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Abstract

• Subsurface uncertainties have a large impact on oil & gas production forecasts. 

Underestimation of prediction uncertainties therefore presents a high risk to 

investment decisions for facility designs and exploration targets. The complexity 

and computational cost of reservoir simulation models often defines narrow limits 

for the number of simulation runs used in related uncertainty quantification studies. 

• In this session we will look into workflow designs and methods that have proven to 

deliver results in industrial reservoir simulation workflows. Combinations of 

automatic proxy modelling, Markov Chain Monte Carlo and Bayesian approaches 

for estimating prediction uncertainties are presented. 
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Outline

• Introduction – Uncertainty Domains

• Part I: Case Example and Workflow Implementation

– Problem statement

– Bayesian approach to „history conditioned forecasting“

– MCMC & Proxy modeling

– Method implementation, advantages and limitations

• Part II: Lesson Learned

– Computation requirements – best practices

– Outlook
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Good Project

Poor Project

Pre start-up Post start-up

Field Development: Understanding Uncertainty is Key
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The Geologist’s Dilemma

FWL

Top Sand

Base Sand

Well 1 Well 2
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An Interpretation

FWL

Top Sand

Base Sand

Well 1 Well 2



1/20/2015

4

7

Another Interpretation

FWL
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Yet Another Interpretation…..

FWL

Top Sand
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There are lots more interpretations…….

FWL

Top Sand

Base Sand

Well 1 Well 2
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Data Collection and Interpretation

Uncertainty Sources
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Geological & Reservoir Model

Uncertainty Sources
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Geological & Reservoir Model – Grid

Uncertainty Sources
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Geological & Reservoir Model – Fault Model

Uncertainty Sources
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Reservoir Model – Distribution of Hydrocarbons

Uncertainty Sources
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Sources of Static and Dynamic Uncertainties

Reservoir Structure Thickness Fluid Contacts Reservoir Geometry

Structural Data Geophysical data Well logging data Well logging data 3D Seismic data

Well tops data 3D seismic data well tesing & pres data Facies analysis

Well logging data Geology & geostatistics seismic data Well correlation

Reservoir Facies Grain Size Distribution PTS Distribution Pore Compressibility

Geological Data Geophysical data Thin Section Analysis Thin Section Analysis Special Core Anlysis

Core data NMR Spcial Core Analysis Correlation

Well logging data X-Ray, SEM & Cat Scan Well log Data?? Field Data

Reservoir Rock Texture Porosity Permeability Fractures

Rock Properties Core Data Core Data Core Data Core data

Well logging data Well testing data Well logging data

Well testing data Log-Derived Permeability Well testing data

Reservoir Fluid Composition Fluid PVT Properties Fluid Viscosity Fliuds IFT Data

Fluid Properties PVT Samples PVT Experiments Lab Experiments Lab Experiments

Production Testing Correlations Correlations Correlation

Equation of State

Rock-Fluid Fluid Saturation Wettability Capillary Pressure Relative Permeability

Properties Core Data Special Core Analysis Special Core Analysis Special Core Analysis

OH and CH logging Well logging data Well testing

Well testing data
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Multiple Realizations
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Estimation of prediction uncertainties in 
oil reservoir simulation using 
Bayesian and proxy modelling techniques

Part I: Case Example and Workflow Implementation

18

Estimation of Prediction Uncertainties

1. Condition simulation model to history data

2. Use history-conditioned simulation models 

as a basis for forcasting single field 

development

3. Estimate uncertainty

distribution for prediction 

scenario

History Matching

History Conditioned 

Forecast
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2

3

WOPT
WOPT

FOPT
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Workflow: Bayesian Update using MCMC

Sampling

Simulation

Multiple-Realizations

Objective function calculation

Proxy generation

MCMC

Sampling
1

2

3

• Sample from proxy based 

model

• Respect history data

• Only full field results used

in ensemble calculation 
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Update

Proxy

MCMC 

Optimization
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Case Study: Watt Field

• Semi – synthetic case study

• Based on real field data provided: 

– production data, 

– seismic sections to interpret the faults and top structures, 

– wireline logs to identify 

• facies correlations and 

• saturation profile and 

• porosity and permeability data

• Alternative models are provided based on 

– Grid resolution

– Top structure

– Fault models

– Facies model with different cutoff criteria
Ref: D.Arnold et.al, 2013
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Watt Field – Reservoir Model

• Under-saturated oil reservoir 

• Initial reservoir pressure of 2500 psi

• Reservoir depth around 1555 m below 

surface.

• 10 faults with East/West direction.

• Porosity varies between

0.05 to 0.3 

• Permeability in Z varies between 

10 to 1000 mD.

