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Introduction 
•  Shape analysis is the study of variation of shapes in 

relation with other variables. 
•  Once a suitable “shape space” is defined, analyzing 

shapes involves: 
–  Comparing them (using distances) 
–  Finding properties of datasets in this space 
–  Testing statistical hypotheses 
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Some entry points to the literature 
•  Landmarks / point sets: Kendall, Bookstein, Small, 

Dryden… 
•  Active shapes: Taylor, Cootes,… 
•  Registration: Demons, Diffeomorphic Demons (Thirion, 

Guimond, Ayache, Pennec, Vercauteren,…) 
•  Harmonic analysis: SPHARM (Gerig, Steiner,…) 
•  Medial axis and related, M-REPS (Pizer, Damon,…) 
•  Manifolds of curves / surfaces – Theory (Mumford, 

Michor, Yezzi, Mennucci, Srivastava, Mio, Klassen…)  
•  Statistics on manifolds of curves/surfaces (Pennec, 

Fletcher, Joshi, Marron…) 
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On “Diffeomorphometry”… 
•  Precursors (fluid registration): Christensen-Miller-Rabbit; 

Thirion… 
•  Large Deformation Diffeomorphic Metric Mapping –

LDDMM  
–  Images: Beg, Miller, Trouvé, Y.;  
–  Landmarks Miller, Joshi;  
–  Measures (Glaunès, Trouvé, Y.), Currents (Glaunès, 

Vaillant) 
–  Hamiltonian methods (Glaunès, Trouvé, Vialard, Y…)  

•  Metamorphosis (Miller, Trouvé, Holm, Y…) 
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Shape Spaces 
•  Shape spaces are typically modeled as differential 

manifolds, but… 
•  Almost all practical methods use a shape representation in 

a linear space of “local coordinates” 
•  Linear statistical methods can then be employed to 

analyze the data. 
•  For some of these methods (e.g., PCA), it is also 

important that linear combinations of the representations 
make sense, too. 
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Example: Kendall Shape Space 
•  Consider the family of collections of N distinct points in 

  
•  This forms an open subset of  
•  Identify collections that are can be deduced from each 

other by rotation, translation and scaling. 
•  It is a set of subsets of Q (quotient space). 
•  It can be structured as a differential manifold. 
•  The Euclidean metric on Q transforms into a Riemannian 

metric in the quotient space. 
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   Q = (!d )N



Example: Spaces of Curves 
•  The set Q of smooth functions                       is a Fréchet 

space.   
•  Quotient out translation rotations scaling and change of 

parameter to obtain a shape space. 
•  Sobolev norms on Q trickle down to Riemannian metrics 

on the shape space. 
•  See papers from Michor, Mumford, Shah… 
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Shapes Spaces and Deformable 
Templates 

•  Ulf Grenander’s metric pattern theory involves 
transformation groups that act on shapes. 

•  The transformations have a cost, represented by an effort 
functional. 

•  Under additional assumptions, this induces a metric in the 
shape space. 

•  The construction that follows will be based on these 
principles. 

•  The group is the group of diffeomorphisms. 
•  The shapes are anything that can be deformed. 
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Tangent space representations 
•  There is a natural way to build linear representations 

when the the shape space is modeled as a Riemannian 
manifold, i.e.: 
–  a topological space that can be mapped locally to a vector 

space on which differentials can be computed (with 
consistency relations between local maps). 

–  with a metric which can be used to compute lengths, and 
shortest paths between two points, which are called 
geodesics. 
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Exponential Charts (I) 
•  Geodesics can be characterized by a second order 

differential equation on the manifold. 
•  This equation has (in general) a unique solution given its 

initial position and first derivative. 
•  Fix the initial position (“template”). Denote it     . 
•  The space of all derivatives of curves in     that start from 

   is the tangent space to     at     (notation        ).  S

 S
 S

 S   TS S S
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Exponential Charts (II) 
•  The exponential map associates to each vector 

the solution at time t =1 of the geodesic equation starting 
at     in the direction v. 

•  It is a map from         to     , with notation 
 

•  It can (generally) be restricted to a neighborhood of 0 in  
        over which it is one to one, providing so-called 
normal local coordinates or an exponential chart at     .     

 S

  TS S

    v ∈ TS S  expS (v)∈ S

  TS S

 S

  v ∈TS S

 S
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SHAPES AND 
DIFFEOMORPHISMS 
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General Approach 
•  We will define shape spaces via the action of 

diffeomorphisms on them. 
•  This action will induce a differential structure on the 

shape space. 
•  It also allows to compare them: two shapes are similar if 

one can be obtained from the other via a small 
deformation. 
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Notation 
•  Diffeomorphisms of       will be denoted φ, ψ, etc.  

