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Motivation: Features of a Dynamic Genomic Process

“p >> n”:
I Number of observations smaller than number of variables.
I Thousands of variables and hundreds of observations.

Structure:
I Highly complex and structured phenomenon.
I Possibly with additional topographical structure (small world).

Sparsity: only small number of links between nodes.
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“Network” as Graphical Model

In Genomics: typically have measurements of nodes
Examples: RNA-seq, GWAS, proteomics

Proposal: interpret network as conditional independence relations.
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Motivation: Dynamic Genomic Networks

Transcription: snap-shot of gene activity in time and space.

Microarray and RNA-seq data measure gene activity.

Running example: T-cell time-series dataset.

Temporal expression of 58 genes for 10 spaced time points.

At each time point there are 44 separate measurements.

Definition (Aim)

Determine dynamic genomic graph G on basis of {Y (i)
gt }gti .
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Dynamic Genomic Graphs

Γ be a set of “genes”.

T be a set of ordered “time points”.

Definition (Dynamic genomic graph)

A dynamic genomic graph is a pair G = (V ,E ).

Vertices: V = {vij}i∈Γ,j∈T , where Γ and T are finite sets.

Links: ordered pair of elements E ⊆ V × V .

Time1

Time 2v11 v21

v31 v41

v12 v22

v32 v42

Ernst Wit Networks and Sparse Graphical Models



Coloured graphs

Definition (Coloured graph)

A coloured graph is a triplet GF = (V ,E ,F ), where G = (V ,E ) is a graph
and F is a mapping on the links, i.e.:

F : E → C ,

where C is a finite set of colours.
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Special kind of coloured graphs: Factorial Graphs

Denote mapping F : E → C by E ≺ F .
In analogy with ANOVA, we define the following colouring:

E ≺ 0⇒ an empty graph.

E ≺ F1.

E ≺ FT .

E ≺ FΓ.

E ≺ FΓT .

v12

v22

v32

Time 1 Time 2

v11

v21

v31
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Special kind of coloured graphs: Factorial Graphs

Denote mapping F : E → C by E ≺ F .
In analogy with ANOVA, we define the following colouring:

E ≺ 0⇒ an empty graph.

E ≺ F1: same colour for all links

E ≺ FT .

E ≺ FΓ.

E ≺ FΓT .

v12

v22

v32

Time 1 Time 2

v11

v21

v31

c1
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Special kind of coloured graphs: Factorial Graphs

Denote mapping F : E → C by E ≺ F .
In analogy with ANOVA, we define the following colouring:

E ≺ 0⇒ an empty graph.

E ≺ F1.

E ≺ FT : same colour across all genes

E ≺ FΓ.

E ≺ FΓT .

v12

v22

v32

Time 1 Time 2

v11

v21

v31

c1 c2
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Special kind of coloured graphs: Factorial Graphs

Denote mapping F : E → C by E ≺ F .
In analogy with ANOVA, we define the following colouring:

E ≺ 0⇒ an empty graph.

E ≺ F1.

E ≺ FT .

E ≺ FΓ: same colour across all times

E ≺ FΓT .

v12

v22

v32

Time 1 Time 2

v11

v21

v31

c1

c2
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Special kind of coloured graphs: Factorial Graphs

Denote mapping F : E → C by E ≺ F .
In analogy with ANOVA, we define the following colouring:

E ≺ 0⇒ an empty graph.

E ≺ F1.

E ≺ FT .

E ≺ FΓ.

E ≺ FΓT : all different colours

v12

v22

v32

Time 1 Time 2

v11

v21

v31

c3c1

c2 c4
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Natural Partitions

Definition (Natural partition)

Let E = {Si ,Ni}nT−1
i=0 be subsets of links where Si ,Ni are defined as follows:

Si = {{(vjt , vj,t+i ), (vj,t+i , vjt)}|j ∈ Γ, t = 1, . . . , nT − i},

and
Ni = {{(vjt , vk,t+i ), (vk,t+i , vjt)}|∀j 6= k ∈ Γ, t = 1, . . . , nT − i}.

The natural partitions imply subgraphs of G and imply partions of Θ for GGMs:

Θ =


S0 N0 S1 N1 S2 N2 . . . . . .

S0 N1 S1 N2 S2 . . . . . .
S0 N0 S1 N1 S2 N2

S0 N1 S1 N2 S2

S0 N0 S1 N1

S0 N1 S1


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Factorial Graphical Models

Definition (Gaussian graphical models for factorially coloured graphs)

A factorial Gaussian graphical model is a graphical model defined on:

a dynamic factorial graph G = (V ,E ,F ), where

a factorial colouring F is applied separately to natural partitions

Si ≺ FSi , Ni ≺ FNi
, i = 0, . . . , nT − 1

which determines Θ in

Y ∼ N(µ,Θ−1).

Time1

Time 2v11 v21

v31 v41

v12 v22

v32 v42
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Example: Factorial Gaussian Graphical Model

Model:

(S0 ≺ 1), N0 ≺ FT , S1 ≺ 1, N1 ≺ 0.

