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Spatially proximate amino acid in a protein tend to co-evolve. A protein’s 3D-structure hence
leaves an echo of correlations in the evolutionary record. Reverse engineering 3D-structures from
such correlations is an open problem in structural biology, pursued with increasing vigor as more
and more protein sequences continue to fill the data banks. Within this task lies a statistical
inference problem, rooted in the following: correlation between two sites in a protein sequence can
arise from firsthand interaction, but can also be network-propagated via intermediate sites; observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactions is
an instance of the general problem of inverse statistical mechanics, where the task is to learn model
parameters (fields, couplings) from observables (magnetizations, correlations, samples), in large
systems. In the context of protein sequences, the approach is referred to as direct-coupling analysis
(Weigt et al, 2009). Here we show that the pseudo-likelihood method, applied to 21-state Potts
models describing the statistical properties of families of evolutionarily related proteins significantly
outperforms existing approaches to the direct-coupling analysis, the latter being based on standard
mean-field techniques. The results are verified using known crystal structures of specific sequence
instances of various protein families.

PACS numbers: 02.50.Tt – Inference methods, 87.10.Vg – Biological information, 87.15.Qt – Sequence
analysis, 87.14.E- – Proteins

I. INTRODUCTION

In biology, new and refined experimental techniques
have triggered a rapid increase in data availability during
the last few years. Such progress needs to be accompa-
nied by the development of appropriate statistical tools
to treat growing data sets. An example of a branch un-
dergoing intense growth in the amount of existing data
is protein structure prediction (PSP), which, due to the
strong relation between a protein’s structure and its func-
tion, is one central topic in biology. As we shall see, one
can accurately estimate the 3D-structure of a protein by
identifying which amino-acid positions in its chain are
statistically coupled over evolutionary time scales [1–5].
Much of the experimental output is today readily acces-
sible through public data bases such as Pfam [6], which
collects over 13,000 families of evolutionarily related pro-
tein domains, the largest of them containing more than
2 × 105 different amino-acid sequences. Such databases
allow researchers to easily access data, to extract infor-
mation from it and to confront their results.

A recurring difficulty when dealing with interacting
systems is distinguishing direct interactions from inter-
actions mediated via multi-step paths across other el-
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ements. Correlations are in general straightforward to
compute from raw data, whereas parameters describing
the true causal ties are not. The network of direct inter-
actions can be thought of as hidden beneath observable
correlations, and untwisting it is a task of inherent in-
tricacy. In PSP, using mathematical means to dispose
of the network-mediated correlations is necessary to get
optimal results [1, 2, 7–9] and yields improvements worth
the computational strain put on the analysis. This ap-
proach to PSP, which we will refer to as direct-coupling
analysis (DCA), is the focus of this paper.

In a more general setting, the problem of inferring
interactions from observations of instances amounts to
inverse statistical mechanics, a field which has been
intensively pursued in statistical physics over the last
decade [10–23]. Similar tasks were earlier formulated in
Statistics and Machine Learning where they have been
called model learning and inference [24–27]. To illustrate
this concretely, let us start from an Ising model

P (σ1, . . . , σN ) =
1

Z
exp

 N∑
i=1

hiσi +
∑

1≤i<j≤N

Jijσiσj


(1)

and its magnetizations mi = ∂hi logZ and connected cor-
relations cij = ∂Jij logZ −mimj . Counting the number
of observables (mi and cij) and the number of parame-
ters (hi and Jij) it is clear that perfect knowledge of the
magnetizations and correlations should suffice to deter-
mine the external fields and the couplings exactly. It is,
however, also clear that such a process must be compu-
tationally expensive, since it requires the computation of
the partition function Z for an arbitrary set of parame-
ters. The exact but iterative procedure known as Boltz-
mann machines [28] does in fact work on small systems,
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but it is out of question for the problem sizes considered
in this paper. On the other hand the naive mean-field
equations of (1) read [29–31]:

tanh−1mi = hi +
∑
j

Jijmj (2)

From (2) and the fluctuation-dissipation relations an
equation can be derived connecting the coupling coef-
ficients Jij and the correlation matrix c = (cij) [10]:

