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Aim

Principal component analysis (PCA) is a widely used method for reducing the dimension of high-dimensional
data, even though the estimated eigenvectors are asymptotically inconsistent. We instead investigate the asymp-
totic behavior of the principal component scores to explain why PCA can still work as an exploratory tool.

Problem

PCA reduces a p-dimensional vector x = [x1, . . . , xp]
T to a set of scores zj by

constructing linear combinations

zj = vTj x = vi1x1 + vi2x2 + · · ·+ vipxp,

where vj are the eigenvectors of the covariance matrix Σ of x. In practice, one
uses the eigenvector v̂j of the empirical covariance matrix S, usually referred
to as the sample eigenvector. In the classical case (p � n), v̂j is a consistent
estimator for vj .

X1

X2
v1v̂1

However, in the high-dimensional setting, p� n, the sample eigenvectors v̂j do

not in general converge to the population vectors vj , (Johnstone and Lu, 2009).

Assumptions
We investigate the asymptotic behavior of PC scores as n is �xed and p → ∞,
when the m leading eigenvalues scale linearly with the dimension:

λ1 = σ2
1p, λ2 = σ2

2p, · · · λm = σ2
mp,

a special case of the HDLSS setting. We also assume Zj ∼ N (0, I) and λj = τ2

for j = m+ 1, . . . , p, which can be generalized Jung et al. (2012). The situation
was investigated by Shen et al. (2012) for λ ∼ pα, α > 1.

Asymptotic ratio
Under the speci�ed assumptions, the ratio between the sample and population
principal component scores is shown to converge to the following limit, as p→∞:

Ẑij
Zij
→ Rj + εij , i = 1, . . . , n, j = 1, . . . ,m,

where the ratio Rj and εij are distributed as

Rj ∼
√

n

φj(W)
σjvjj(W), εij ∼

√
n

φj(W)

m∑
k=1,k 6=j

σk
zik
zij

vjk(W),

where W ∼ Wishart(diag(σ1, . . . , σm), n) with the stochastic eigenvectors and
-values vj(W) and λj(W).

Data model and pervasiveness

The coe�cients of the eigenvector v = [v1, v2, . . . , vp]
T can be interpreted as the

e�ects of the latent factor zi on the observed variable x. To construct a data
model which ful�lls our asymptotic assumptions, we introduce the concept of
pervasiveness: An eigenvector is pervasive, if the number of non-zero coe�cients
is asymptotically a non-zero proportion of the dimension. If an eigenvector is
pervasive with �xed coe�cients, the corresponding eigenvalue must scale linearly
with the dimension:

λi ∼ p.

Biological interpretation
From the area of genomics and genetic data, we have at least two situations
where pervasive e�ects are reasonable from a biological perspective:

• Genetic markers, such as SNPs, from di�erent populations where ethnicity
is a latent factor.

• Microarray expression data from cancer cases and controls where disease
status is a latent factor.

Simulations
Simulations show that for realistic parameters the last terms δij+εij will be small

compared to Rj . As Rj is independent of observation index i, the ratio between

population and sample scores will for each component be approximately equal

for all observations. Visually, we see the di�erence only as a common scaling,

where the relative positions of the scores will remain the same. In the following

simulation, black circles are the true scores and red circles the estimated scores:
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Conclusion

We o�er an explanation for the practical success of PCA with certain high-dimensional data: In situations with
pervasive signals, the asymptotic inconsistency in eigenvectors is limited to a common scaling for the scores.
This will conserve the relative positions and thereby the visual information of the population scores in the
estimated scores.


