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Summary. Streptococcus pneumoniae is a typical commensal bacterium causing severe diseases. Its prevalence is high among
young children attending day care units, due to lower levels of acquired immunity and a high rate of infectious contacts
between the attendees. Understanding the population dynamics of different strains of S.pneumoniae is necessary, for example,
for making successful predictions of changes in the composition of the strain community under intervention policies. Here we
analyze data on the strains of S. pneumoniae carried in attendees of day care units in the metropolitan area of Oslo, Norway.
We introduce a variant of approximate Bayesian computation methods, which is suitable for estimating the parameters
governing the transmission dynamics in a setting where small local populations of hosts are subject to epidemics of different
pathogenic strains due to infections independently acquired from the community. We find evidence for strong between-strain
competition, as the acquisition of other strains in the already colonized hosts is estimated to have a relative rate of 0.09 (95%
credibility interval [0.06, 0.14]). We also predict the frequency and size distributions for epidemics within the day care unit,
as well as other epidemiologically relevant features. The assumption of ecological neutrality between the strains is observed
to be compatible with the data. Model validation checks and the consistency of our results with previous research support
the validity of our conclusions.

Key words: Bayesian inference; Continuous-time Markov chains; Epidemiology; Multi-strain models; Transmission
dynamics.

1. Introduction
The bacterium Streptoccus pneumoniae is a common colo-
nizer of the upper respiratory tract, the nasopharynx, of hu-
mans. While in most cases asymptomatic and harmless, the
colonization might progress to invasive diseases, such as sep-
sis, meningitis and pneumonia. Being both the source of the
horizontal spread of the pathogen and the predecessor of the
diseases, the process of asymptomatic colonization plays a key
role in determining the epidemiology of pneumococcal dis-
eases. So far it has been well established that young children
belong to the risk groups for the pneumococcal diseases, and
also that colonization is more prevalent among them (Bogaert,
De Groot, and Hermans, 2004). Especially high levels of colo-
nization have been observed in children that attend day care
centers (DCCs) (Dunais et al., 2003), because of enhanced
transmission between DCC attendees. Furthermore, Huang,
Finkelstein, and Lipsitch (2009) suggested that the level of
DCC attendance actually influences the overall community-
level prevalence of pneumococci.

Conjugate vaccines have been recommended for protection
against pneumococcal infections to those at greatest risk.
These vaccines are highly effective against both the coloniza-
tion and disease of a certain subset, typically seven, of the
pneumococcal strains. However, pneumococcae are highly di-
verse bacteria, for which over 90 serotypic strains are known.
Studies monitoring the population-level effects of vaccines
(Kellner et al., 2008; Vestrheim et al., 2010) clearly report

replacement of vaccine-strains by non-vaccine-strains over few
years, so that eventually only the strain composition is al-
tered, but no change is achieved in the prevalence of the
carriage of pneumococcal strains. As the non-vaccine strains
benefit from the decline of the vaccine-strains, the obser-
vations indicate the presence of between-strain competition
in pneumococcal communities. This motivates study of the
ecological interactions and the transmission of pneumococcal
strains, as an understanding of these processes would help to
explain the observations and allow for a precise evaluation of
the utilities and implications of vaccination policies.

In this article, we address the question of between-strain
competition in pneumococcal populations while studying
the transmission of colonization within children that attend
DCCs. Among small groups of hosts, such as DCCs, the
processes of transmission and colonization are highly stochas-
tic. Despite the randomness, localized epidemics can have
important population-level implications. For instance, Ball,
Mollison, and Scalia-Tomba (1997) argued that localized
transmission provides an amplifying effect for the global
prevalence of an epidemic and Hagenaars, Donnelly, and
Ferguson (2004) demonstrated that the asynchrony of small
localized epidemics facilitates the global persistence of a
pathogen in the population.

Mathematical models for stochastic transmission
within small social groups are typically referred to as
household models. Statistical inference on epidemics for such
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models has been conducted, for instance, using longitudinal
data (Hoti et al., 2009) or final-size distributions of infected
cases (Brooks-Pollock et al., 2011). While methods analyzing
longitudinal data typically assess the plausibility of different
model parameters by conditioning on the observed event
histories, methods using final-size distributions evaluate
different parameters by comparing the total numbers of
infections within households predicted by the model and
observed in the data.

