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Lectures will include many examples using the
Chaospy software

Gy

A very basic introduction to scientific Python programming:
http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html

Installation instructions:
https://github.com/hplgit/chaospy

Interactive session:
http://10.50.3.247:8888/
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http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
https://github.com/hplgit/chaospy
http://10.50.3.247:8888/

Example: bloodflow simulations

In colaboration with V. Eck and L. Hellevik
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Modelling require uncertainty quantification
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Modelling require uncertainty quantification

STochastic ARterial Flow Simulations
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Introducing a testcase as a working example
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Introducing a testcase as a working example

du(x)
dx

e —au(x) U(O) = /

u The quantity of interest
x Spatial location
a, | Parameters containting uncertainties
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Introducing a testcase as a working example

du(x)

—au(x) u(0)=1

u The quantity of interest
x Spatial location
a, | Parameters containting uncertainties
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This model can be analysed analytically

u(x;a,l)=le™®
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This model can be analysed analytically
u(x;a,l)=le™®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ f3(a) I =1 (known)
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This model can be analysed analytically

u(x;a,l)=le™®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ f3(a) I =1 (known)
s 0.1 1 1— e—O 1x
E(u) = fa(a)da = T da=
(u) /u(x a)fy(a)da /0 e gda 10x
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This model can be analysed analytically

u(x;a,l)=le™®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ f3(a) I =1 (known)
s 0.1 1 1— e—O 1x
E(v) = fa(a)da = T —da=
(u) /u(x a)fy(a)da /0 e gda 10x
oo 5 1— e—0.2ax 1 = e—O.lx 2
Var(u) = /(u(x; a) — E(u))°fi(a)da = 0x - ( e >

o - a part of Simula Research Laboratory



In general, models can be analysed using Monte
Carlo integration

Generate random numbers

foraand|. Estimate the statistics.

o - a part of Simula Research Laboratory



Monte Carlo with Chaospy

import chaospy as cp
import numpy as np

def u(x, a):
return np.exp(-a*x)
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Monte Carlo with Chaospy

import chaospy as cp
import numpy as np

def u(x, a):
return np.exp(-a*x)

dist_a = cp.Uniform(0,0.1)

samples_a = dist_a.sample(size=1000)
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Monte Carlo with Chaospy
import chaospy as cp
import numpy as np
def u(x, a):
return np.exp(-a*x)
dist_a = cp.Uniform(0,0.1)
samples_a = dist_a.sample(size=1000)

x = np.linspace(0, 10, 100)
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Monte Carlo with Chaospy

import chaospy as cp
import numpy as np

def u(x, a):
return np.exp(-a*x)
dist_a = cp.Uniform(0,0.1)
samples_a = dist_a.sample(size=1000)
x = np.linspace(0, 10, 100)

samples_u = [u(x, a) for a in samples_al
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Monte Carlo with Chaospy

import chaospy as cp
import numpy as np

def u(x, a):
return np.exp(-a%*x)
dist_a = cp.Uniform(0,0.1)
samples_a = dist_a.sample(size=1000)
x = np.linspace(0, 10, 100)
samples_u = [u(x, a) for a in samples_al

E = np.mean(samples_u)
Var = np.var(samples_u)
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Convergence of Monte Carlo is slow
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Assumption: mapping from input g to output u is
smooth
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Using Lagrange polynomials to approximate u(q)
(N-th degree polynomial interpolation)

where
¢n are model evaluations u(x, a,)

P, are Lagrange polynomials:

N
S pe
Pn(a) =
=11 22
m#n

a, are collocation nodes
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The interpolation has much better convergence
properties than Monte Carlo!

10 T T

10° .
O === o == m e e e e e e e —— e — o 7
107 +
107 |
107 F
107 F
10°
107 b
10% +
10° | — Mean
10" H - - Variance
10" H — Monte Carlo
10"} — Legendre

-13 I L L L
10 0 1 2 3 4 5

Evaluations

o - a part of Simula Research Laboratory

Error




Oscillations in Lagrange polynomials (for large N)
destroy the convergence
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Let us introduce a better polynomial approximation:
Polynomial Chaos (PC) theory

u(x;a) = opm(x;a) = Z cn(x) P.(a), N=M+1

Coefficient Polynomial
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PC employs inner product spaces weighted with the
probability distribution

(u,viq=E(u-v)  Jullg =+/{u,u)q

where Q is a random vector, i.e. (a,/).