Jij = −(c−1)ij (3)

Equations (2) and (3) exemplify typical aspects of in-
verse statistical mechanics, and inference in large sys-
tems in general. On one hand, the parameter recon-
struction using these two equations is not exact. It is
only approximate, because the mean-field equations (2)
are themselves only approximate. It also demands rea-
sonably good sampling, as the matrix of correlations is
not invertible unless it is of full rank, and small noise
on its O(N2) entries may result in large errors in esti-
mating the Jij . On the other hand, this method is fast,
as fast as inverting a matrix, because one does not need
to compute Z. Except for mean-field methods as in (2),
approximate methods recently used to solve the inverse
Ising problem can be grouped as expansion in correla-
tions and clusters [16, 19], methods based on the Bethe
approximation [17, 18, 20–22], and the pseudo-likelihood
method [23, 27].

For PSP it is not the Ising model but a 21-state Potts
model which is pertinent [1]. But which of all the infer-
ence methods in inverse statistical mechanics, machine
learning or statistics is most suitable for treating real
protein sequence data? In how far do the test results
obtained for independently generated equilibrium config-
urations of Potts models translate to the case of protein
sequences, which are neither independent nor equilib-
rium configurations of any well-defined statistical-physics
model? The main goal of the this paper is to move to-
wards an answer to this question by showing that the
pseudo-likelihood method is a very powerful means to
perform DCA, with a prediction accuracy considerably
out-performing methods previously assessed.

The paper is structured as follows: in Section II we
review the ideas underlying PSP and DCA and explain
the biological hypotheses linking protein 3D-structure to
correlations in amino-acid sequences. We also review ear-
lier approaches to DCA. In Section III we describe the
Potts model in the context of DCA and the properties
of exponential families. We further detail a maximum
likelihood (ML) approach as brought to bear on the in-
verse Potts problem and discuss in more detail why this
is impractical for realistic system sizes, and we intro-
duce, similarly to (3) above, the inverse Potts mean-field
model algorithm for the DCA (mfDCA) and a pseudo-
likelihood maximization procedure (plmDCA). This sec-
tion also covers algorithmic details of both models such
as regularization, sequence re-weighting and the choice

of interaction scores. In Section IV, we present results
from prediction experiments using mfDCA and plmDCA
assessed against known crystal structures. In Section V
we summarize our findings, put their implications into
context, and discuss possible future developments. Ap-
pendices contain additional material supporting the main
text.

II. PROTEIN STRUCTURE PREDICTION AND
DIRECT-COUPLING ANALYSIS

Proteins are essential players in almost all biological
processes. Primarily proteins are linear chains, each site
being occupied by one out of 20 different amino acids.
Their function relies, however, on the protein fold, which
refers to the 3D conformation into which the amino-acid
chain curls. This fold guarantees, e.g., that the right
amino-acids are exposed in the right positions at the pro-
tein surface, thus forming biochemically active sites, or
that the correct pairs of amino acids are brought into
contact to keep the fold thermodynamically stable.

Experimentally determining the fold, using for ex-
ample X-ray crystallography or NMR tomography, is
still today a rather costly and time-consuming pro-
cess. On the other hand, every newly sequenced
genome results in a large number of newly predicted
proteins. The number of sequenced organisms has by
now exceeded 3, 700, and continues to grow exponen-
tially (genomesonline.org [32]). The most prominent
database for protein sequences, Uniprot (uniprot.org
[33]), lists about 25,000,000 different protein sequences,
whereas the number of experimentally determined pro-
tein structures is only around 85,000 (pdb.org [34]).

However, the situation of structural biology is not as
hopeless as these numbers might suggest. First, proteins
have a modular architecture, they can be subdivided into
domains which, to a certain extent, fold and evolve as a
unit. Second, domains of a common evolutionary ori-
gin, i.e. so-called homologous domains, are expected to
almost share their 3D structure and to have related func-
tion. They can therefore be collected in protein domain
families: The Pfam data base (pfam.sanger.ac.uk [6])
lists almost 14,000 different domain families, the number
of the sequences collected in each family ranges roughly
from 102 − 105. In particular the larger families with
more than 1,000 members are of interest to us, as we will
argue that their natural sequence variability contains im-
portant statistical information about the 3D structure of
its member proteins, and can be exploited to successfully
address the PSP problem.