In this article, we analyze cross-sectional data on pneu-
mococcal strains carried in a total of 611 children from 29
DCCs. In particular, we perform Bayesian inference for a
transmission model, under which new epidemics are contin-
uously initiated in the DCC from the community, but since
the strains compete for colonizing hosts, the outcomes of the
epidemics are suppressed. The presented analysis is related to
the final-size approaches, since the likelihood is approximated
by conditioning on the characteristics of recurrent epidemics
of different strains within the DCCs, reflected by the states of
DCCs in the data. To perform the analysis, we used the meth-
ods of approximate Bayesian computation (Beaumont, 2010),
replacing the evaluation of the likelihood function with direct
simulations from the generating model.

Regarding the results, we obtained unimodal posterior dis-
tributions for the relative rates governing the transmission
dynamics. These results allowed us to assess the strength of
the competition between the strains, and also to predict the
unobserved properties of the system, and behavior of the sys-
tem in time, once the time scale was adjusted through the
application of external knowledge. Based on our model val-
idation checks and comparisons with estimates obtained in
another study, our method appears to be successful in captur-
ing the relevant features of the transmission dynamics. Thus
it is demonstrated that strain-diversity distributions can be
very informative of the transmission processes, once ecological
interactions between the strains are included in the model.

We are not aware of previous studies of comparable epi-
demiological inference utilizing cross-sectional observations on
strain diversity. Data on bacterial genotypes has previously
been used for epidemiological inference (Luciani et al., 2009).
However, as genotypes evolve much faster than serotypes,
analysis of such data must account for both the ecological
and evolutionary processes, while a model for strain data can,

under the appropriate circumstances, neglect the evolutionary
processes acting on the studied organism.

2. Data and Model

2.1. Pneumococcal Carriage Data

The data we analyze in this article originate from a point-
prevalence study on pneumococcal strains carried in children
attending DCCs in the capital region of Oslo, Norway. This ar-
ticle was performed in 2006, before the introduction of conju-
gate vaccines in the Norwegian national vaccination program.
A detailed description of the data is found in Vestrheim et
al. (2008), and results from a follow-up study are given in
Vestrheim et al. (2010).

In the article, 611 healthy children from 29 DCCs were
investigated regarding their pneumococcal carriage. A na-
sopharyngeal swab was taken from each participating child
to identify the strains carried. In total, 33 different strains
were observed among these swabs. Labeling both the DCCs
and carried strains with integers, the data can be represented
in the form {DCCi, Ci}, i = 1, . . . , 611, where DCCi defines the
label of the DCC of the i’th individual and Ci is a binary vec-
tor for which Ci(j) = 1, j = 1, . . . , 33, if individual i is a carrier
of strain j, and Ci(j) = 0 otherwise. On average, 21 children
from each DCC were studied, the minimum and maximum
numbers of sampled children from a single DCC being 6 and
37, respectively. Unfortunately, the total number of children
attending each DCC was not available for our modeling pur-
poses. Nevertheless, the average number of children attend-
ing these DCCs was reported to be 53.1 by Vestrheim et al.
(2008).

The diversity distribution of the serotypic strains over all
the collected swabs, shown in Figure 1, manifests a very di-
verse population. The majority of strains are relatively rare,
and only 12% of the total number of colonized individuals
are colonized by the most common strain. A high diversity
of strains was also observed within each DCC. On average,
8.1 different strains were observed among individuals from
the same DCC, and on average the most frequently observed
strain in each DCC was colonizing 31% of them. In Web
Figure 1, we illustrate the within-DCC diversities of strains in
more detail. Regarding the prevalence of colonization, 77.7%
of the studied children were colonized by pneumococci. Out
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Figure 1. (A) The overall distribution of the different strains in the data as proportions of individuals that were colonized
with the particular strain out of the total number of colonized individuals. In total 611 children were investigated. (B) and (C)
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of the colonized children, 12.6% were colonized with multiple
strains, that is, co-infected, usually by two strains. Among the
groups of studied children from each separate DCC, the pro-
portion of individuals that was colonized varied from 0.609
to 1, and the proportion colonized with several strains var-
ied between 0 and 0.3. The between-DCC variation in these
two observables is also illustrated in Figure 1. The prevalence
of co-infection within a DCC was not particularly correlated
with the number of different strains observed in the DCC,
the correlation coefficient between the two being only 0.2368.
The reason for this is likely to be that all of the DCC’ were
similarly diverse to a sufficient degree regarding co-infection.
The DCC-wise observations are affected by the number of in-
dividuals investigated in each, as well as the unknown total
numbers of attendees. In the following discussion, we assume
that the DCCs were of an equal size that was also constant
over time.