(o) - a part of Simula Research Laboratory



PC employs inner product spaces weighted with the
probability distribution

(u,viq=E(u-v)  Jullg =+/{u,u)q

= / fQ((])U(X, q)V(X7 q)dq

where Q is a random vector, i.e. (a,/).
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PC employs inner product spaces weighted with the
probability distribution

(u,v)g =E(u-v) lullg = \/(u, u)g
~ [ fol@u(x. a)v(x.q)dq
where Q is a random vector, i.e. (a,/).

Orthogonality:

2
[Pallg  n=m

Py Biniq = {0 n#m
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Coefficients are determined by least squares
minimization

: a2
i, 14~ il

N
<zcnPH,Pk>
n=0 Q
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Coefficients are determined by least squares
minimization

: a2
i, 14~ il

N N
<Zc,,P,,,Pk> = cn (P, Pi)g k=0,....,N
n=0 Q n=0
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Coefficients are determined by least squares
minimization

. A2
min u—u
= ol

€0,---,C

N N
<Z cnPn, Pk> = ca(PnPi)g = ck (P, Pi)g k=0,...,N
n=0 Q

n=0
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Coefficients are determined by least squares
minimization

. A2
min u—u
= ol

€0,---,C

N N
<Z cnPn, Pk> = ca(PnPi)g = ck (P, Pi)g k=0,...,N
n=0 Q

n=0
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Coefficients are determined by least squares
minimization

: a2
i, 10~ Burle

N N
<Z cnPn, Pk> = ca(PnPi)g = ck (P, Pi)g k=0,...,N
n=0 Q

n=0

<U, 'Dk>Q

3 Fourier coefficients
IPillo

Ck =
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Least squares minimization implies minimization of
variance

(o, ..., cn) = argmin|[u — Iullq
C0y--sCN
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Least squares minimization implies minimization of
variance

(o, ..., cn) = argmin|[u — Iullq
C0y--sCN

= argmin |lu — f/MHé
€0;--+,CN
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Least squares minimization implies minimization of
variance

(o, ..., cn) = argmin|[u — Iullq
C0y--sCN

= argmin |lu — f/MHé
€0;--+,CN

= argminE((u — aM)2)
€0,y CN
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Least squares minimization implies minimization of
variance

(o, ..., cn) = argmin|[u — Iullq
C0y--sCN

= argmin |lu — f/MHé
€0;--+,CN

= argminE((u — aM)2)
€0,y CN

= argmin Var(u — i)
€0y--+5CN
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The mean and variance have a simpler form
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The mean and variance have a simpler form

Assumption: Py =1
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The mean and variance have a simpler form

Assumption: Py =1

N
E(QM) - E(Z CnPn>
n=0
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The mean and variance have a simpler form

Assumption: Py =1
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The mean and variance have a simpler form

Assumption: Py =1

o - a part of Simula Research Laboratory



The mean and variance have a simpler form

Assumption: Py =1
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The mean and variance have a simpler form

Assumption: Py =1
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The mean and variance have a simpler form

Assumption: Py =1

N
i) =E (Z c,,P,,) Var(iiy) Var(Z Ch ,,)
n=0

N N
=Y GE(P) =3 cncm (EPaPm) ~EPHE(P)
n=0 =
. m=0
= cn (Pn, Po)
n=0
E(Z\IM) = Q
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The mean and variance have a simpler form

Assumption: Py =1

N
i) =E (Z c,,P,,) Var(iiy) Var(Z Ch ,,)
n=0

N N
= ZC,-,E(P,-,) — Z CnCm (E P P )_E(PH)E(Pm))
n=0 =_%
N N
= Z cn (Pn, Po)g Z cnCm (Pn, Pm)o — o
n=0 n:%
E(Z\IM) = Q
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The mean and variance have a simpler form

Assumption: Py =1

N
i) =E (Z c,,P,,) Var(iiy) Var(Z Ch ,,)
n=0

N
= caE(Pn) = Z cncm (E(PnPm)—E(P)E(Pr))
n=0 =_0
N N
= cn (P, Po)g = cnCm (P, Pm)g — <5
n=0 n:_%
N
E(tm) = co Var(im) = > i [|Pallg
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Construct an orthogonal polynomial expansion using
Gram-Schmidt orthogonalization

N
Vo, V1, -y VN = 17 q,----q
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Construct an orthogonal polynomial expansion using
Gram-Schmidt orthogonalization