Two types of data accessible via the Pfam database
are especially important to us. The first is the multiple
sequence alignment (MSA), a table of the amino acid
sequences of all the protein domains in the family lined
up to be as similar as possible. A (small and illustrative)
example is shown in Fig. 1 (left panel). Normally, not
all members of a family can be lined up perfectly, and
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FIG. 1: Left panel: small MSA with two positions of corre-
lated amino-acid occupancy. Right panel: hypothetical cor-
responding spatial conformation, bringing the two correlated
positions into direct contact.

the alignment therefore contains both amino acids and
gaps. At some positions, an alignment will be highly
specific (cf. the second, fully conserved column in Fig. 1),
while on others it will be more variable. The second
data type concerns the crystal structure of one or several
members of a family. Not all families provide this second
type of data. We will discuss its use for an a posteriori
assessment of our inference results in detail in Sec. IV.

The Potts-model based inference uses only the first
data type, i.e. sequence data. Small spatial separation
between amino acids in a protein, cf. the right panel of
Fig. 1, encourages co-occurrence of favorable amino-acid
combinations, cf. the left panel of Fig. 1. This spices the
sequence record with correlations, which can be reliably
determined in sufficiently large MSAs. However, the use
of such correlations for predicting 3D contacts as a first
step to solve the PSP problem remained of limited success
[35–37], since they can be induced both by direct interac-
tions (amino acid A is close to amino acid B), and also by
indirect interactions (amino acids A and B are both close
to amino acid C). Lapedes et al. [38] were the first to
address, in a purely theoretical setting, these ambiguities
of a correlation-based route to protein sequence analysis,
and these authors also outline a maximum-entropy ap-
proach to get at direct interactions. Weigt et al. [1]
successfully executed this program subsequently called
direct-coupling analysis: the accuracy in predicting con-
tacts strongly increases when direct interactions are used
instead of raw correlations.

To computationally solve the task of inferring inter-
actions in a Potts model, [1] employed a generalization
of the iterative message-passing algorithm susceptibility
propagation previously developed for the inverse Ising
problem [17]. Methods in this class are expected to out-
perform mean-field based reconstruction methods similar
to (3) if the underlying graph of direct interactions is lo-
cally close to tree-like, an assumption which may or may
not be true in a given application such as PSP. A sub-
stantial draw-back of susceptibility propagation as used

in [1] is that it requires a rather large amount of aux-
iliary variables, and that DCA could therefore only be
carried out on not too long protein sequences. In [2]
this obstacle was overcome by using instead a simpler
mean-field method, i.e. the generalization of (3) to a 21-
state Potts model. As discussed in [2], this broadens
the reach of the DCA to practically all families currently
in Pfam, it improves the computational speed by a fac-
tor of about 103–104, and it appears also more accurate
than the susceptibility-propagation based method of [1]
in predicting contact pairs. The reason behind this third
advantage of mean-field over susceptibility propagation
as an approximate method of DCA is unknown at this
time.

Pseudo-likelihood maximization (PLM) is an alterna-
tive method developed in mathematical statistics to ap-
proximate maximum likelihood inference, which breaks
down the a priori exponential time-complexity of com-
puting partition functions in exponential families [39].
On the inverse Ising problem it was first used by Raviku-
mar et al [27], albeit in the context of graph sign-sparsity
reconstruction; two of us showed recently that it outper-
forms many other approximate inverse Ising schemes on
the Sherrington-Kirkpatrick model, and in several other
examples [23]. Although this paper is the first use of
the pseudo-likelihood maximization method in DCA, the
idea to use pseudo-likelihoods for PSP is not completely
novel. Balakrishnan et al. [8] devised a version of this
idea, but using a set up rather different from that of [2],
regarding e.g. what portions of the data bases and which
measures of prediction accuracy were used, and not also
couched in the language of inverse statistical mechanics.
While a competitive evaluation between [2] and [8] is still
open, we have not attempted to do so in this work.

