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What pseudolikelihood?

Pseudolikelihood is an approximate inference
technique originally introduced by Julian Besag
in 1972

‘Replaces tricky likelihood function by a
product over suitably chosen model
components

‘Pseudolikelihood allows often use of logistic
regression for parameter estimation
‘Pseudolikelihood has recently experienced a
strong revival due to large-scale modeling
needs in computational physics and
computational biology
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Primer on logistic regression
by David Strauss

Suppose we have a binary variable Y and want to
model its dependence on a vector x of p explanatory
variables by

E(Y) = P(Y = 1) = g(B'x), (1.1)

where B is a p vector of parameters. A common choice
for g(1) is

8(1) = exp(Al + exp(1)}, (1.2)

the inverse of the standard logistic distribution function.
In this case (1.1) can be written

logit {P(Y = 1]x)} = B'x, (1.3)

where logit(r) = log {/(1 — ¢)}. Equation (1.3) is a
logistic regression model.
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—Pseudolikelihood with logistic regression

for psychological Bradley-Terry model

~ According to the Bradley—"Ter.ry'mndel, for each of
the p stimuli there is a parameter 7; such that

Pi>j)=alm+m), 1=i,j=p, (2.1)

where i > j means that stimulus { is chosen over j. A
side condition, such as Z; = 1, is evidently required.

P(i > j) = expit(B; — B). (2.2)

Here B; = log m; and expit is a convenient notation for
the inverse of the logit function: expit(¢) = exp(){1 +
exp(t)}. Equivalently,

ngit {P(i > .-’)} = B — Bj= (23)

= x'ﬂ,
where B = (B, ..., B,)andx, = 1if k =i, —1if
k = j, and 0 otherwise. The likelihood function is the
product of expression (2.2) over all paired comparisons;

its maximization is thus equivalent to a maximum like- ‘
lihood solution for the logistic regression model (2.3).



Pseudolikelihood for
spatial dependence models
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Figure 1. 24 x 24 Grid of Presence/Absence of the Plant Carex
Arenaria. (From Bartlett 1971.)
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Pseudolikelihood for

Ising models

ment (Besag 1986). The model specifies a joint distri-
bution for a rectangular array of binary variables y;.
The sites (i, j) and (k, [) are said to be neighbors if either
i=kand|j — | =1orj=1land|i — k| = 1. Let §
be 22y, the number of sites with value 1, and let n;
be the sum of y,, over the four neighboring sites of (i,
J). Write N = (1/2)ZZn;;. According to the Ising model,
the probability of a realization y of the set of lattice
variables {y,} is given by

P(y) = {l/Z(a, B)} exp(aS + BN).  (3.2)

The parameter 8 measures the intensity of the inter-
action; when g is zero the y,; are Bernoulli with prob-
ability expit(«), while positive values of 3 promote clus-
tering of like values of the y;. For example, the odds
on the event y; = 1 increase by exp(B) for a unit in-
crease in n;. The normalizing constant Z(«, 8), known
as the partition function, is notoriously intractable and
the source of much anguish in statistical mechanics.
Note, on the other hand, the simple form taken by the
conditional probabilities:

P(y; = 1| all the other y’s) = expit(a + Bn;). (3.3)

This led Besag (1975, 1977) to define a pseudolikeli-
hood as the product of (3.3) over all i, j and to estimate
a, B by its maximization. The consistency of this MPE



Potts model for MSA
Ekeberg et al. Phys Rev Lett, 2013

Let o = (71,092, ++ ,on) represent the amino acid se-
quence of a domain with length N. Each o; takes on
values in {1,2, ...,q}, with g = 21: one state for each of
the 20 naturally occurring amino acids and one additional
state to represent gaps. Thus, an MSA with B aligned
sequences from a domain family can be written as an in-
teger array {or(?!} f= ;» With one row per sequence and one
column per chain position. Given an MSA, the empirical

N
Plea) = éf}ip (Z hi(o) + Y J'!'_]'[gi:-g_j;l) + (6)
i=1

1<i<j<N

in which hi{e;) and J;;(0:, 0;5) are parameters to be de-
termined through the constraints

Plo; =k) = z Plo) = fi(k),
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)= fi(k, 1), (7) v ‘