They are invertible differentiable transformations with a 
differentiable inverse. 
 
 

•  Vector fields over       will be denoted v, w, etc. 
They are differentiable mappings from      onto itself. 

d

d

d
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Ordinary Differential Equations 
•  Diffeomorphisms can be built as flows associated to 

ordinary differential equations (ODEs). 
•  Let                         be a time-dependent vector field. 

Assume that v is differentiable in x with bounded first 
derivative over a time interval          . 

•  Then there exists a unique solution of the ODE                   
with initial condition                defined over the whole 
interval   

   (t,x)! v(t,x)

   !y = v(t, y)
  [0,T ]

  y(0) = x0

  [0,T ]
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Flows 
•  The flow associated with the ODE                  is the 

mapping 
 
such that            is the solution at time t of the ODE 
initialized with               . 

•  In other terms:   

   !y = v(t, y)

   (t,x)!ϕ(t,x)

  ϕ(t,x)
  y(0) = x

  

∂tϕ = v(t,ϕ )
ϕ(0,x) = x

⎧
⎨
⎩
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Flows (II) 
•  Assuming that          is continuously differentiable with 

bounded derivative, uniformly in time, the associated 
flow is such that 
 
is a diffeomorphism at all times. 

•  If v has more (space) derivatives, they are inherited by    . 
•  We will build diffeomorphisms as flows associated to 

vector fields that belong in a specified reproducing kernel 
Hilbert space.  

  v(t,⋅)

   x!ϕ(t,x)

ϕ
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Hilbert Spaces 
•  A Hilbert space H is an infinite-dimensional vector space 

with an inner-product, such that the associated norm that 
makes it a complete metric space. 

•  The inner product between two elements in H is denoted 
 
 

•  The set of bounded linear functionals                    is the 
topological dual of H, denoted       . 

•  We will use the notation                        for   

  h,h '
H

   µ : H → !
  H *

  � µ�h( ) := µ(h)   µ ∈H *,h∈H
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Riesz Theorem 
•  The Riesz representation theorem states that H and 

are isometric.  
•             if and only if there exists           such that, for all  

          :  

•  The correspondence            will be denoted        , so that      
                      and its inverse 

•  We therefore have  
 
                                     

  µ ∈H *  h∈H

  H *

  h '∈H
  � µ� ′h( ) = h,h '

H

  µ! h   K H

   K H : H * → H     AH : H ! H *

   � µ�h( ) = K Hµ,h
H

 and h,h '
H
= AH h� ′h( )
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RKHS 
•  A Hilbert space H of functions defined over     , with 

values in      is an RKHS, if  
 
 
(         ) with continuous inclusions in both spaces. 
(Here                     is the space of p times differentiable 
vector fields that converge to 0 (will all derivatives up to 
order p) at infinity, equipped with the supremum norm. 

•  This means that for some constant C, and for all  

  !d

   H ⊂ L2(!d ,!k )∩C0
p (!d ,!k )

   C0
p (!d ,!k )

  p ≥ 0

  
max v

2
, v

p,∞( ) ≤ C v
H

 v ∈H

Geilo,	
  January	
  2014	
   Laurent	
  Younes	
   20	
  

  !k



RKHS 
•  If H is an RKHS, and                        the linear form 

                
 
belongs to      . 

•  General notation: if θ is a (scalar) measure and a is a 
vector field defined on its support,        is the vector measure            

   aδ x : v! aT v(x)
   x ∈!

d ,a ∈!k

 aθ

  (aθ | w) = a∫ (x)T w(x)dθ (x)

  H *
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RKHS 
•  The reproducing kernel of V is a matrix-valued function        

defined on                 by  
 
with  

•                is a k by k matrix.  
•  We will denote      the ith column of       and by      its i,j 

entry. One has, in particular 
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   KH (x, y)a = KH (aδ y )(x)

  KH (x, y)

 KH
i

 KV

  !d ×!d

   a,x ∈!d

 KH
ij

  KH
i (⋅,x), KH

j (⋅, y)
H
= KH

ij (x, y)

 KH



Usual examples (scalar kernels) 
•     is the d by d identity matrix. 
•  Gaussian kernel: 

•  Cauchy Kernel: 
 
•  Power of Laplacian: 

 
 
with                           and   

   KH (x, y) ∝ exp(−‖x − y‖2 /2σ 2 )Ik

  
KH (x, y) ∝

Ik

1+ x − y
2
σ 2

   KH (x, y) ∝ Pm(‖x − y‖/σ )exp(−‖x − y‖/σ )Ik

  P0 = 1, P1 = 1+ t   ∂t Pm − Pm = −tPm−1
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The Interpolation Problem 
•  Let H be a Hilbert space and                          . 
•  Solve the problem  