• 16 horizontal production wells and 

7 injectors

• 7 year history data

• 15% error for all production data

• Peripheral water injection is applied to 

maintain the reservoir’s pressure.
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Deterministic Solution Adjoint Approach – For Comparison 

• The adjoint system is solved with the sole aim of finding a deterministic  solutions to 

the problem

• The mismatch is quantified by an objective function, Q

• Minimize  Q; calculate  
��(�)

��
on a cell-by-cell basis.

• Regression step

• Optimization, e.g., Levenberg-Marquardt 
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SPE 164337: Schulze-Riegert et al.,2013 
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Results Field Production Rates

Base case

Matched 

case
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Watt Field – Well-by-Well Match
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Watt Field – Adjoint: Impact on Rock Property Distribution

Base Case Optimized Case Difference Map

Base Case Optimized Case Relative diff.  [%]

PORV 21.460.906.026 21.500.848.891 0.2

OOIP [STB] 3.841.092.109 3.886.724.103 1
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Short Coming of the Deterministic Result ?

• Deterministic approach is capable delivering “a” solution to the complex simulation 

problem

– Strong dependence on the base case

– Limited information on uncertainties

– Prediction may be wrong

Field Water Production Rate

Deterministic prediction

Field Water Production Rate

Probabilistic prediction
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Workflow Design

History Matching
Estimation of 

Prediction Uncertainties
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Watt Field – Uncertainty Description

• Selection of a representative model out of 81 scenarios 

• Uncertainty description according to reference example (Arnold et al.)

– Volumetric: Porosity modifications

– Communication: Permeability in vertical direction

– Relative fluid flow behaviour: Relative permeability 

• Example: rel-perm curves:

– corey description

– Black crosses show

base case data
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Watt Field – Response Definition
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• Objective function definition

• Match points are defined to focus

on key events / indicators

– Break through

– Plateau level

– ...

• The objective function value is 

based on mismatches between 

measured and simulated match 

points
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Workflow: Uncertainty Modelling

Bayes Formulation: 

Prior Likelihood Posterior 
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Bayesian Update using MCMC

• Mismatch

• Posterior weight

uncertainty distribution
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Bayesian Update using MCMC

distribution update
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• Markow Chain, i.e., update depends on previous state only

• Sampling new candidate
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Chain Evaluation

• Chain evaluations are

based on proxy 

• A sequence of chain 

evaluations gradually 

improves results 

• In the optimization 

workflow, each chain 

delivers one final 

“best“  candidate.

• Best candidates from each chain are added in the experiment list for full field 

simulation. They also extend the training data set for improving proxies for the 

next  loop of chain evaluations.  
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Results: Watt Field – MCMC

Latin Hypercube

MCMC

• Screening: Latin Hypercube

– Screen search space

– Generate training data set for 

automatic proxy modeling

• Optimization: MCMC-Optimization

– Create new set of proxy models 

before running chains of Monte 

Carlo runs

– Select „best“ candidate sets based 

on proxy sampling

– Verify results 

– Iterative process of selecting and 

verifying candidate sets until 

convergence is reached

Global Mismatch
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MCMC: Sampling from the Proxy
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Training data set

Proxy modeling based on

improving training data set

Sampling from

proxy

Objective function 

Objective function 
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Kriging for Proxy Modelling

• Kriging is a “data exact” method

• Kriging has the capability to reproduce a training data set exactly

– Popular universal kriging uses a regression model as a trend model. 

– The error w.r.t. the trend is corrected by interpolation techniques 

• The figure below shows a training data set (left) and a quadratic trend model which 

approximates the training data set. Data points (white spheres) are modelled by the 

trend model plus kriging terms (right) 
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Kriging definition

• Kriging is based on a probabilistic modelization of the data

� � = �� !� � + " �

with  "(�) a random variable

• The "(�) at each � are not spatially independent, we hypothesize

#$% " �
 , " �' = ( �
 − �'

i.e. translation-invariant covariances

• Typically, ( is further hypothesized to be of the form ( ) = *'+
,

-

– ℎ is the characteristic length-scale

– + is the variogram, and expresses how correlation vanish with distance
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Kriging as interpolation

• Proxy defined as  / � = �� !� � + � 0! " �

• Properties of the kriging proxy:

– Interpolates the observed data

– Trend dominates far from observed points (here the trend is a constant value)
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Kriging Variance

• Not only � 0! "(�) but also variance "(�) can be computed

• Variance is 0 at observed points : value is known

• Kriging variances are used in the MCMC sampling to identify unexplored areas

Linear

Trend Model

High density of points –

small variance

Low density of points –

large variance
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Automatic Proxy Modeling – Progression of Proxy Quality
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Workflow – Estimating Prediction Uncertainties

Estimation of 

Prediction Uncertainties
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MCMC-Sampling: Generation of a Prediction Ensemble

MCMC-Sampling needs to meet two criteria

1. Sampling from the posterior distribution

– Defining property of the MCMC process

2. Sampled candidates need to be independent

– An approximate auto-correlation is calculated to measure the independence 

of consecutive samples

Autocorrelation time
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Auto-Correlation