-Pseudolikelihood for Potts model for MSA

Ekeberg et al. Phys Rev Lett, 2013

F. Regularization

A Potts model describing a protein family with se-
quences of 50-300 amino acids requires ca. 5-10% —2-107
parameters. At present, few protein families are in this
range In s1ze, and reqularization 15 therefore needed to

(WPEM JPEMY — aramin{npll(h,J) + R(h. J)}. (18)

[h,J}
N =1 M

Ri,(h, J;—AthhrnzHJZ Z 135513 (19)
i=1 j=i+l

L1 regularization not good for these models, that is why L2 is used here!
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Marginal pseudo-likelihood: Introduction 3119

Markov network (MN) e o

A MN is a probabilistic graphical model over a set of variables
(X1,...,Xq)- (we only consider the discrete case)

The dependence structure over the variables is represented by
an undirected graph G = (V,E).

The nodes in the graph, V ={1,...,d}, represent the variables
and the edges, E C {V x V}, represent direct dependencies
among the variables.

Absence of edges represents statements of conditional
independence, in particular

Xi L Xv\us(iyuiy | Xus(i) Y
5
where MB(i) ={j € V : {i,j} € E} is the Markov blanket of node l ‘

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University



Marginal pseudo-likelihood: Introduction 419

Markov network (MN) e o

AMN is a pair (G,6;) where 6 is a parameterization of a joint
distribution Pg over (X1,..., Xyg)

Pg must satisfy the restrictions imposed by G, in particular:
Xi L Xv\ms(iyuiy | Xms (i) © P(Xi I Xvyi) = P(Xi | Xus (i)

We assume that Pg is positive.

The joint distribution factorizes according to its maximal cliques

Potx) =3 [ #cxc)

CeC(G)
where ¢c : Xc — Ry isaclique factorandZ =} , v, Pcl( xv |s

the partition function.
Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University
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Marginal pseudo-likelihood: Introduction 5|19

Structure learning

We assume we have a data set X containing n complete i.i.d.
joint observations xy = (Xk,1,...,Xk,4) generated from O-.

The aim is to discover the graph structure G* from the set of all
possible graph structures G.

Structure learning is basically model class learning.

Reasons for structure learning:

> Step in model learning - Learn distribution given the graph.
> Knowledge discovery - The structure is a goal in itself.

Structure learning methods can roughly be divided into two
categories:

> Constraint-based - Independence tests.

> Score-based - Optimization problem.

aP4N
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Marginal pseudo-likelihood: Derivation of the score 619

The Bayesian approach

We choose the graph with the highest posterior probability given
the data:
p(X16G)-p(G)

p(X)
Since p(X) is a normalizing constant, the problem can be
formulated as

p(G|X)=

argmax p(X | G)-p(G).
Geg

The key term of the Bayesian score is the marginal likelihood
which is evaluated according to

p(X] G) = Lee p(X16,G)- (8] G)do

The marginal likelihood is hard to evaluate for MNs.

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University
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Marginal pseudo-likelihood: Derivation of the score 7119

The pseudo-likelihood function
The pseudo-likelihood (Besag, 1975) is given by

d
p(X10) =] [p(X;1Xv\;,0)
j=1

Given a graph, the local Markov property allows us to simplify
the pseudo-likelihood as

d
p(X16,G) =] |p(X; 1 Xus(), 6) ]_[rﬂ_[ej,“’.
j=1

The marginal pseudo-likelihood (MPL) is evaluated according to

ﬁ(XIG)—Le B(X16,G)- (6] G)de

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University



Marginal pseudo-likelihood: Derivation of the score 8|19

Marginal pseudo-likelihood

We assume global and local independence among the
parameters (see parameter independence assumption for
Bayesian networks, Heckerman et al., 1995).

This allows us to factorize the parameter prior distribution and
solve the MPL analytically:

d 2 (a g M(nj + agpp)
X G jl ijl ijl
| I_”_[r o) || T

j=11=1

The MPL can in fact be considered the marginal likelihood for a
bi-directional dependency network (Heckerman et al., 2001).