2.2. Stochastic SIS-Model for the Spread of Strains
within a DCC

We now define the stochastic model for the transmission dy-
namics of Ns strains among a single day care centre consisting
of N ind individuals. The system state at each instance of time
is an N ind × Ns -matrix I(t), for which I ij(t) = 1, if individual i

is colonized by strain j at time t, and I ij(t) = 0 otherwise. The
individuals are assumed to be subject to a constant force of
infection from a large community, and the prevalences of dif-
ferent strains to be stable within the community. The assump-
tion of the community-level diversity distribution of strains to
be stable agrees with previous empirical studies, for example,
Hanage (2010). We parameterize the transmission process us-
ing four parameters: β, �, θ, and γ, where β and � account
for the hazards of infection from the DCC and from the com-
munity, θ scales for the probability of co-infection and γ is the
rate of clearance of an infection.

The core assumptions leading to such parameterization are
explained below. Firstly, the DCC attendees are assumed to
have encounters with other hosts that can lead to transmis-
sion of colonization. Such encounters include contacts with
other members of the DCC and with individuals outside the
DCC, but the rate of encountering other DCC members, de-
noted with c1, is different from the rate at which DCC mem-
bers have contacts with other individuals in the community
outside the DCC, which we denote by c2. While the propor-
tion P of individuals colonized by the pneumococci in the
whole community is assumed to be constant, we assume that
the number of colonized individuals within a DCC, denoted
by Itot(t), is a stochastic process with transition probabili-
ties that depend on the current colonization status of each
individual in the DCC. Assuming further that, given a con-
tact between a susceptible individual and an infected host,
the probability of transmission is p, then the probability per
time unit to acquire an infection from the community is c2pP

(i.e., a constant). The corresponding probability for a suscep-
tible DCC attendee to acquire a colonization by some strain
from another DCC attendee depends on I(t), and this equals
c1p((Itot(t))/(N ind)). Since the actual transmission processes
depend on the products of the parameters, we parameter-
ize the model using β := c1p and � := c2pP . Notice that the

two parameters have different interpretations, since P was in-
cluded in �.

When modeling the transmission process of several different
strains, similar assumptions hold: we denote the proportion of
colonized individuals in the community who are carrying the
strain s with Ps, and we assume that Ps is constant in time
for all s. Now, we assume that if a susceptible individual host
has an encounter with an individual in the community, the
probability that strain s is transmitted is pPPs. To define the
corresponding probability that strain s is transmitted, given
an encounter with another individual from the DCC, we use
the following notation:

Es(I(t)) =
∑

{i : Iis(t)=1}

(
I is(t)

N ind − 1

1∑Ns

j=1
I ij(t)

)
. (1)

We then assume that the probability that strain s is trans-
mitted, given that a susceptible DCC attendee has a within-
DCC contact at time t, is pEs(I(t)). Notice that Es(I(t)) is
the probability of sampling strain s in a hierarchical random
experiment in which first another DCC attendee is sampled,
and if this individual is colonized, a random strain is sampled
from the strains colonizing that individual. The N ind − 1 term
in the denominator accounts for the fact that the randomly
sampled DCC attendee can not be the susceptible individual
herself.

We assume that hosts can be colonized by several strains
simultaneously, but to account for competition between the
strains, we use a further parameter θ to scale the probabil-
ity of becoming colonized with a further strain, once already
colonized with one or many strains of another type. We also
assume only one colonizing strain is transmitted in a transmis-
sion event. Finally, we assume that the duration of carriage
of a strain is exponentially distributed, with a mean 1/γ.

Given the assumptions and notations above, the model is
defined as a continuous-time Markov process, which has the
following transition probabilities for a small time increment
δt:

Pr (I is(t + δt) = 1|I is(t) = 0) = βEs(I(t)) + �Ps + o(δt),

if

Ns∑
j=1

I ij(t) = 0,

Pr (I is(t + δt) = 1|I is(t) = 0) = θ (βEs(I(t)) + �Ps) + o(δt)) ,

if

Ns∑
j=1

I ij(t) > 0 and I is = 0,

Pr (I is(t + δt) = 0|I is(t) = 1) = γ + o(δt). (2)

The model is a stochastic variant of a standard SIS-model
of pathogen spread (Anderson and May, 1991) with multiple
co-circulating strains and a possibility of co-infection. The dy-
namics of the model are determined by defining the model pa-
rameters (β, �, θ, γ), N ind, Ns and Ps for every s = 1, . . . , Ns.
In the parameter estimation process that follows, we set
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N ind = 53, which was the mean number of attendees in the
studied DCCs and Ns = 33, which was the total number of
different strains observed in the data. For Ps we use the over-
all serotype distribution in the data, shown in Figure 1.