 
 
 
 

•  Solution:                            where                are identified 
using the constraints.   
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   µ1,…,µm ∈H *

   

h
H
→ min

subject to µk h( ) = λk ,k = 1,…,m

⎡

⎣
⎢
⎢

   h = akK Hµkk=1

m∑    a1,…,am



Application 
•  H is a scalar RKHS (k = 1). 
•                          
•  Solve 

•  Solution:  
 
with:  
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   x1,…,xm ∈!d

   

h
H
→ min

subject to h(xk ) = λk ,k = 1,…,m

⎡

⎣
⎢
⎢

  h(⋅) = KH (⋅,xk )akk=1

m∑

   KH (xk ,xl )al = λk , k = 1,…,m
l=1

m∑



•  Fix V, an RKHS of vector fields with at least one 
derivative (         ). 

•  We consider ODEs of the form                  with  
•  The flow evolution                                  can be interpreted 

as a control system in which the deformation, φ, is the 
state driven by the time-dependent vector field   

•  The space of attainable diffeomorphisms is 
 
 
where      is the flow associated to v.  

Attainable Diffeomorphisms 

   !y = v(t, y)   v(t,⋅)∈V

  ∂tϕ(t,⋅) = v(t,ϕ(t,⋅))

  v(t,⋅)

  GV = ψ :∃T ,∃v(t,⋅), v(t,⋅)
V

 bounded,ψ =ϕ v (T ,⋅){ }
 ϕ

v
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Attainable Diffeomorphisms 
•        is a subgroup of the group of diffeomorphisms of 
•  There is no loss of generality in taking           in the 

definition. 
•  One defines a distance on      by  

 
 
and   

 GV   !d

  T = 1

 GV

   
dV (ψ , ′ψ ) = min

0

1

∫ ‖v(t,)‖V dt :ϕ v (1,ψ ) = ′ψ{ }

   
dV (ψ , ′ψ )2 = min

0

1

∫ ‖v(t,)‖V
2 dt :ϕ v (1,ψ ) = ′ψ{ }
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Attainable Diffeomorphisms 
•  Computing                                                 is equivalent to 

solving the optimal control problem  
 
 
 
subject to  

   dV (ψ , ′ψ ) = dV (id,ψ ! ( ′ψ )−1)

   ‖v(
0

1

∫ t)‖V
2 dt → min

   ϕ(0) = id, ∂tϕ = v(t,ϕ ),ϕ(1) =ψ ! ( ′ψ )−1
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Riemannian Interpretation 
•      is the distance associated to the Riemannian metric 

 
 
since, using                  , 

 dV

   
δϕ

ϕ
= δϕ !ϕ−1

V

   !ϕ "ϕ
−1 = v

    

dV (ψ , ′ψ ) = min
0

1

∫ ‖ !ϕ(t)‖ϕ dt :ϕ(1) = ′ψ ,ϕ(0) =ψ
⎧
⎨
⎩

⎫
⎬
⎭

= min
0

1

∫ ‖ !ϕ(t)‖ϕ2 dt :ϕ(1) = ′ψ ,ϕ(0) =ψ
⎧
⎨
⎩

⎫
⎬
⎭

1/2
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Differentiable Manifold 
•  Let M be a Hausdorff topological space. An n-

dimensional local chart on M is a pair            where U is 
open in M and                             is a homeomorphism. 

•  Two charts                             are      -compatible if either   
                     or                is       on 

•  M is an n-dimensional      manifold if it can be covered 
with local charts that are all pairwise     compatible 
(which form an atlas). 

  (U ,Φ)
   Φ :U →V ⊂ !n

  (U1,Φ1),(U2 ,Φ2 )  C p

  U1 ∩U2 =∅   Φ2 !Φ1
−1  C p

   Φ1(U1 ∩U2 )⊂ !n

 C p

 C p
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Something like this 
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Tangent Vectors on Manifolds 
Tangent Vectors on a differentiable manifold are velocities of 
trajectories in the manifold.  
They represent infinitesimal displacements. 

