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Introduction
•migraine is a common disorder where 20% of the patients also suffer from migraine aura

preceding the typical headache [1]
• several studies suggest that cortical spreading depressions (CSD) underlay migraine and

can help to understand the phenomenon of the visual aura [2]
• CSD is a propagating depolarisation wave that starts from the visual cortex and is followed

by a wave of inhibition
• the depolarisation wave requires about 20 minutes to spread over the whole cortex [3]
• the geometry of the cortex is highly individual, and is anticipated to impact the propagation

of the depolarisation wave

Aim: simulate the propagation of CSD on a real cortical geometry

Introduction
•migraine is a common disorder where 20% of the patients also suffer from migraine aura

preceding the typical headache [1]
• several studies suggest that cortical spreading depressions (CSD) underlay migraine and

can help to understand the phenomenon of the visual aura [2]
• CSD is a propagating depolarisation wave that starts from the visual cortex and is followed

by a wave of inhibition
• the depolarisation wave requires about 20 minutes to spread over the whole cortex [3]
• the geometry of the cortex is highly individual, and is anticipated to impact the propagation

of the depolarisation wave

Aim: simulate the propagation of CSD on a real cortical geometry

The Excitability Model
•we derive a mean field model for the neuron firing rate, inspired by a variant of the

FitzHugh-Nagumo model [4] for excitable media
• the Rogers-McCulloch variant of the FitzHugh-Nagumo model describes the all-or-nothing

response of an excitable cell in a simplified manner [5]:
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where u(t) is the potential at time t ≥ 0, w(t) is a recovery variable, Iion is the ionic current,
Ist is the stimulus, uth and up are threshold and peak values for u, while η1, η2, η3 and G
are parameters that can be tuned to match the physiological firing rates of resting (4Hz)
and excited (60 Hz) cortical neuron during CSD
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The Spatial Model
• the propagation of the excitation in space is described by a parabolic reaction-diffusion

equation

∂u
∂t (x, t) = − (Iion(u,w)− Ist) + div(D∇u)

where D ∈ R2×2 is the diffusion tensor, possibly anisotropic
• for all points x in the computational domain, the above equation is coupled with the ODE

describing the evaluation of the recovery variable w(t), resulting in a coupled PDE-ODE
system
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Finite Dimensional Approximation
• time discretisation: finite differences ∂u

∂t (t
n+1) ∼ un+1−un

∆t
• space discretisation: P1 finite elements
• time advancing scheme: IMEX (implicit/explicit)

From tn to tn+1 :

update: wn+1 = 1
η3up

un +
(
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)
exp (−η2η3∆t)

update: In+1
ion = Iion(un, wn+1)

solve: Aun+1 = Mun − ∆tMIn+1
ion

where A := M + ∆tS, while M and S are the finite elements mass and stiffness matrices
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The Geometry
• the computational domain is a cortex reconstructed from MRI images provided by

BioCruces Health Research Institute, Barakaldo, Spain and triangulated

• the computational grid features 140.208 nodes and 280.412 triangles
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Preliminary Numerical Results
•we use a self-developed Matlab R© code
• the time step is ∆t = 0.01 min, and the diffusion tensor is isotropic D = 0.5 · Id
• the stimulus current is neglected (Ist = 0) and no boundary conditions are necessary as

the domain is a 2D closed surface
• the initial condition is given by an excited region in the visual cortex
• the simulation is run until the CSD wave has propagated across the whole cortex
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Conclusion and open problems
• a first simulation of the propagation of CSD on a real geometry has been performed
• the accuracy of the results will improve by using information from Diffusion Tensor Imaging,

which describe the diffusion in every voxel of the brain (in progress)
• the parameters have been empirically tuned to match the expected propagation time of

around 20 minutes
• a further study is needed to have patient-specific parameter estimations
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