Factorial coloured graph:

Time1

Time 2v11 v21

v31 v41

v12 v22

v32 v42

Precision Matrix:

Θ =



θ1 θ2 θ2 θ2 θ4 0 0 0
θ1 θ2 θ2 0 θ4 0 0

θ1 θ2 0 0 θ4 0
θ1 0 0 0 θ4

θ1 θ3 θ3 θ3

θ1 θ3 θ3

θ1 θ3

θ1


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Penalized likelihood for GGMs

Consider an experiment: |Γ| genes measured across |T | time points.

Assume n iid samples y(1), . . . , y(n), where y(i) = (y
(i)
1 , . . . , y

(i)
ΓT ).

Assume Y(i) ∼ N(0,Θ−1), then

Likelihood:
l(Θ|y) ∝ log(|Θ|)− tr(SΘ).

AIM: Optimization of penalized likelihood:

Θ̂ := argmaxΘ{l(Θ|y)}

subject to

Θ � 0;

||Θ||1 ≤ 1/λ;

some factorial colouring F .
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Numquam ponenda est pluralitas sine necessitate

William Occam (1288-1348) proposed a meta-theory of knowledge:

“For nothing ought to be posited without necessity.”

Can be interpreted statistically as a

Aesthetic principle: enhances model interpretability through
parsimonious representation

Pragmatic principle: computability.

Ontological principle: represents expectation about nature of
solution.

Prediction principle: bias-variance trade-off
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Inferring penalized factorial Gaussian graphical models

LogdetPPA. Newton-CG primal proximal point algorithm (Wang et al.,
2010, including Kim Toh and Defeng Sun) is used to solve optimization:

Θ̂ := argmin
Θ
−{log|Θ| − tr(ΘS) + λ′θ+ + λ′θ− : A(Θ) = 0,

B(Θ)− θ+ + θ− = 0,Θ � 0,θ+,θ− ≥ 0}

A(Θ): linear constraints which depend on coloured graph.

B(Θ): `1-norm penalty on elements of precision matrix.

θ+ and θ− are additional variables (slack variables).

Θ � 0: semi-positive definite constraint.

Solves Θ̂ up to 2000× 2000 .
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Simulations: Lag 0 network identification

Table : n = 50 and t = 10 for various number of genes (p)

p = 50 p = 100 p = 50 p = 100
SCAD SEN 0.987 0.957 0.992 0.971

SPE 0.990 0.989 0.945 0.946
Distance 6.289 7.484 9.576 30.192

GLASSO SEN 0.930 0.946 0.975 0.923
SPE 0.989 0.967 0.944 0.942

Distance 6.821 13.67 9.641 30.517
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Simulations: Lag 1 network identification

Table : n = 50 and t = 10 for various number of genes (p)

p = 50 p = 100 p = 50 p = 100
SCAD SEN 0.998 0.948 0.989 0.993

SPE 0.985 0.899 0.977 0.959
Distance 0.602 1.665 0.452 3.254

EBDBN SEN 0.343 0.195 0.394 0.226
SPE 0.615 0.793 0.599 0.787

Distance 37.910 52.048 59.730 80.722
GeneNet SEN 0.000 0.000 0.000 0.000

SPE 0.969 0.971 0.997 0.999
Distance 10.607 15.092 19.414 31.197
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T-cell data

Aim. Use large time-course experiment to characterize response of human
T-cell line (Jurkat) to PMA and ionomycin treatment.

T-cell time-series dataset

Temporal expression of 58 genes for 10 unequally spaced time points.

At each time point there are 44 separate measurements.

See Rangel et al. (2004) for more details.
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Application to T-cell data

S0 ≺ F1,N0 ≺ FΓ,S1 ≺ FT ,N1 ≺ FΓ

Θ =


S1

0 N1
0 S1

1 N1
1 0 0 . . . . . .

S1
0 N1

1 S1
1 0 0 . . . . . .

S2
0 N2

0 S2
1 N2

1 0 0
S2

0 N2
1 S2

1 0 0
S3

0 N3
0 S3

1 N3
1

S3
0 N3

1 S3
1


N1

0 = N2
0 = . . . = N10

0 N1
1 = N2

1 = . . . = N10
1

RB1

SIVA

LCK

ITGAM

SMN1

CASP8

PCNA

CCNC

PDE4B

APC

ID3

CDK4

TCF12

CDC2

CCNA2

PIG3

CASP4

TCF8

GATA3

CSF2RA

MPO

CYP19

CASP7

JUNB

NFKBIA

RB1

SIVA

ITGAM

SMN1

PCNA

CCNC

ID3

SLA

CDK4

TCF12

MCL1

CDC2

CCNA2

MYD88

TCF8

GATA3

IL2RG

CSF2RA

MPO

CYP19

CASP7

JUNBNFKBIA
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What have we achieved so far? And problems!