Our transmission model contains a few further implicit as-
sumptions. Firstly, through the construction used to define
the probability in Equation (1) it is assumed that individuals
colonized with one or many strains are equally infective. Also,
as seen from Equation (2), the rate of clearance of a particular
strain in a host is unaffected by the number of strains colo-
nizing that host. This assumption is in agreement with the
results in Auranen et al. (2010) on pneumococcal inter-strain
competition, stating that the inhibition of colonization is the
primary mechanism of competition, and that once two strains
colonize the nasopharynx, the rate of clearance is not partic-
ularly accelerated. Finally, the model assumes ecological neu-
trality between the strains (Hubbel, 2001), in the sense that
rates of events do not depend on the identities of the strains
involved.

3. Inference

3.1. Approximate Bayesian Computation Approach

For the inference, we employ the tools of approximate
Bayesian computation (ABC), discussed by, for example
Beaumont (2010). In ABC, a sample from the posterior distri-
bution is generated by approximating the likelihood function
with simulations from the model: a candidate parameter ϕ,
sampled from the proposal distribution, is accepted to the
posterior sample if the simulation results D′ generated with
ϕ are close enough to the observed data D. The closeness can
be assessed by defining a vector of summary statistics S(D),
distance measure ρ, and a threshold value for the distance, ε.
The target distribution of ABC-inference is thereafter:

f (ϕ|ρ(S(D), S(D′)) < ε). (3)

For efficient implementation of ABC we use a variant of se-
quential ABC method (Sisson, Fan, and Tanaka, 2007) that
has partial rejection control property. We also adjust the tol-
erance ε and the proposal distribution for parameters adap-
tively. For a detailed description of the computations, see the
Web Supplementary Material.

3.2. Simulation of the Model

When using a cross-sectional dataset, parameters can be in-
ferred only relative to each other. Therefore, when simulating,
we set γ = 1, and estimate the other parameters relative to
γ. We use the Gillespie method (Gillespie, 1976) for simu-
lating random realizations from the transmission model. We
start each simulation with no individuals being colonized and
a constant force of infection from the community, defined by
�. We perform 29 independent simulations for each proposed
vector of the model parameters, each with N ind = 53. Each
simulation is run until time T , which is chosen such that I(T )
should be sampled from the stationary distribution of I(t).
Given the configurations of the 29 simulations at time T , we
randomly assign the per-DCC sample sizes in the data among
the 29 system states, and, given the sample sizes, sample
the observed individuals from each simulated DCC without

replacement. We denote the model parameters to be esti-
mated by ϕ = (β, �, θ) and the outcome of the described
stochastic simulation procedure with D′ ∼ 
(• | ϕ), where
first 29 outcomes of the transmission processes with same pa-
rameters ϕ are generated and given the set of outcomes, the
observation model is applied on that. This procedure ensures
that D′ consists of 611 observations on colonization config-
urations of individuals for each candidate set of parameters
values, as in the data, and also that the numbers of observa-
tions are distributed between the DCCs in a similar way to
their distribution in the data.

In the analysis, we used T = 10 as the simulation time, but
performed exactly the same analysis using T = 20 to investi-
gate the robustness of the results to the simulation time. As
a further sanity check that the simulation time is adequate
for different parameters to reach stationary distribution, we
chose 10 different combinations of model parameters, and sim-
ulated the distributions of the four summary statistics listed
in Section 3.3. with two different simulation times, 10 and 20.
The distributions of the summary statistics were found to be
highly congruent between the simulation times. An example
of predicted Shannon index, with model parameters shown in
Web table 1, is shown in Web Figure 2.

3.3. Summary Statistics and the Distance Measure

We approximate the likelihood function by assessing the prob-
ability of the distribution of DCC-specific summary statistics,
like the ones shown in Figure 1 in panels B and C. In partic-
ular, we calculate the following summary statistics for each
DCC, based on the strains carried by the individuals who
were assigned the status of being observed:

(1) Shannon index of diversity (Peet, 1974) of the distri-
bution of observed strains.

(2) Number of different strains.
(3) Prevalence of carriage among the observed individuals.
(4) Prevalence of multiple infections among the observed

individuals.