The collection of all tangent vectors at a given point is an n-
dimensional vector space, called the tangent space at this 
point. 
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Riemannian Manifold 
•  A Riemannian manifold is a differentiable manifold with 

an inner product on each of its tangent spaces.  

  
p ∈M , v tangent to M  at p → v

p
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Riemannian distance 
•  Adding the norms of infinitesimal displacements, one can 

compute the lengths of trajectories on a manifold. 
•  The Riemannian distance is the length of the shortest path 

between two points: 

•  Curves that achieve the shortest length are called 
(minimizing) geodesics. They extend the notion of 
straight lines to manifolds. 

   
d( p, p ') = inf

0

1

∫ !x(t)
x(t )

dt : x(0) = p,x(1) = p '{ }
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Back to Diffeomorphisms 
•  Manifold: group G of diffeomorphisms. It is an open 

space of a Banach or Fréchet space and has infinite 
dimension. 

•  Infinitesimal displacements,      , are vector fields. 
•  The Riemannian metric is  

δϕ

   
δϕ

ϕ
= δϕ !ϕ−1

V
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Exponential Charts 
•  On a Riemannian manifold, one can define radial 

coordinates or exponential charts. 
•  Example: (Latitude, Longitude) on Earth.  

–  Meridian lines stemming from the North Pole are 
geodesics.  

–  A point on Earth is measured by specifying which meridian 
it belongs to (Longitude) and where it is on this meridian 
(latitude).   
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Exponential Charts 
•  Geodesics                  must satisfy a second-order 

differential equation.  
•  They are uniquely defined by their initial conditions  

•  Definition: 
where γ is the geodesic with initial conditions  
 
is the exponential map on the manifold. 

   t! γ (t)

  (γ (0), !γ (0))

  exp p (v) = γ (1)

   γ (0) = p, !γ (0) = v
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Exponential Charts 
•  Fixing p, the function                       is a local chart 

mapping a neighborhood of 0 in the tangent space to p to 
a neighborhood of p on the manifold. 

•  It is called the exponential chart. 
•  (On the sphere, longitude provides the direction of v and 

latitude provides the norm.) 
•  The inverse map:             such that                      is defined 

in a neighborhood of p and provides exponential 
coordinates (Riemannian logarithm).  

   v! exp p (v)

  p '→ v   p ' = exp p (v)
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Application to Diffeomorphisms 
•  Take M = G, a group of diffeomorphisms,           , the 

identity map.  
•  The Riemannian logarithm of ψ is obtained by solving the 

optimal control problem  
 
 
subject to  

•  The logarithm is then given by         .  

  p = id

   ‖v(
0

1

∫ t)‖V
2 dt → min

   ϕ(0) = id, ∂tϕ = v !ϕ ,ϕ(1) =ψ .

  v(0)
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EPDiff 
•  The geodesic equation on diffeomorphisms is called 

EPDiff. 
•  It expresses the conservation of “momentum” along 

optimal trajectories. 
 
 
 
 

•  Solving this equation with initial conditions            
provides a local chart of G around the identity.  

    

∂tϕ = v !ϕ

∂t AV v + adv
*AV v = 0

⎧
⎨
⎪

⎩⎪
where adv : w→ Dv w− Dww

  (id,v0 )
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Shape Spaces 
•  Assume that the shape space       is an open subset of a 

Banach space     . 
•  Assume that diffeomorphisms act on shapes, with 

notation: 

•  Thus: 

 M

 Q

   (ϕ ,q)ϕ ⋅q
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id ⋅q = q
ϕ ⋅(ψ ⋅q) = (ϕ !ψ ) ⋅q



Infinitesimal Action 
•  The infinitesimal action of vector fields: 

is defined by  

•  Let                      .  
•  We assume that, for all            ,                    is well defined 

and bounded. 

(v,q) v ⋅q

   v ⋅q := ∂ε (ϕε ⋅q)=0 ,  ϕ0 = id, (∂εϕ )ε=0 = v

   ξq : v v ⋅q

  q ∈M    ξq :V →Q
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Riemannian Metric on Shapes 
•  Define a metric on       via “Riemannian submersion”, 

yielding 
 

•  The associated distance is then given by 

•  Or: 
 
subject to  

 M

  
δq

q
= inf v

V
:ξqv = δq{ }

   dM(q0 ,q1) = inf dG (id,ϕ ) :ϕ ⋅q0 = q1{ }

   ‖v(
0

1

∫ t)‖V
2 dt → min

  q(0) = q0 , ∂t q = ξqv, q(1) = q1.
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Large Deformation Diffeomorphic 
Metric Mapping 

•  The generic “LDDMM” problem is 
 
 
 

 
•  This is an infinite-dimensional optimal control problem, 

with v as control, q as state and U an end-point cost 
assumed to be differentiable. 

•  Typically, U measures the discrepancy between q(1) and 
the “target” shape    .       

    

1
2 ‖0

1

∫ v(t,.)‖V
2 +U (q(1))→ min

subject to q(0) = q(0)  and !q(t) = ξq(t )v(t)

  q1
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Geodesics equations 
•  Optimal paths must satisfy 

 
 
 
 
 
 
for some                . 

