 

+∈,

-
 .
 � , .# � ,…
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Computing the gPCE Coefficients: NISP

• Legendre polynomials are orthogonal w.r.t.
� Use projection to compute coefficients  +:

• Cannot change simulator code, problem possibly
high-dimensional
� Use sparse-grid numerical cubature:

“Sparse tensorization” of 1D Gauss-Legendre quadrature
[Warning: Sparse grids come with assumptions]

� Simulations computationally feasible, projection cheap

• gPCE + “non-intrusive spectral projection” (NISP) using sparse grids: 
good fulfilment of requirements! How well does it work?

∀
:		 + =	  ,-+
-+ , -+

Reminder:
9, : = ; 9 � : � �' � 	

<

' = =(−1,1)

; > ? �? ≈
<

	*A�> ?�
�

62

• Zander, E. (2014, May 19). 
SGLib - A Matlab/Octave 
toolbox for stochastic 
Galerkin methods. 
doi:10.5281/zenodo.9966

Workflow Design for gPCE Application

Uncertainty Parameter Definition

Response Parameter Definition

Design of Experiment (DOE)

Simulation

Proxy Generation (PCE)

Without History

Sample from Prior

With History

Sample from Posterior

Distribution (PDF)

For all parameters interest
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Create gPCE Proxies For Production Quantities

Parameter Distribution % of Range

MULTFLT 1 U(0.316, 1.000) 68.4 %
MULTFLT 2 U(0.013, 0.080) 6.7 %
MULTFLT 3 U(0.056, 1.000) 94.4 %
MULTFLT 4 U(0.794, 1.000) 20.6 %

MULTZ 1 U(0.500, 1.000) 50.0 %
MULTZ 2 U(0.003, 0.018) 1.5 %

PERMXY 1 U(0.400, 0.620) -
PERMXY 2 U(0.200, 0.280) -
PERMXY 3 U(0.200, 0.210) -

• 9 uncertain parameters of varying
type & importance

• Distributions selected from prior 
knowledge, some with high uncertainty, 
some with low

• Methods for comparison:

o gPCE (different max. orders)

o Monte Carlo (50k samples)

o “Automatic Regression” method

� 2nd order polynomial regression

� Adaptively selects terms (expensive)

� Uses gPCE experimental
designs (to be fair)

64

Results: gPCE vs “Automatic Regression”

• gPCE builds 100 
proxies in parallel �
major performance 
gain (per proxy)

• gPCE computes more 
coefficients than 
“Automatic 
Regression”!

� gPCE is orders of 

magnitude faster when 
constructing multiple 
proxies (due to 
projection)

Performance: Average Time for Building One Proxy for FOPT @ 2240 Days
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gPCE Accuracy

• Boxplots for well oil 
production rate of 
producer two (top) 
and two probability 
density estimates at 
key time points 425 
days (bottom left) and 
1004 days (bottom 
right)

Probabilistic representation
of production profile!
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Summary gPCE

gPCE is:

• A probabilistic proxy model for smooth model 
responses

• Compatible with existing workflows, 
parameterizations

• Equal or better than “automatic regression” 

• Significantly faster (projection) and very exact for 
certain responses

Challenges remain:

• Difficulties with non-linear response

• Adaptive basis selection; other basis functions
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Practical Conclusion

facies porosity permeability gas saturation

68

History Matching

P10

P90

P50

Practical reproducible workflow design
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Field Development Optimization under Uncertainty

Practical reproducible workflow design

70

Uncertainty Matrix – Parameterization 

Complex uncertainty definitions (continuous, discrete) require practical customizations
of the workflow.
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Sensitivity Analysis

• Sensitivity results based on reference case:

FGPT

FOPT

FGPT FOPT

72

Workflow Scenario

1

• Sensitivity analysis for production performance forecast
• Define prediction scenario
• Test performance

2

• Run full uncertainty matrix on prediction scenario
• Identify realizations which meet rate match within tolerance 

level

3

• Run prediction scenario for selected realizations and test 
impact of local parameter adjustments 
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Realizations which meet rate match within tolerance level

History

Prediction

Field Oil Production Total 

2050

74

Selected realization with impact of local parameter adjustments 

History

Prediction

Field Oil Production Total 

2050
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Conclusion: Analysis and Closing Feedback-Loop

• The complexity of aligning the geo and simulation models depends on the 
parameterization and optimization approach 

• A methodology should ideally be designed to analyze parameter trends which 
influence a minimum discrepancy between geo modeling scenarios/realizations and 
the history matched models 

Geo Models

HM Simulation 
Model(s)

Minimize ∆

Reservoir 
Simulator
Dynamics

Minimize ∆

Observed
Reservoir
Dynamics

History Matching Geo and HM calibration
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