Other ways of deducing direct interactions in PSP, not
motivated from the Potts model but in somewhat simi-
lar probabilistic settings have been suggested in the last
few years. A fast method utilizing Bayesian networks
was provided by Burger and van Nimwegen [7]. More
recently Jones et al. [9] introduced a procedure called
PSICOV (Protein Sparse Inverse COVariance). While
DCA and PSICOV both appear capable of outperform-
ing the Bayesian network approach [2, 9], their relative
efficiency is currently open to investigation, and has not
been assessed in this work.

Finally, predicting amino acid contacts is not only a
goal in itself, it is also a means to assemble protein
complexes [40, 41] and to predict full 3D protein struc-
tures [3, 4, 42]. Such tasks require additional work, using
the DCA results as input, and are outside the scope of
the present paper.
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III. METHOD DEVELOPMENT

A. The Potts model

Let σ = (σ1, σ2, · · · , σN ) represent the amino acid se-
quence of a domain with length N . Each σi takes on
values in {1, 2, ..., q}, with q = 21: one state for each of
the 20 naturally occurring amino acids and one additional
state to represent gaps. Thus, an MSA with B aligned
sequences from a domain family can be written as an in-
teger array {σ(b)}Bb=1, with one row per sequence and one
column per chain position. Given an MSA, the empirical
individual and pairwise frequencies can be calculated as

fi(k) =
1

B

B∑
b=1

δ(σ
(b)
i , k),

fij(k, l) =
1

B

B∑
b=1

δ(σ
(b)
i , k) δ(σ

(b)
j , l). (4)

where δ(a, b) is the Kronecker symbol taking value one if
both arguments are equal, and zero else. fi(k) is hence
the fraction of sequences for which the entry on position
i is amino acid k, gaps counted as a 21st amino acid.
Similarly, fij(k, l) is the fraction of sequences in which
the position pair (i, j) holds the amino acid combination
(k, l). Connected correlations are given as

cij(k, l) = fij(k, l)− fi(k) fj(l). (5)

A (generalized) Potts model is the simplest probabilis-
tic model P (σ) which can reproduce the empirically ob-
served fi(k) and fij(k, l). In analogy to (1) it is defined
as

P (σ) =
1

Z
exp

 N∑
i=1

hi(σi) +
∑

1≤i<j≤N

Jij(σi, σj)

 , (6)

in which hi(σi) and Jij(σi, σj) are parameters to be de-
termined through the constraints

P (σi = k) =
∑
σ

σi=k

P (σ) = fi(k),

P (σi = k, σj = l) =
∑
σ

σj=l

σi=k

P (σ) = fij(k, l), (7)

It is immediate that the probabilistic model, which max-
imizes entropy while satisfying Eq. (7), must take the
Potts model form. Finding a Potts model which matches
empirical frequencies and correlations is therefore re-
ferred to as a maximum entropy inference. On the other
hand, Eq. (6) – with parameters to be adjusted to data
– is in itself a valid inference problem on a well-defined
model class, and this is the perspective which will be used
here. We note that the Ising and the Potts models (and

most models which would normally be considered in sta-
tistical mechanics) are examples of exponential families,
which have the property that means and correlations are
sufficient statistics [43–45]. Given unlimited computing
power to determine Z, reconstruction can not be done
better using all the data compared to using only (empir-
ical) means and (empirical) correlations. It is only when
one cannot compute Z exactly and have to resort to ap-
proximate methods, that using directly all the data can
bring any advantage.

B. Model parameters and gauge invariance

The total number of parameters of Eq, (6) is Nq +
N(N−1)

2 q2, but, in fact, the model as it stands is over-
parameterized in the sense that distinct parameter sets
can describe the same probability distribution. It is easy
to see that the number of non-redundant parameters is

N(q − 1) + N(N−1)
2 (q − 1)2, cf. an Ising model(q = 2),

which has N(N+1)
2 parameters if written as in Eq. (1)

but would have 2N2 parameters if written in the form of
Eq. (6).