•  The mapping                  provides a coordinate system 
equivalent to the exponential chart.                    

   p0 ∈M*
   

∂t q = ξqKVξq
* p

∂t p + (∂qξqv)* p = 0

v = KVξq
* p

⎧

⎨
⎪⎪

⎩
⎪
⎪
with q(0) = q0 , p(0) = p0.

  p0 → q(1)
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Example: Parametrized sets 
•  q: continuous embedding of S (Riemannian manifold) in 

       with 

•  If p is a measure on S,                  and 
 
 

d
  ϕ ⋅q =ϕ q

  ξqv = v q

  ξq
*a = q*a

   (ξqKVξq
* p)(x) = KVS∫ (q(x),q( y))dp( y)
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Special case: Point Sets / Landmarks 

•                           is a finite set of distinct points in       .  

•                              

•  Then  

  q = (q1,…,qN ) d

  ϕ ⋅q = (ϕ(q1),…,ϕ(qN ))

  ξqv = (v(q1),…,v(qN ))

    Q =Q* = (d )N

  
ξq

* p = pk
k=1

N

∑ δ qk

   
(ξqKVξq

* p)k = KV
l=1

N

∑ (qk ,ql ) pl
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Point Set Matching LDDMM Problem  

•  Plug into the generic problem: 
 
 
 
 
the constraint that                                for some 

•  One then has   

    

1
2 ‖0

1

∫ v(t,.)‖V
2 +U (q(1))→ min

subject to q(0) = q(0)  and !q(t) = ξq(t )v(t)

   v(t,⋅) = KVξq(t )
* p(t)

  p(t) = pk (t){ }k=1

N

  
v(t)

V

2
= pk

T KV (qk ,ql ) pl
k ,l=1

N

∑
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Reduction 
•  The problem becomes finite dimensional: 

•  This is a classical optimal control problem with state q 
and control p. 

•  One can use the adjoint method to solve it numerically. 

   

1
2 pk (t)T KV (qk (t),ql (t)) pl (t)

k ,l=1

N

∑ dt
0

1

∫ +U (q(1))→ min

subject to q(0) = q(0)  and !qk (t) = KV (qk (t),ql (t)) pl (t)
l=1

N

∑
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Adjoint Method 
•  Consider the general optimal control problem 

•  Consider q as a function of u, say      uniquely defined by 
 

•  Let 

   

g(q(t),u(t))dt
0

1

∫ +U (q(1))→ min

subject to q(0) = q(0)  and !q(t) = f (q(t),u(t))

 q
u

  F(u) = g(qu (t),u(t))dt
0

1

∫ +U (qu (1))→ min

   q
u (0) = q(0)  and !qu (t) = f (qu (t),u(t))
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Adjoint Method 
•  The adjoint methods computes  
•  Introduce the Hamiltonian 

•  Step 1: Given u, solve for the state equation 
or  

•  Step 2: Set  
•  Step 3: Solve                    (backward in time) 
•  Step 4: Let  

  Hu ( p,q) = pT f (q,u)− g(q,u)

  ∇F(u)

   !q = f (q,u)

  !q = ∂ p Hu

  p(1) = −∇U (q(1))

  !p = −∂q Hu

  ∇F(u)(t) = −∂u H ( p(t),q(t))
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Data Terms 
•  Several types of data terms                    have been 

developed depending on the interpretation made for q. 
•  If                          are labeled landmarks, use 

•  If                           are unlabeled, introduce the measure 

   q!U (q)

  q = (q1,…,qN )

  
U (q) = qk − qk

(1) 2

k=1

N

∑
  q ={q1,…,qN }

  
µq = δ qk

k=1

N

∑
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Data Terms 
•  Let                                   with 

•  This is also applicable to weighted sums of point masses. 
•  Example: discretize the line measure dl along a curve by 

 
 
and use this representation for curve comparison. 

•  Same idea for triangulated surfaces. 

   U (q) =‖µq − µ
q(1)‖2

  µ
2
= KH (x, y)dµ(x)dµ( y)∫∫

  
µq = (dlk )δ qk

k=1

N

∑
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Data Terms 
•  For oriented curves and surfaces: use vector measures 

instead of scalar ones (involving normal vector). 
•  Equivalent to current-based surface comparison (Vaillant-

Glaunès). 
•  Other variants have been developed (collections of 

curves, surfaces to sections,…) 
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Application: tracking tagged MRI 
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Matching curves from tagged MRI 
data 
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Matching Triangulated Surfaces 
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