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Introduction

* Shape analysis 1s the study of variation of shapes in
relation with other variables.

* Once a suitable “shape space” 1s defined, analyzing
shapes mvolves:

— Comparing them (using distances)
— Finding properties of datasets in this space

— Testing statistical hypotheses
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Some entry points to the literature

* Landmarks / point sets: Kendall, Bookstein, Small,
Dryden...

* Active shapes: Taylor, Cootes,...

* Registration: Demons, Diffeomorphic Demons (Thirion,
Guimond, Ayache, Pennec, Vercauteren,...)

* Harmonic analysis: SPHARM (Gerig, Steiner,...)

* Medial axis and related, M-REPS (Pizer, Damon,...)

* Manifolds of curves / surfaces — Theory (Mumford,
Michor, Yezzi, Mennucci, Srivastava, Mio, Klassen...)

 Statistics on manifolds of curves/surfaces (Pennec,
Fletcher, Joshi, Marron...)
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On “Diffeomorphometry”...

* Precursors (fluid registration): Christensen-Miller-Rabbit;
Thirion...

* Large Deformation Diffeomorphic Metric Mapping —
LDDMM

— Images: Beg, Miller, Trouvé, Y.;
— Landmarks Miller, Joshi;

— Measures (Glaunes, Trouve, Y.), Currents (Glaunes,
Vaillant)

— Hamiltonian methods (Glaunes, Trouve, Vialard, Y...)

* Metamorphosis (Miller, Trouve, Holm, Y...)
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Shape Spaces

* Shape spaces are typically modeled as differential
manifolds, but...

* Almost all practical methods use a shape representation in
a linear space of “local coordinates”

* Linear statistical methods can then be employed to
analyze the data.

* For some of these methods (e.g., PCA), 1t 1s also
important that linear combinations of the representations
make sense, too.
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Example: Kendall Shape Space

* Consider the family of collections of N distinct points in
Rd
» This forms an open subset of O =(R*)"

* Identify collections that are can be deduced from each
other by rotation, translation and scaling.

* It 1s a set of subsets of O (quotient space).
It can be structured as a differential manifold.

* The Euclidean metric on Q transforms into a Riemannian
metric 1n the quotient space.
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Example: Spaces of Curves

e The set O of smooth functions ¢ :[0,1]— R”is a Fréchet
space.

* Quotient out translation rotations scaling and change of
parameter to obtain a shape space.

* Sobolev norms on Q trickle down to Riemannian metrics
on the shape space.

* See papers from Michor, Mumford, Shah...
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Shapes Spaces and Deformable
Templates

* Ulf Grenander’s metric pattern theory involves
transformation groups that act on shapes.

* The transformations have a cost, represented by an effort
functional.

* Under additional assumptions, this induces a metric in the
shape space.

 The construction that follows will be based on these
principles.

* The group is the group of diffeomorphisms.
* The shapes are anything that can be deformed.
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Tangent space representations

* There 1s a natural way to build linear representations
when the the shape space 1s modeled as a Riemannian
manifold, 1.e.:

— a topological space that can be mapped locally to a vector

space on which differentials can be computed (with
consistency relations between local maps).

— with a metric which can be used to compute lengths, and
shortest paths between two points, which are called
geodesics.
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Exponential Charts (I)

* Geodesics can be characterized by a second order
differential equation on the manifold.

* This equation has (in general) a unique solution given its
initial position and first derivative.

» Fix the initial position (“template”). Denote it S .

* The space of all derivatives of curves in S that start from
S is the tangent space to S at S (notation 7.5 ).
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Exponential Charts (II)

* The exponential map associates to each vector ve TS
the solution at time ¢ =1 of the geodesic equation starting
at S in the direction v.

* Itis amap from 7S to S, with notation

vET.S>exp:(VES

* It can (generally) be restricted to a neighborhood of 0 1n
TS over which it is one to one, providing so-called
normal local coordinates or an exponential chart at .S .
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SHAPES AND
DIFFEOMORPHISMS
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General Approach

* We will define shape spaces via the action of
diffeomorphisms on them.

e This action will induce a differential structure on the
shape space.

* It also allows to compare them: two shapes are similar 1f
one can be obtained from the other via a small
deformation.
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Notation

» Diffeomorphisms of R“will be denoted ¢, v, etc.
They are invertible differentiable transformations with a
differentiable inverse.

» Vector fields over R? will be denoted v, w, etc.
They are differentiable mappings from R onto itself.

Geilo, January 2014 Laurent Younes 14




Ordinary Differential Equations

* Diffeomorphisms can be built as flows associated to
ordinary differential equations (ODEs).