Thus the dimensionality of the data D and the simulated
datasets is reduced by projecting the observations into a
4 × 29 dimensional space, and the summary statistics con-
sidered are independent of the actual labels of the strains.
To assess the discrepancy of the simulated D′ from the data,
we calculate for each summary k = 1, . . . , 4, the L1-distance
between empirical distribution function of the summary, ob-
tained from the simulation results, Fk(x), and the empirical
distribution function for the same summary, obtained from
the real data F̂ k(x):

dk =
∫

|Fk(x) − F̂ k(x)|dx. (4)

The vector of corresponding discrepancies d = (d1, d2, d3, d4)
is finally used as a proxy when approximating the likeli-
hood function. By denoting the vector of tolerances with
ε = (ε1, ε2, ε3, ε4), we require each dk to be smaller than a
particular tolerance value εk, for the simulation to yield an
acceptance, that is, to fall within the tolerance ε. Pritchard
et al. (1999) also used a similar approach, requiring each
summary statistic, after normalization, to be within a fixed
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Figure 2. The columns in the figure show the approximated posterior distributions of the model parameters β, �, and θ in
the consecutive sequential ABC-runs. The last column illustrates the distribution obtained in the fourth run, from which the
summaries of the posterior were obtained, and according to which the posterior predictive simulations were performed.

ε-distance from the observed statistic. Such approaches en-
hance the requirement that the simulated and the observed
datasets are similar with respect to all of the desired features
simultaneously. In principle, the likelihood of the data could
also be defined by generalizing the approach in Stone et al.
(2008) for multiple co-circulating strains with the possibil-
ity of co-colonization. However, evaluation of the likelihood
would in practice be intractable (or extremely tedious), ow-
ing to the substantially higher dimension of the state-space
and incomplete observations from each DCC.

3.4. Prior Distributions

Based on training simulations, we assigned the following prior
distributions: β ∼ Uniform(0, 11), � ∼ Uniform(0, 2), and θ ∼
Uniform(0, 1). We run 10,000 further simulations from these
prior distributions to set the tolerance for the first sequen-
tial ABC-run, according to the criteria described in the Web
Supplementary Materials.

4. Results

4.1. Posterior Distributions of Parameters

In Figure 2, we show the marginal posterior distributions of
the estimated model parameters in four consecutive ABC-
generations. The figure shows that the prior distributions were
adequate in covering the support of the posterior. During
the fourth sequential run, the time to reach the sample size
increased almost threefold, and also a slight change in the
marginal distributions was observed between the third and
the fourth marginal distributions, so the sequential learning
procedure was terminated after the fourth run. In Table 1, we
summarize the posterior. Results from the analysis performed
with double the simulation times are also shown. Comparison
of the summaries of the two posteriors suggests that T = 10
was already a long enough simulation time to produce a sam-
ple from the stationary distribution of the process.

All of the reported estimates in Table 1 are relative to
γ = 1. External knowledge on λ can be used for calibrating the

time scale, since we can expect the clearance rate to be similar
in children regardless of their background. Hoti et al. (2009)
and Auranen et al. (2010) estimated this rate per month to
have posterior means 0.69 and 0.63 with 95% credibility in-
tervals [0.64, 0.75] and [0.51, 0.79], respectively.

4.2. Competition Between the Strains

Previous longitudinal studies have assessed the competition
between pneumococcal strains. Because of the biological inter-
pretation of the parameter θ, we would expect the estimates
of it to be similar throughout the studies. In Auranen et al.
(2010), the posterior distribution of the competition parame-
ter θ was estimated to have posterior mean 0.09 and a 95%-
credibility interval [0.05, 0.15]. This coincides exceptionally
well with our results, obtained using a different dataset and
different inferential methods, and this gives cross-validatory
support for all our results, as well as the conclusion on the
strong inhibition of colonization, and θ having value close to
0.09.

Most studies on pneumococcal inter-strain competition
have estimated competition by parameterizing the model
without considering simultaneous carriage at all. Instead,
models are parameterized with the susceptibility level param-
eter d, defined as the ability of a serotype to persist colo-
nizing when a certain infection hazard of another serotype is
present. Then 1 − d describes the relative rate to switch the
carried strain to another strain. The likelihood of d is then

Table 1
Summaries of the posterior distribution of the estimated
parameters, with two different simulation times for the

transmission model

Mean Mean 95% CI 95% CI

T = 10 T = 20 T = 10 T = 20
β 3.589 3.594 (2.8157, 4.5785) (2.8113, 4.5621)
� 0.593 0.584 (0.4017, 0.8359) (0.3875, 0.8407)
θ 0.097 0.097 (0.0605, 0.1422) (0.0604, 0.1427)
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Figure 3. In the first row we show the distributions of the within-DCC measures of strain diversity as observed in the data,
while in the second row we show the distributions for the same summaries predicted by the posterior predictive simulations.

constructed in terms of consequent longitudinal observations
on hosts either persisting in carrying the serotype they had or
switching to carry another serotype than they carried before,
given the current hazards of other serotypes.