N
Vo, V1, -y VN = 17 q,----q

The Gram Schmidt method is

P():VQ
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Construct an orthogonal polynomial expansion using
Gram-Schmidt orthogonalization

N
Vo, V1, -y VN = 17 q,----q

The Gram Schmidt method is
Po = vo

P, —v —Z Vna m

[1Pm HQ
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Construct an orthogonal polynomial expansion using
Gram-Schmidt orthogonalization

N
Vo, V1, -y VN = 17 q,----q

The Gram Schmidt method is

P():VQ

Vna m

P, = —
’ Z 1P ||Q

n—1

E(vaPm)
==V —_—_—
"~ 2 Epe)

(o) - a part of Simula Research Laboratory



Gram-Schmidt with chaospy

dist_a = cp.Uniform (0, 0.1)
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Gram-Schmidt with chaospy

dist_a = cp.Uniform (0, 0.1)

v = cp.basis(0, M, 1)
[v[o]l]

o
]
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Gram-Schmidt with chaospy

dist_a = cp.Uniform (0, 0.1)

v = cp.basis(0, M, 1)

P = [v[o0]]
for n in xrange (1, N):
p = vinl
for m in xrange (0, n):
p —= PIml*cp.E(v[nl*P[m], dist_a)

/cp.E(P[m]**2, dist_a)
P.append (p)
P = cp.Poly(P)
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Plot of all generated polynomials

1.0
051 4
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Most constructors of orthogonal polynomials are
ill-conditioned

0.010

= Gram-Schimdt

0.008 -

0.006

Error

0.004

0.002 -

0.000
0

Terms. M
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The only numerically stable method for calculating
orthogonal polynomials is through the three-term
discretized Stiltjes recursion
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The only numerically stable method for calculating
orthogonal polynomials is through the three-term
discretized Stiltjes recursion

Three terms recursion relation:

Pn+1 = (X — A,,)Pn — BnPn_l P_1 =0 Po = ].,
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The only numerically stable method for calculating
orthogonal polynomials is through the three-term
discretized Stiltjes recursion

Three terms recursion relation:

n+1 (X—A)P—BPnl P_1:0 :D():].7

where
1Pall3
A — M B, = { 1Pl " >0
[|Pnllg IPally  n=0
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Discretized Stiltjes method is numerically stable

0.010

— Gram-Schimdt
0008 — Stiltjes .

0.006 - 4

0.004 1

Error

0.002 - B

0.000

-0.002 . s L w
0

Terms. M
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People have found analytical orthogonal polynomials
for many common probability distributions

Distribution  Polynomial  Support

Gaussian Hermite (—00,00)
Gamma Laguerre [0, o]
Beta Jacobi [a, b]
Uniform Legendre [a, b]
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Three terms recursion in Chaospy

dist_a = cp.Normal ()
P = cp.orth_ttr(3, dist_a)

print P
[1.0, q0, q0°2-1.0, q073-3.0q0]

o - a part of Simula Research Laboratory



Repetition of the problem

u(x;a, l) = le”®
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Repetition of the problem
u(x;a, l) = le”®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ p,(a) I =1 (known)
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Repetition of the problem

u(x;a, l) = le”®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ p,(a) I =1 (known)
1— e—O.lX 1— e—O.Zax 1— e—O.lX 2
E(u)=———— V. = -
(u) 10x ar(u) 20x < 10x )
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Repetition of the problem

u(x;a, l) = le”®

Initially assume model parameters:

a ~ Uniform(0, 0.1) ~ p,(a) I =1 (known)
1— e—O.lX 1— e—O.Zax 1— e—O.lX 2
E(u)=———— V. = -
(u) 10x ar(u) 20x < 10x )

10 10
eE—/O |E(u) — E(8)] dx 6\/3,—/0 Var(u) — Var(i)] dx

o - a part of Simula Research Laboratory



Convergence of orthogonal polynomial
approximation

S
i
10" H - - Variance |
10° { — Monte Carlo i
102 H — Legendre i
102 H — Polynomial chaos )
10728 : ‘ :
5 5 10 15 2

Evaluations
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Next step: Extend the theory to multiple dimensions
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Next step: Extend the theory to multiple dimensions

P, = P,(,l), . P,EDD) n<«— (n1,...,np)
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Next step: Extend the theory to multiple dimensions

P, = P,(,l), . P,EDD) n<«— (n1,...,np)
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We need a mapping from multiple indices to single
index