* Let (¢,x) = v(¢,x) be a time-dependent vector field.
Assume that v 1s differentiable 1n x with bounded first
derivative over a time interval [0,7].

* Then there exists a unique solution of the ODE y =v(#,y)

with initial condition y(0) = x, defined over the whole
interval [0,7]




Flows

e The flow associated with the ODE y =v(%,)) is the

mappin
PPIS (£,) > (t,)

such that ¢(¢,x) 1s the solution at time ¢ of the ODE
initialized with y(0)=x.

* In other terms:

4 N
{Bt(p =v(t,0)

¢(0,x)=x
\_ ,
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Flows (II)

* Assuming that v(?,-) is continuously differentiable with
bounded derivative, uniformly 1n time, the associated
flow 1s such that

X (t,x)
1s a diffeomorphism at all times.

* If v has more (space) derivatives, they are inherited by .

 We will build diffeomorphisms as flows associated to
vector fields that belong 1n a specified reproducing kernel
Hilbert space.
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Hilbert Spaces

* A Hilbert space H is an infinite-dimensional vector space
with an inner-product, such that the associated norm that
makes 1t a complete metric space.

* The inner product between two elements in H is denoted

('),

* The set of bounded linear functionals 1 : H — R 1s the
topological dual of H, denoted H .

* We will use the notation (,u | h) =p(h)for ue H ,he H
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Riesz Theorem

» The Riesz representation theorem states that / and H
are 1sometric.

* 11e H if and only if there exists /4 € H such that, for all
h'e H: , |
(,U|h ):<h’h >H

* The correspondence u +— £ will be denoted K, so that
K, :H — Handitsinverse A, : H+> H

e We therefore have

(1h)=(K u,h) and (hh') =(A,hl})
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RKHS

» A Hilbert space H of functions defined over R’ with
values in R"is an RKHS, if

Hc (R, R )N C?(RY,RY)

(p 2 0) with continuous inclusions in both spaces.

(Here C/(R”,R") is the space of p times differentiable
vector fields that converge to 0 (will all derivatives up to
order p) at infinity, equipped with the supremum norm.

* This means that for some constant C, and for all ve A

),..) <l
D, H

max (‘ ‘v >
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RKHS

 [f H1san RKHS, and x € R?,a € R* the linear form

ad_:vi>a v(x)

belongs to H .

* General notation: if 6 1s a (scalar) measure and a is a
vector field defined on its support, a0 is the vector measure

(a0 w)= [ a(x)" w(x)do(x)
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RKHS

* The reproducing kernel of V' is a matrix-valued function K,
defined on R’ xR? by

e Kale)a= K (a8)00)
W1 0

« K (x,y)is ak by k matrix.

» We will denote K, the ith column of K, and by K its i,
entry. One has, in particular

<K;,(-,x),K1{[(-,y)>H = Kg(xay)
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Usual examples (scalar kernels)

[ is the d by d identity matrix.
 Gaussian kernel: K, (x,y) o< exp(— | x—ylf /2(72)1k

1

k

ele—off /o7

Cauchy Kernel: K, (x,y) o<

* Power of Laplacian:
K, (x,y) <P ([x=yl/o)exp(—llx-yll /o)1,
with £, =1, P=1+t and 0 P — P =—tP

m—1




The Interpolation Problem

» Let H be a Hilbert space and ,,....u € H .
* Solve the problem

4| — min
H

_subject to (uk‘h) =ALk=1....m

* Solution: /1 = 2; a K (L where a,,...,a  are identified
using the constraints.




Application

 Hisascalar RKHS (k=1).
¢ X.,u0nX e R?

e Solve

HhH — min
H

 subject to h(x, ) = ALk=1,..m

Solution: h()= " K, (-x,)a,

with: EZIKH(xk,xl)al =A, k=1,...,m

25




Attainable Diffeomorphisms

Fix V, an RKHS of vector fields with at least one
derivative (p 21).

We consider ODEs of the form y = v(¢,)) with v(¢,) €V

The flow evolution d ¢(,") = v(¢,¢(t,-)) can be interpreted
as a control system in which the deformation, ¢, is the
state driven by the time-dependent vector field v(Z,-)

The space of attainable diffeomorphisms 1s

v(t,7)|, bounded.y =¢"(T,)]

where " 1s the flow associated to v.

G, ={y :31.3v(1.)

V

’




Attainable Diffeomorphisms

« G, is a subgroup of the group of diffeomorphisms of R*

* There 1s no loss of generality 1in taking 7 =1 in the
definition.