While we refer to Auranen et al. (2010) again to note
that such rapid outcompetition of another serotype in the na-
sopharynx is not supported by data, we also note that learn-
ing about the susceptibility levels would require very dense
sampling of the index individual, so that it would be pos-
sible to distinguish between consequent clearance and rapid
re-infection in the index individual from an event where one
serotype actually outcompetes the other. It is not clear how
d is biased because the model does not account for simulta-
neous carriage and because data is sampled at discrete time
intervals. Still, as an example, Melegaro et al. (2007) gave
a point estimate for 1 − d for the serotype 19F to be 0.26,
with a 90% confidence interval [0, 0.75], Lipsitch et al. (2012)
estimated it to have point estimate 0.48, with 95% confi-
dence interval [0.37, 0.63] and Hoti et al. (2009) estimated the
1 − d, for all the serotypes, to have posterior mean 0.68 and a
95%-credibility interval [0.35, 1.10]. It is worth noticing that
Lipsitch et al. (2012) assumed the serotype-specific infection
hazards the individuals experience to be constant in time and
the same for all individuals. As we show here, transmission
is very local, and the infection hazards that the individuals
experience are to a large extent determined by the strains
that are carried in the local population within which most of
the transmission occurs. On the other hand, in the inference

framework of Hoti et al. (2009), the local strain-specific in-
fection hazards were taken into account, but the prevalence
of pneumococci was low in the study population, reported to
be less than 30%. This automatically reduces the number of
competition events in the population and therefore the data
might be weakly informative on the absolute strength of the
competition.

4.3. Model Validation

To further test the adequacy of our analysis, we perform
posterior predictive checks by simulating 5000 realizations of
D′ ∼ 
(D, ϕ) with ϕ sampled from the posterior and simula-
tion times T = 10, and use the simulation results to construct
a predictive distribution for different summaries than those
used in the model fitting. In particular, we consider the
distributions of the observed proportion of children colonized
with the most common strain in each DCC, and how many
strains were observed colonizing only one host in each of
the DCC’s, that is, singleton strains, and assess whether the
predictions coincide with the data. This idea is similar to that
of Ratmann et al. (2009), who suggested consideration of pos-
terior predictive distributions for features of data that were
not used in model fitting for ABC model validation purposes,
since this can reveal possible discrepancies between the model
and the data. Clearly, the two summaries we use here are not
independent from the summaries that were actually used in
fitting. However, the degree of sufficiency of the combination
of summaries we used for fitting was a priori unknown, and
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thus the approach makes sense. In the posterior predictive
distribution, the mean for the proportion of individuals colo-
nized with the most common strain is 0.3030 and in the data
it is 0.3116. Moreover, the posterior mean for the number of
singleton strains observed 3.7, while in the data it is 3.6. Thus
the predictions are highly similar to the real data and also
they are also very distinct from the means obtained from the
5000 simulation results with parameters sampled from the
prior distribution, that were 0.2085 and 4.2904, respectively.
By further examining the distributions for these summaries,
as shown in Figure 3, one can see that the posterior predic-
tive distributions of these two features are in very precise
agreement with the distributions observed in the real data.

When considering the distances between the cumulative
distribution functions separately, we neglected the correla-
tions between the summary statistics used in the model
fitting. Therefore, a further model validation argument is pro-
vided by the similarity of the predicted correlations to the
summaries and the correlations in the data. In Web Figure 3,
we also show the predicted and observed correlation struc-
tures between the two most interesting summary pairs: the
Shannon diversity index and the number of observed strains,
which were correlated in the data, and the number of ob-
served strains and the prevalence of co-infection, which were
not correlated in the original data.

4.4. Model Predictions

A very useful feature of Bayesian inference is the ability to
provide statistical predictions where the uncertainty in the
model parameters is coherently taken into account (Bernardo
and Smith, 1994). To assess posterior predictive distributions,
we utilized the results of 5000 simulations with parameters
sampled from the posterior, and let the simulation time exceed
T = 10 before assessing the predicted feature. Firstly, we con-
structed the posterior predictive distribution of the prevalence
of colonization and co-infection among all the 53 individuals
in the DCC, as shown in Web Figure 4. The posterior predic-
tive distribution of the true prevalence of colonization within
53 individuals in a single DCC had mean 0.794. with 95%
credibility interval [0.660, 0.906]. Notice that the prevalence
of colonization among the studied individuals was higher than
0.9 in 5 of the studied DCCs, as seen from Figure 1, but our
predictions suggest that it is improbable that the total preva-
lences were that high in all of these DCCs. Finally, the poste-
rior predictive prevalence of co-infection among the colonized
individuals in a DCC had mean 0.133, with the confidence
interval [0.026, 0.256].