A gauge choice for the Potts model, which eliminates
the overparametrization in a similar manner as in the
Ising model (and reduces to that case for q = 2), is

q∑
s=1

Jij(k, s) =

q∑
s=1

Jij(s, l) =

q∑
s=1

hi(s) = 0, (8)

for all i, j, k, and l. In the PSP context the last index (i =
q, which stands for the gap in an alignment) is special, we
can therefore chose a gauge where all interaction energies
are measured with respect to this value, i.e.

Jij(q, l) = Jij(k, q) = hi(q) = 0, (9)

for all i, j, k, and l, cf. [2]. This gauge choice corresponds
to a lattice gas model with q− 1 different particle types,
and a maximum occupation number one.

Using either (8) or (9) reconstruction is well-defined,
and it is straight-forward to translate results obtained in
one gauge to the other.

C. The inverse Potts problem

Given a set of independent equilibrium generations
{σ(b)}Bb=1 of the model Eq. (6), the ordinary statistical
approach to inferring parameters {h,J} would be to let
those parameters maximize the likelihood (i.e. the proba-
bility of generating the data set for a given set of param-
eters). This is equivalent to minimizing the (rescaled)
negative log-likelihood function

nll = − 1

B

B∑
b=1

logP (σ(b)). (10)
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For the Potts model (6), this becomes

nll(h,J) = logZ −
N∑
i=1

q∑
k=1

fi(k)hi(k) (11)

−
∑

1≤i<j≤N

q∑
k,l=1

fij(k, l)Jij(k, l).

nll is differentiable, so minimizing it means looking for a
point at which ∂hi(k)nll = 0 and ∂Jij(k,l)nll = 0. Hence,
ML estimates will satisfy

∂hi(k) logZ − fi(k) = 0,

∂Jij(k,l) logZ − fij(k, l) = 0. (12)

To achieve this maximization computationally, we need
to be able to calculate the partition function Z of Eq. (6)
for any realization of the parameters {h,J}. This prob-
lem is computationally intractable for any reasonable sys-
tems size. Approximate maximization is essential, and
we will show that even relatively simple approximation
schemes lead to accurate PSP results.

D. Naive mean-field inversion

The mfDCA algorithm in [2] is based on the sim-
plest, and computationally most efficient approximation,
i.e. naive mean-field inversion. It starts from the proper
generalization of (2), cf. [46], and then uses linear re-
sponse: The J ’s in the lattice-gas gauge Eq. (9) become:

JNMFI
ij,kl = −(C−1)ab, (13)

where a = (q − 1)(i − 1) + k and b = (q − 1)(j − 1) + l.
The matrix C is the N(q− 1)×N(q− 1) covariance ma-
trix assembled by joining the N(q− 1)×N(q− 1) values
cij(k, l) as defined in Eq. (5), but leaving out the last
state q. In Eq. (13), i, j ∈ {1, ..., N} are site indices, and
k, l run from 1 to q − 1. Under gauge Eq. (9), all the
other coupling parameters are zero. The term “naive”
has become customary in the inverse statistical mechan-
ics literature, often used to highlight the difference to a
Thouless-Anderson-Palmer level inversion or one based
on the Bethe approximation. The original meaning of
this term lies, as far as we are aware, in Information Ge-
ometry [47, 48].

E. Pseudo-likelihood maximization

Pseudo-likelihood substitutes the likelihood (11) by the
conditional probability of observing one variable σr given
observations of all the other variables σ\r. That is, the

starting point is

P (σr = σ(b)
r |σ\r = σ

(b)
\r )

=

exp

hr(σ
(b)
r ) +

N∑
i=1
i6=r

Jri(σ
(b)
r , σ

(b)
i )


∑q

l=1 exp

hr(l) +
N∑
i=1
i6=r

Jri(l, σ
(b)
i )

 , (14)

where, for notational convenience, we take Jri(l, k) to
mean Jir(k, l) when i < r. Given an MSA, we can maxi-
mize the conditional likelihood by minimizing

gr(hr,Jr) = − 1

B

B∑
b=1

log
[
P{hr,Jr}(σr = σ(b)

r |σ\r = σ
(b)
\r )
]
.