* One defines a distance on G, by

d,(y,y')= min{f; Ive) N, di:@*(Ly) = w’}

and

d,(yy') = min{ | ; Iv@) I dt " (Ly) = 1//’}
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Attainable Diffeomorphisms

» Computing d,(y,y")=d, (id,yo(y’')") is equivalent to
solving the optimal control problem

[ V@) I dr — min

subject to @(0) =1id, d,¢ = v(1,0), () =y o (y’)"




Riemannian Interpretation

. dV 1s the distance associated to the Riemannian metric
. -1
H5§DH¢_H6¢0¢ HV

. . . -1
since, using Qo =1,

dV<w,w'>=min{ [ Tol, dzzqoa):w',qo(m:w}

= min{ﬁ) lp) I} dt: (1) =y, (0) = y/}
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Ditterentiable Manifold

* Let M be a Hausdorff topological space. An n-
dimensional local chart on M 1s a pair (U,®)where U 1s
openin M and ®:U -V < R" 1s a homeomorphism.

* Two charts (U,,®,),(U,,®,) are C?-compatible if either
UnU,=Bor ®,0®,"is C* on ® (U NU,)cR"
* M 1s an n-dimensional C?manifold if 1t can be covered

with local charts that are all pairwise C”compatible
(which form an atlas).
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Something like this

31
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Tangent Vectors on Manifolds

Tangent Vectors on a differentiable manifold are velocities of
trajectories in the manifold.
They represent infinitesimal displacements.

The collection of all tangent vectors at a given point 1s an n-
dimensional vector space, called the tangent space at this
point.
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Riemannian Manifold

* A Riemannian manifold 1s a differentiable manifold with
an 1nner product on each of its tangent spaces.

pe M, v tangent to M atp%Hva
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Riemannian distance

* Adding the norms of infinitesimal displacements, one can
compute the lengths of trajectories on a manifold.

* The Riemannian distance is the length of the shortest path
between two points:

d(p.p)=inf| [ i)

30 = px(h=p|
* Curves that achieve the shortest length are called

(minimizing) geodesics. They extend the notion of
straight lines to manifolds.
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Back to Diffeomorphisms

* Manifold: group G of diffeomorphisms. It 1s an open
space of a Banach or Fréchet space and has infinite
dimension.

* Infinitesimal displacements, 0@, are vector fields.

e The Riemannian metric 1s

1601, =|60 0",
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Exponential Charts

* On a Riemannian manifold, one can define radial
coordinates or exponential charts.
* Example: (Latitude, Longitude) on Earth.

— Meridian lines stemming from the North Pole are
geodesics.

— A point on Earth 1s measured by specifying which meridian
it belongs to (Longitude) and where it is on this meridian
(latitude).
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Exponential Charts

* Geodesics 7+ Y(¢) must satisfy a second-order
differential equation.

* They are uniquely defined by their initial conditions

(7(0),7(0))

* |Definition: exp (v) =7y(1)

where y 1s the geodesic with initial conditions
Y(0)=p,7(0)=v

1s the exponential map on the manifold.
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Exponential Charts

* Fixing p, the function v+ exp (v) is a local chart
mapping a neighborhood of 0 in the tangent space to p to
a neighborhood of p on the manifold.

* It is called the exponential chart.

* (On the sphere, longitude provides the direction of v and
latitude provides the norm.)

* The inverse map: p'— v such that p'= exp, (v) 1s defined
in a neighborhood of p and provides exponential
coordinates (Riemannian logarithm).
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Application to Diffeomorphisms

» Take M = G, a group of diffeomorphisms, p =1d, the
1dentity map.

* The Riemannian logarithm of y is obtained by solving the
optimal control problem

1 ) .
J.O I v(z) ||V dt — min

subject to @(0)=1id, d,. @ =vo@, p(1)=vy.

* The logarithm is then given by v(0).
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EPDitf

* The geodesic equation on diffeomorphisms is called
EPDiff.

* [t expresses the conservation of “momentum’ along
optimal trajectories.

ratgo =Vo(Q
0,A,v+ad A v=0

3

where adv ‘w— Dvw—Dww

* Solving this equation with initial conditions (1d,v,
provides a local chart of G around the 1dentity.
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Shape Spaces

* Assume that the shape space M is an open subset of a
Banach space O .

* Assume that diffeomorphisms act on shapes, with
notation:

(@.9)> @ g

 Thus: id-g=q
¢-(W-q)=(Q°y)-q
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Infinitesimal Action

* The infinitesimal action of vector fields: (v,g)—~>v-q
1s defined by

V-q = ag (ng . Q)E=O’ gDO — 1d, (88¢)8=0 =YV

* LetE v veg.
e We assume that, for all g € M, ﬁq V' — O is well defined
and bounded.