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University
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919

Marginal pseudo-likelihood: Search algorithm

Number of possible graphs, |G|

d |G| =

2 2

4 64

8 | 268435456
16 | 1.32...-10%¢
32 | 2.04...-101%°

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University
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Marginal pseudo-likelihood: Search algorithm 10119

The direct approach

argmax p(X| G) (-p(G))
Geg
We assume a uniform prior p(G) = 1/|[G|.

The variable-wise factorization

d

pX16) = [P | Xus ()

j=1

makes the MPL a viable candidate for search algorithms based
on local changes.

BpS
ﬁ\ &
Johan Pensar: Marginal pseudo-likelihood %
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Marginal pseudo-likelihood: Search algorithm

11]19
The direct approach

argmax p(X| G)
GeG

Two graphs G; and G, are compared by Bayes pseudo-factor
p(X| Gy
K(GiGy) = P19,
p(X]| G2)

If we assume a single edge difference {i,j} between G; and G,
then

K(Gy: Go) = P(Xi | Xug, (i) P(X; | Xus, (7))
VT b | Xnme, (1) P(X [ Xngy(i))

@
QB %f
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Johan Pensar: Marginal pseudo-likelihood @ 7 @
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University o“%\

y



Marginal pseudo-likelihood: Search algorithm

12|19
The divide-and-conquer approach

By denoting MB(G) = {MB(1),...,MB(d)}, we reformulate the
original problem:

argmax p(X| G)
Geg
=3

d
argmax l_l P(X; | Xus(j))
MB(G)exjevP(VVi) j=1

subjectto i€ MB(j)=j e MB(i)foralli,jeV

&,

Bpuh
) = @ T
\G% s B>
Johan Pensar: Marginal pseudo-likelihood @ 7 %
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Marginal pseudo-likelihood: Search algorithm

The divide-and-conquer approach

Relaxed version of the reformulated problem:

argmax I_I p(X; |XMB(1))
MB(G)EXIG\/P(V\]

We now have d independent subproblems:

argmaxp(X; |XMB(1) forj=1,...,d

MB(j)CV\j

Independent problems - Parallel solving!

However, inconsistent solutions...

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University
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Marginal pseudo-likelihood: Search algorithm 14119

Forming a MN structure from inconsistent Markov blankets

Solutions to the relaxed problem are in general inconsistent in
the sense that i € MB(j) but j ¢ MB(i).

Post-process the solution to satisfy the structure of a MN.

Simple approaches:
Eanp = {{i,j} €{Vx V}:ieMB(j) AND j € MB(i)}
Eor ={{i,j} €{VxV}:ieMB(j) OR je MB(i)}

A more elaborate approach:

Enc = argmax p(X| G)
ECEor

i.e. we solve the original problem w.r.t the reduced model space
{GeG:ECEqpR}CG.

Johan Pensar: Marginal pseudo-likelihood \\\ﬁ !i %
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Marginal pseudo-likelihood: Search algorithm 15|19

Forming a MN structure from inconsistent Markov blankets

Johan Pensar: Marginal pseudo-likelihood R
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University




Marginal pseudo-likelihood: Search algorithm 15|19

Forming a MN structure from inconsistent Markov blankets

o
0=0:0
AND

ONONO
OmONO

N - 5
Johan Pensar: Marginal pseudo-likelihood \\\@ @ /, &
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Marginal pseudo-likelihood: Search algorithm 15|19

Forming a MN structure from inconsistent Markov blankets
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Marginal pseudo-likelihood: Search algorithm 15|19

Forming a MN structure from inconsistent Markov blankets
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Marginal pseudo-likelihood: Example 16119

Comparative study of proposed methods

We compare MPL-AND, -OR and -HC.

All methods use the same initial Markov blanket discovery
phase.

We generate data from synthetic models and compare the
identified structures to the true one.

The quality of the identified structures are assessed by the
Hamming distance (# False positives + # False negatives).

All results were averaged over 10 distributions and 10 samples
per distribution = 100 samples.

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University



Marginal pseudo-likelihood: Example 17119

Generating model

Binary variables.

Structure - formed by combining disconnected components:

Distribution - for each C € C and x¢ € X¢: ¢(x¢) is drawn from
U(0o,1).

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University



Marginal pseudo-likelihood: Example
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Hamming distance

Hamming distance
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MPL rocks against most popular recent
pseudolikelihood methods!
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Hope you had some good time!
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