(15)
Note that this only depends on hr and Jr = {Jir}i6=r,
that is, on the parameters featuring node r. If (15) is used
for all r this leads to unique values for the parameters hr
but typically different predictions for Jrq and Jqr (which
should be the same). Maximizing (15) must therefore
be supplemented by some procedure on how to reconcile
different values of Jrq and Jqr; one way would be to

simply use their average
Jrq+Jqr

2 [27].
We here reconcile different Jrq and Jqr by maximizing

an objective function by adding fr for all nodes:

npll(h,J) =

N∑
r=1

gr(hr,Jr) (16)

= − 1

B

N∑
r=1

B∑
b=1

log
[
P{hr,Jr}(σr = σ(b)

r |σ\r = σ
(b)
\r )
]
.

where the abbreviation npll stands for negative pseudo-
log-likelihood. Minimizers of npll generally do not min-
imize nll; the replacement of likelihood with pseudo-
likelihood alters the outcome. Note however, that replac-
ing nll by npll resolves the computational intractability
of the parameter optimization problem: instead of de-
pending on the full partition function, the normalization
of the conditional probability (14) contains only a sin-
gle summation over the q = 21 Potts states. The in-
tractable average over the N − 1 conditioning spin vari-
ables is replaced by an empirical average over the data
set in Eq. (16).

F. Regularization

A Potts model describing a protein family with se-
quences of 50-300 amino acids requires ca. 5 ·105−2 ·107

parameters. At present, few protein families are in this
range in size, and regularization is therefore needed to
avoid over-fitting. In naive mean-field inversion the prob-
lem results in an empirical covariance matrix, which typ-
ically not of full rank, and Eq. (13) is not well-defined.
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In [2], one of the authors therefore used the pseudocount
method where frequencies and empirical correlations are
adjusted using a regularization variable λ:

fi(k) =
1

λ+B

[
λ

q
+

B∑
b=1

δ(σ
(b)
i , k)

]
, (17)

fij(k, l) =
1

λ+B

[
λ

q2
+

B∑
b=1

δ(σ
(b)
i , k) δ(σ

(b)
j , l)

]
.

The pseudocount is a proxy for many observations, which
– if they would exist – would increase the rank of the
correlation matrix; the pseudo-count method hence pro-
motes invertibility of the matrix in Eq. (13). It was ob-
served in [2] that for good performance in DCA, the pseu-
docount parameter λ has to be taken fairly large, on the
order of B.

In the pseudo-likelihood maximization method, we
take the standard route of adding a penalty term to the
objective function:

{hPLM ,JPLM} = argmin
{h,J}

{npll(h,J) +R(h,J)}. (18)

The turnout is then a trade-off between likelihood
maximization and whatever qualities R is pushing for.
Ravikumar et al. [27] pioneered the use of l1 regularizers
for the inverse Ising problem, which forces a finite frac-
tion of parameters to assume value zero, thus effectively
reducing the number of parameters. This approach is
not appropriate here since we are concerned with the ac-
curacy of the strongest predicted couplings which would
typically be distorted by an l1 penalty; for our purposes
it makes no substantial difference if weak couplings are
inferred to be small or set precisely to zero. Our choice
for R is therefore the simpler l2 norm

Rl2(h,J) = λh

N∑
r=1

||hr||22 + λJ

N−1∑
i=1

N∑
j=i+1

||Jij ||22. (19)

using two regularization parameters λh and λJ for field
and coupling parameters. An advantage of a regular-
izer is that it eliminates the need to fix a gauge, since
among all parameter sets related by a gauge transforma-
tion, i.e. all parameter sets resulting in the same Potts
model, there will be exactly one set which minimizes the
strictly convex regularizer. Actually, for the case of the
l2 norm, it can be shown easily that this leads to the
Ising-type gauge condition, Eq. (8).