• Assume states � of a Markov chain, with 

• Autocorrelation time	9 :

• Batch means

– n: number of samples

– m: batch size

– s2: sample variance

– s2
m: batch sample variance
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Discussion: Chain Evaluations

Selected workflow options:

1. Sampling from the raw distribution

– Candidates sampled from posterior distribution (MCMC-Workflow)

– N candidates from one chain

2. Sampling from the minimum distribution

– Candidates sampled from posterior distribution (MCMC-Workflow)

– One candidate per chain.  N chains

3. Sampling from the raw distribution with a cutoff

– Candidates sampled from posterior distribution (MCMC-Workflow)

– N candidates from one chain
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1. Sampling from the raw distribution

• The stochastic optimization workflow 

creates proxies for the GLOBAL 

objective value

• The likelihood of a given sample is 

assumed to be

• By definition of the MCMC algorithm, 

the samples produced this way will 

be drawn according to their likelihood.

∝ exp	 −
�=>?@=
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2. Sampling from the minimum distribution

• Focus on samples with the best 

GLOBAL values is to use a minimum 

distribution instead of the raw 

distribution

• This can be achieved with a MCMC 

Proxy method parameterized with as 

many Markov chains as we need 

samples, 1 sample per chain.
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3. Sampling from the raw distribution with a cut-off 

• MCMC Proxy method with only one 

chain but with a cut-off corresponding 

to the max value of the GLOBAL for 

the experiment.

• The cut-off value is considered to 

represent a “good” match

• In this case sampling is done from the 

raw distribution defined by the proxy 

GLOBAL, but limited to the regions of 

the sample space where the 

predicted GLOBAL is better than the 

cut-off value
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Results: Watt Field – MCMC Prediction Ensemble
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Results: Comparison of Prediction Runs (MCMC vs Adjoint)

• Adjoint prediction captured within the 

uncertainty envelope of the MCMC

FOPT

FWPT

Adjoint run

50

Results: Watt Field– HM Result Analysis (posterior)



1/20/2015

26

51

Summary – History Conditioned Forecasting

• Workflow supports estimating prediction uncertainties including history data

• The methodology combines automatic proxy modeling techniques and full field 

simulation

• Distributions for key parameters of interest are calculated based on full field 

simulation results

– Alternatively, distributions can be calculated from proxy modeling results 
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Estimation of prediction uncertainties in 
oil reservoir simulation using 
Bayesian and proxy modelling techniques

Part II: Lesson Learned
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Challenges

MCMC workflows include three time consuming computation tasks

1. Proxy generation for every response parameter

2. Chain evaluation with thousands of samples

3. Simulation of candidate solutions as an input to the

next generation of proxy models 

In MCMC workflows all three process can consume significant parts of the overall 

computing time. 

Proxy generation

Chain evaluation

Simulation of 

candidate solutions
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1. Proxy Generation

• Two different automatic proxy generation methods are tested and used

– Regression models

– Kriging models with a regression trend model

• Proxy models become more complex with the number of input parameters

– Computation time increases significantly with the number of input parameters

• Conclusion

– Fewer number of input parameters will speed up the proxy generation process

– Number of response parameters scales linearly with the computation time
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2. Chain Evaluation

• The search space scales with the number of 

input parameters

• The dimensionality has the most important 

impact on the computing time of the chain 

evaluation

• A chain evaluation is a sequential process 

and cannot be split into parallel processes

• Multiple chains are independent

Conclusion

• Reduction of input parameters reduces the 

computing time of the chain evaluation

• Processing multiple chains in parallel speeds 

up the elapsed computation time 
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MCMC Proxy Training and Chain Evaluation

In each iteration, the MCMC optimization method 

– creates new Proxies for all objective response parameter

– runs Markov Chains

Both can be time consuming

On a laptop or workstation resources 

are limited, on a cluster hundreds of 

proxies might be trained at the same 

time.

ServerServer

58

MCMC Proxy Training and Chain Evaluation

Running proxy training and Markov Chain evaluation externally as own processes in a 

cluster environment. 

Distributing processes, finishing faster simply by concurrent execution.

ServerServer
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3. Simulation

• Simulation runs of candidate solutions are independent from the proxy generation 

and chain evaluation.

• Results are added to the training data set for the next generation of proxy models

• Convergence criteria for improving performance indicators should be carefully 

monitored in order to limit the number of simulation runs

• Parallel (concurrent) processing is possible and recommended

LH-Screening

MCMC-Optimization
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Best Practices: Project Planning  

• MCMC workflows potentially require significant computing resources for

– Simulation

– Chain evaluation

• Several processes scale with the number of available  computing units/cores

– Simulation 

– Chain evaluation 

– Proxy modeling 

– Post processing 

• Review available resources and design workflow accordingly   

ServerServer