Since we estimated the parameters relative to the clear-
ance rate, to assess the model predictions in calendar time,
we need to calibrate the time scale. For this purpose, we use
0.69 as the estimate for clearance rate per month, as this value
was attained a high posterior probability in the two longitu-
dinal studies of Auranen et al. (2010) and Hoti et al. (2009).
Given this time scale, according to the predictive simulations,
on average 5.7 new outbreaks are introduced to a DCC from
the community during one month. A total of 54.1% of these
outbreaks are predicted to be of size one, meaning that the
host infected from the community does not cause any fur-
ther infections in the DCC. Furthermore, the mean outbreak
size is 6.3, and 95% of the outbreaks are predicted to end up

being smaller than 27. The posterior predictive distributions
describing the properties of the epidemics within the DCC are
shown in more detail in Figure 4.

Figure 4 also shows the empirical distribution function of
the posterior predictive distribution of the time to first colo-
nization event for a susceptible individual, and also the pro-
portion of time spent colonized for an individual attending a
DCC for one year. We predict that the mean time for a sus-
ceptible individual to become colonized in a DCC is 0.4346
months, and 0.95% of initially susceptible individuals have
been colonized at least once, after spending 1.2625 months in
a DCC. On average, an initially susceptible individual spends
a proportion 0.6832 (95% credibility interval [0.254, 0.968])
colonized. We conclude that while the prevalence of colo-
nization is high, there exists a considerable variation in the
proportion of time that an individual actually spends colo-
nized, due to being fortunate in escaping colonization or the
opposite.

5. Discussion

Here we have considered a transmission model under which
prevalences of different strains in local populations were
determined by both the global prevalences of strains, and
also the interplay of the three types of stochastic event
occurring in the DCC: transmissions from the community,
that introduce new strains to DCC; transmissions within
the DCC, that amplify the prevalence of a particular strain;
and the clearance of colonization, that ensures turnover of
the local strain population. This model was then fitted to
a cross-sectional dataset of observed prevalences of different
strains in 29 different DCCs. We assumed that the snapshots
of local strain prevalences in data were realizations from the
stationary distribution of such transmission processes, and
showed that the between-DCC variations in strain diversity,
colonization and co-infection, together reveal the characteris-
tics of the processes described. As the local diversity patterns
of strains were considered as a basis for model fitting, our
approach can be interpreted as an extension of approaches
based on final-size distributions of epidemics. Traditionally,
final-size approaches consider epidemics involving pathogens,
for which immunity can be obtained, and thus it is reason-
able to consider the actual final sizes of epidemics. Local
prevalences of strains are also informative about the epidemic
spread within a DCC, because they reflect the distribution
of sizes of microepidemics of different strains, which in turn
are determined by the processes described above.

The framework presented here has a few assumptions that
should be kept in mind. Assuming both the global prevalence
of colonization and the global strain distribution to be stable
might seem vague. However, follow-up studies monitoring the
effects of conjugate vaccines to pneumococcal populations
have all observed that the prevalence of colonization remained
at its past level a few years after the introduction of vaccines.
This phenomenon was also observed in the study population
here, as shown by a follow-up study, where data was collected
in similar manner as the data analyzed here (Vestrheim et al.,
2010). The fact that the prevalence of colonization retains
the same level after a large scale ecological perturbation
to the strain community suggests that the community-level
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Figure 4. (A) Posterior predictive distribution of the number of epidemics initiated in the DCC from the community during
1 month and (B) and (C) Sizes of the epidemics, showing that the majority of infections from the community do not lead
to any further transmissions within the DCC. (D) Posterior predictive distribution for the time in months until a susceptible
individual is colonized for the first time in a DCC, and (E) Distribution of the proportion of time that initially a susceptible
DCC attendee in total is colonized in total during 1 year.

prevalence of colonization can be considered to be very
constant. Similarly, it was pointed out by Hanage (2010)
that seven years after the launch of conjugate vaccine usage
in Massachusetts, the strain distribution exhibited a similar
population structure and similar levels of diversity as before
the vaccines: only the strain composition was changed. This
suggests that the strain distribution in a large community
can be also considered to be very stable.