Summary:

Penalized Gaussian graphical models

Coloured graphs

Natural partitions

Factorially coloured Gaussian graphical models

Problems:

1 Factorial colouring not particularly flexible in modeling time dynamics.

2 Gaussian assumption may be too restrictive for realistic genomic data.
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1. Extension: Slowly changing graphical models

Problem: Estimate changes in the dynamic of the network.

Main Idea: Penalize changes between graphs at different time points

||∆Θ||1 =
t−1∑
s=0

t−1∑
k=0

||Nk
s − Nk+1

s ||1.

b b

bb

b b

bb

Penalty for ChangesTime 1 Time 2

Solution: Penalized maximum likelihood subject to constraints.
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Application to a time-course dataset

S0 ≺ FΓT ,N0 ≺ 1,N1 ≺ 1,N2 ≺ 0

Θ =


S1

0 N1
0 S1

1 N1
1 0 0 . . . . . .

S1
0 N1

1 S1
1 0 0 . . . . . .

S2
0 N2

0 S2
1 N2

1 0 0
S2

0 N2
1 S2

1 0 0
S3

0 N3
0 S3

1 N3
1

S3
0 N3

1 S3
1


N1

0 |N1
0 | − |N2

0 | |N2
0 | − |N3

0 |
N0 at time 1

NMB0886

NMB1980

NMB1378
NMB1401

NMB0102

NMB1321

NMB0046

NMB0438

NMB0125

NMB0888

NMB1322

NMB1811

NMB2141

NMB1312

NMB0211

NMB0889

NMB1437

NMB0206

NMB1580

NMB1808

NMB1857

NMB1728

NMB0467

NMB1377

NMB0035

NMB1394

NMB0568

NMB2037

NMB0720

NMB0559

NMB1342

NMB1058

NMB1809

NMB0700

NMB1973

NMB0944

NMB1812

NMB2038

NMB0926

NMB1053 NMB0721

NMB0791

NMB1458

NMB1541

NMB1810

NMB1636

NMB1972

NMB0744

1

NMB0886
NMB0125

NMB0888
NMB1580

NMB0926

NMB1053

NMB0721

NMB1810

NMB1636

NMB0744

7

NMB1321

NMB1857

NMB0926

NMB1053
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2. Extension: Non-Normality

Problem: Non-Normality of the data (e.g. T-cell).

19.5 20.0 20.5

0.0
0.5

1.0
1.5

2.0

FYB

De
nsi

ty

18.2 18.6 19.0

0.0
0.5

1.0
1.5

2.0
2.5

MPO

De
nsi

ty

15.5 16.5 17.5

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

MCL1

De
nsi

ty
Solution: Copula Gaussian graphical models
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Copula Gaussian graphical models

IDEA:

Graph exists on a hidden Gaussian variable Z ∼ N(0,Θ),

Z gives rise to observed non-Gaussian data Y.

b

b

b

b

b

b

b

v1
v2

v3

v4
v5

v6
v7

F1

F2

F7

Marginal Distribution: F

...

Y1 = F−1
1 (φ(Z1))

Y2 = F−1
2 (φ(Z2))

Y7 = F−1
p (φ(Z7))

...

Observed: YLatent Variable: Z ∼ N(µ,Θ−1)

We consider the Fi as nuisance parameters.

For continuous variables: 1-to-1 relationship between Z and Y .
For discrete variables, relationship is more complicated!
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Application of Gaussian copula graphical models to T-cell

S0 ≺ F1,N0 ≺ FΓ,S1 ≺ FT ,N1 ≺ FΓ

RB1

MAPK9

SMN1

E2F4

CCNC

APC

TCF12

CCNA2

CASP4

TCF8

GATA3

CSF2RA

CYP19

JUNB

RB1

MAPK9

JUND

ITGAM

SMN1CCNC

APC

TCF12 CCNA2

PIG3

CASP4
TCF8

GATA3

CSF2RA

MPO

CYP19

JUNB

N1
0 = N2

0 = . . . = N10
0 N1

1 = N2
1 = . . . = N10

1

Ernst Wit Networks and Sparse Graphical Models



Dynamical mammary gland application

Mammary gland gene expression data:

Microarray experiment

using mammary tissue from female mice

across 4 different developmental stages

for 8,600 genes.

3 replicates on each of 18 time points.

30 genes have been identified as activators for developmental stages (Wit
and McClure, 2004).

Objective:

Study interactions between these crucial mice genes.
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Inference

Figure : Undirected N0 (left) and directed N1 (right) time series chain graphical model
networks inferred from mammary gland time course gene expression data.

Abegaz and Wit. “Sparse time series chain graphical models for reconstructing genetic

networks”. Biostatistics. 2013
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Conclusions

Graphical models are a convenient formulation of many genomic
networks.

Static boolean networks:
I Sparse GLM inference via dglars.
I Software: R package dglars.

Dynamic continuous networks:
I Chain graphical models infer sparse time dynamics.
I Software: R package SparseTSCGM.
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