Multi-index Single-index
Poo P
P10 POl P1 P2
Py P11 Po P; P, Ps
P30 P21 P12 P6 P7 P8
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We need a mapping from multiple indices to single
index

Multi-index Single-index
Poo P
P10 POl P1 P2
Pxo P11 Po2 P; P; Ps
Pso P2 P12 .. Ps P; Pg
_ (M+D
v= (")
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Orthogonality for multivariate polynomials

1 D) p( D
(PPl = E<Pr(n) PP P Pr(no))
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Orthogonality for multivariate polynomials

1 D) p( D
(PPl = E<Pr(n) PP P Pr(no))

—E(PR - PE)) - E(PD) - PD)
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Orthogonality for multivariate polynomials

o Prlg = E(PD PO P P2)
- E(P,(,}) : P,(,,ll)) . E(Pﬁf) PP )

() (D),
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Orthogonality for multivariate polynomials

o Prlg = E(PD PO P P2)
—E(PR - PE)) - E(PD) - PD)

() (0.2,
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Orthogonality for multivariate polynomials

o Prlg = E(PD PO P P2)
—E(PR - PE)) - E(PD) - PD)

() (0.2,

Q

1 D
P pL)

5"'Dn"D

Q

6”1 my

Q

<Pna Pm>Q — HPnHQ Snm




Creating multivariate orthogonal polynomials in
Chaospy

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
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Creating multivariate orthogonal polynomials in
Chaospy

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)

P = cp.orth_ttr(l, dist)

print P
[1.0, q1-9.0, qO]
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Creating multivariate orthogonal polynomials in
Chaospy

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)

P = cp.orth_ttr(l, dist)
print P
[1.0, q1-9.0, qO]

P = cp.orth_ttr (3, dist)

print cp.E(P[1]1*P[2] ,dist)
0.0
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Creating multivariate orthogonal polynomials in
Chaospy

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)

P = cp.orth_ttr(l, dist)
print P
[1.0, q1-9.0, qO]

P = cp.orth_ttr (3, dist)
print cp.E(P[1]1*P[2],dist)
0.0

print cp.E(P[3]*P[3],dist)
0.0888888888903
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A two-dimensional problem

u(x;a,l)=le”®

(o) - a part of Simula Research Laboratory



A two-dimensional problem

u(x;a,l)=le”®
Uncertain model parameters:

a ~ Uniform(0, 0.1) I = Uniform(8, 10)
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A two-dimensional problem

u(x;a,l)=le”®
Uncertain model parameters:

a ~ Uniform(0, 0.1) I = Uniform(8, 10)

10

10
&?E:/O |E(u) — E(@)| dx E\/ar:/o |Var(u) — Var(@1)| dx
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Convergence of the two-dimensional (a, /) problem

Error

— Mean hy
10" H - - \ariance B
el — Monte Carlo ~
— Polynomial chaos
107 . ‘ ' '
0 10 20 30 40

Evaluations
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Teaser of the full implementation

def u(x,a, I):
return I*np.exp(-a*x)
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Teaser of the full implementation

def u(x,a, I):
return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)
dist_I cp.Uniform(8, 10)
dist = cp.J(a,I)
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Teaser of the full implementation

def u(x,a, I):
return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)
dist_I cp.Uniform(8, 10)
dist = cp.J(a,I)
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Teaser of the full implementation

def u(x,a, I):
return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)
dist_I cp.Uniform(8, 10)
dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)
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Teaser of the full implementation

def u(x,a, I):
return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)
dist_I cp.Uniform(8, 10)
dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)

nodes, weights =\
cp.generate_quadrature (3, dist, rule="G")

x = np.linspace(0, 10, 100)
samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_quadrature(P, nodes, weights, samples_u)

mean, var = cp.E(u_hat, dist), cp.Var(u_hat, dist)
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The curse of dimensionality

Terms, N

Dimensions, D
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Gibb’s Phenomena: discontinuities give oscillations

1.5
— M=5
— M=10
10H — M=15 <
— M=20
05 — M=25
|| — True function )
x 0.0 4
05 ]
-1.0 B
S 4
15 . . .
-1.0 -05 0.0 0.5 10
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Higher number of samples justifies higher number of
collocation nodes

2
|
zzzz

BN -
L n n

Variance
o
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Thank you

G

A very basic introduction to scientific Python programming:
http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
Installation instructions:

https://github.com /hplgit/chaospy

Interactive session:

http://10.50.3.247:8888/
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http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
https://github.com/hplgit/chaospy
http://10.50.3.247:8888/