Our framework also assumed that the observations in the
data were from stationary distribution of the transmission
process. Because the rate of convergence to the stationary
distribution is different for different model parameters, we
emphasize the importance of exploratory analysis to deter-
mine the robustness of the simulation results to the simula-
tion time. Also, the framework presented could be adjusted
for a situation where the assumption of the DCCs being of
identical sizes should be relaxed. The simulations can also be
performed for different population sizes, only the discrepancy
measure for ABC should be carefully adjusted, since the sim-
ulations are no longer realizations from identical processes.
The fact that we simulated observations from DCCs of equal
sizes which might yield slightly over-confident parameter esti-
mates, if the true sizes did vary considerably. However, there
is a fair amount of support for the assumptions and the re-
sults obtained, both in light of the earlier longitudinal study
by Auranen et al. (2010) and the posterior predictive checks;
the obtained posterior distribution for model parameters was
demonstrated to capture the system behavior with a high level
of accuracy.

The posterior distributions of model parameters are useful
for formulating predictive statements of the system behavior,
as illustrated in the previous section. Based on such knowl-
edge, it is also possible to predict how the system would re-
spond to environmental changes, for example those related
to control strategies, such as vaccines or antibiotics. Further-
more, understanding the transmission dynamics allows the
assessment of different evolutionary scenarios. Fraser, Han-
age, and Spratt (2005) suggested that a neutral model for
the evolution of the pneumococcal genome is adequate to de-
scribe the MLST data of the pneumococcus, once the model
takes into account the microepidemic spread of the pneumo-
coccal strains. Our approach disentangled the composition of

micro-epidemics in the study population, and information of
this type could be used to assess the hypothesis of the neu-
tral evolution of pneumococcus even further. It is also worth
emphasizing the good fit of our model which assumed equal-
ity of strains in their ecological properties. We are aware
that Weinberger et al. (2009) detected differences between
the performance of pneumococcal strains with laboratory ex-
periments in mice, especially in the duration of carriage, but
it is possible that these differences are negligible when consid-
ering the dynamics of pneumococcal strains in actual human
populations. On the other hand, as pointed out by Cobey
and Lipsitch (2012), as individuals age, the duration of car-
riage declines and approaches a fixed value, which is the same
for all of the serotypes, and this stabilizes competition be-
tween the strains slightly. This, together with the rare strains
having more infected individuals to co-colonize than the com-
mon strains, is a possible explanation for the persistence of
the less fit strains and neutral-alike observations. The ques-
tion of neutrality could be assessed more carefully in the fu-
ture by assessing whether observations on the vaccine-induced
serotype replacement coincide with neutral expectations. On
the other hand, to assess the actual differences between the
strains would require detailed data with sufficient observa-
tions on rare strains. Such information is obviously useful, for
example when deciding the target strains of conjugate vac-
cines.

Our results lend support for the strong inhibition of
colonization as a mechanism of between-strain competition.
As hypothesized by Donkor et al. (2011) the co-occurrence
of different strains in the nasopharynx is of interest when
assessing the evolution and genetic diversity of the pneu-
mococcus, as it is known from previous studies that the
pneumococcus is a highly recombining bacterium (Feil
et al., 2000). Moreover, this is all related to the questions
surrounding bacterial speciation (Fraser, Hanage, and Spratt,
2007), that is, the appearance of clusters of bacteria that
are genetically similar, and the role of recombination in
that process, as the probability of recombination between
different pneumococcal strains is restricted by the occasion of
co-infection. Competition between strains is also of interest
when evaluating vaccination strategies. In previous studies,
competition between strains has been addressed in several
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ways, but the results in different studies are contradictory,
and model structures also contradict what is known about
pneumococcal competition. Moreover, due to the clustering of
infectious contacts in local populations, in order to assess the
competition, the local serotype-specific hazards that change
in time should be assessed realistically, as we did here.

Recruiting individuals for longitudinal studies, where swabs
are typically taken monthly, is more difficult than performing
a cross-sectional study, where a single sample per individ-
ual suffices. Thus, the relevancy of our approach to ques-
tions of statistical study design is also worth considering.
For instance, one can use pseudo-observed datasets simu-
lated with known parameter values for testing the robust-
ness of the methods to identify the true parameter values.
Then the minimum requirements for the data to be suffi-
ciently informative about the model parameters can be iden-
tified. Hence a similar approach could be utilized for studying
the epidemiology of other pathogens for which there are sev-
eral strains co-circulating, such as Neisseria meningitidis or
Mycobacterium tuberculosis.

6. Supplementary Material

The web figures referenced in Sections 2.1, 3.2, 4.3, and 4.4,
together with a detailed description of the sequential ABC-
procedure that was performed, are available with this paper at
the Biometrics website on Wiley Online Library. The matlab
codes for performing similar computations are also provided
there.
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