Riemannian Metric on Shapes

 Define a metric on M via “Riemannian submersion”,
yielding

o, = int ], :£,v=54)

* The associated distance is then given by

d,(q,.9,)=inf{d,(id,@):¢0-q,=¢,}

¢ |Or: J.Olll v() II”. dt — min

subjectto  q(0)=g,, d,g= éqva q()=q,.
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Large Deformation Diffeomorphic
Metric Mapping

* The generic “LDDMM” problem is

LU, I +U(g(1) = min
2 J, >+) Hy
subject to ¢(0) = ¢ and §(¢) = Sy (D)

* This 1s an infinite-dimensional optimal control problem,
with v as control, g as state and U an end-point cost
assumed to be differentiable.

* Typically, U measures the discrepancy between ¢(1) and
the “target” shape ¢, .




Geodesics equations

* Optimal paths must satisfy
9,g=EK,Ep

d,p+(d,Ev) p=0
V=K, g, p

with q(0) = q,,, p(0) = p,.
for some p, € M.

N

* The mapping p, — ¢q(1) provides a coordinate system
equivalent to the exponential chart.
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Example: Parametrized sets

* ¢: continuous embedding of § (Riemannian manifold) in

d o
R with 0-qg=qoq
S,y=veq
« Ifp is a measure on S, §;a=q*a and

(§K,Ep)(x) = | K, (q(x).q(»)dp(y)




Special case: Point Sets / Landmarks

« q=(q,»---,q,) is a finite set of distinct points in R? .

©-q=(9(q,),.--.0(q,))
&,V =0(q,)-->v(qy))

. Q=0 =R &p=>1p0,
k=1

* Then
. N
EK,Ep), =D K, (4,.9)p,
/=1
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Point Set Matching LDDMM Problem

* Plug into the generic problem:

LU, I +U(g(1) = min
2 0 >
subject to ¢(0) = ¢ and §(¢) = S, V(D)

the constraint that v(z,") =K &, p(¢) for some
N
p)={p,(O} _

* One then has &
bolf = 3 07K, )0

k,I=1
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Reduction

* The problem becomes finite dimensional:

'Y 5,00 K, (g, (04,00 p, (0t +U(g(1)) = min

k=1

N

subject to ¢(0) = ¢ and ¢, (1) = D K, (q,(1),q,() p,(?)
[=1

* This 1s a classical optimal control problem with state g

and control p.
* One can use the adjoint method to solve it numerically.
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Adjoint Method

* Consider the general optimal control problem
|| glq(u()dr+U(g(1)) — min
subject to ¢(0) = ¢ and (1) = f(q(t),u(?))
* Consider g as a function of u, say ¢“ uniquely defined by
q"(0)=¢" and ¢“() = f(q" (),u(?))

e Let 1 .
F(u) = JO g(q (t),u(?))dt+U(g" (1)) > min




Adjoint Method

* The adjoint methods computes VF'(u)
* Introduce the Hamiltonian

H (p.q)=p' f(q,u)~g(q.u)
 Step 1: Given u, solve for the state equation ¢ = f(q,u)

o g=0 H,

« Step 2: Set p(1)=-VU(q(1))
» Step 3: Solve p=—d_H, (backward in time)
+ Step 4: Let VF(u)(1)=—3 H(p(t),q(t))




Data Terms

* Several types of data terms ¢ +— U(g) have been
developed depending on the interpretation made for g.

* If g=(q,...

* If g=1{gq,,..

Geilo, January 2014

,q, ) are labeled landmarks, use

U(q)= Z\qk a|

.,q,} are unlabeled introduce the measure

N
u,=29,

k=1
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Data Terms

 Let Ulg)=lp, -, IF with

I = [[ &, (e d o d ()

* This 1s also applicable to weighted sums of point masses.
* Example: discretize the line measure dl along a curve by

U, = 2<dz ),

and use this representatlon for curve comparison.

* Same 1dea for triangulated surfaces.

Geilo, January 2014 Laurent Younes 53




Data Terms

* For oriented curves and surfaces: use vector measures
instead of scalar ones (involving normal vector).

* Equivalent to current-based surface comparison (Vaillant-

Glaunes).

e Other variants have been developed (collections of
curves, surfaces to sections,...)
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Application: tracking tagged MRI

—
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Matching curves from tagged MRI
data

| o

7
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Matching Triangulated Surfaces
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