To summarize this discussion: For NMFI, we regu-
larize with pseudocounts under the gauge constraints
Eq. (9). For PLM, we regularize with Rl2 under the full
parametrization.

G. Sequence re-weighting

Maximum-likelihood inference of Potts models relies
– as discussed above – on the assumption that the B

sample configurations in our data set are independently
generated from Eq. (6). This assumption is not exactly
true for biological sequence data which have a phyloge-
netic bias. In particular, in the data bases there are many
protein sequences from related species which did not have
enough time of independent evolution to reach statistical
independence. Furthermore, the selection of sequenced
species in the genomic databases is dictated by human
interest, and not by the aim to have an as independent
as possible sampling in the space of all functional amino-
acid sequences. A way to mitigate effects of uneven sam-
pling, employed in [2], is to equip each sequence σ(b) with
a weight wb which regulates its impact on the parameter
estimates. Sequences deemed unworthy of independent-
sample status (too similar to other sequences) can then
have their weight lowered, whereas sequences, which are
quite different from all other sequences, will contribute
with a higher weight to the amino-acid statistics.

A simple but efficient way (cf. [2]) is to measure the
similarity sim(σ(a),σ(b)) of two sequences σ(a) and σ(b)

as the fraction of conserved positions (i.e. identical amino
acids), and compare this fraction to a pre-selected thresh-
old x , 0 < x < 1. The weight given to a sequence σ(b)

can then be set to wb = 1
mb

, where mb was the number

of sequences in the MSA similar to σ(b):

mb = |{a ∈ {1, ..., B} : sim(σ(a),σ(b)) ≥ x}|. (20)

In [2], a suitable threshold x was found to be 0.8, re-
sults only weakly dependent on this choice throughout
0.7 < x < 0.9. We have here followed the same procedure
using threshold x = 0.9. The corresponding re-weighted
frequency counts then become

fi(k) =
1

λ+Beff

[
λ

q
+

B∑
b=1

wb δ(σ
(b)
i , k)

]
, (21)

fij(k, l) =
1

λ+Beff

[
λ

q2
+

B∑
b=1

wb δ(σ
(b)
i , k) δ(σ

(b)
j , l)

]
,

where Beff =
∑B

b=1 wb becomes a measure of the number
of effectively non-redundant sequences.

In the pseudo-likelihood we use the direct analogue of
Eq. (21), i.e.

npll(h,J) (22)

= − 1

Beff

B∑
b=1

wb

N∑
r=1

log
[
P{hr,Jr}(σr = σ(b)

r |σ\r = σ
(b)
\r )
]
.

As in the frequency counts, each sequence is considered
to contribute a weight wb, instead of the standard weight
one used in i.i.d. samples.

H. Interaction scores

In the inverse Ising problem each interaction is scored
by one scalar coupling strength Jij . These can easily
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be ordered, e.g. by absolute size. In the inverse Potts
problem, each each position pair (i, j) is characterized by
a whole (q−1)×(q−1) matrix Jij , and some scalar score
is needed in order to evaluate the ‘coupling strength’ of
two sites.

In [1] and [2] the score used is the direct information
(DI), i.e. the mutual information of a restricted prob-
ability model not including any indirect coupling effects
between the two positions to be scored. The construction
of DI goes as follows: For each position pair (i, j), (the
estimate of) Jij is used to set up a ’direct distribution’
involving only nodes i and j,

P
(dir)
ij (k, l) ∼ exp

(
Jij(k, l) + h′i,k + h′j,l

)
. (23)

h′i,k and h′j,l are new fields, computed as to ensure agree-
ment of the marginal single-site distributions with the
empirical individual frequency counts fi(k) and fj(l).
The DI score is now calculated as the mutual information
of P (dir):

DIij =

q∑
k,l=1

P
(dir)
ij (k, l) log

(
P

(dir)
ij (k, l)

fi(k) fj(l)

)
. (24)

A nice characteristics of DI is its invariance with respect
to the gauge freedom of the Potts model, i.e. both choices
Eqs. (8) and (9) (or any other valid choice) generate iden-
tical DI.

In the pseudo-likelihood approach, we prefer not to
use DI, as this would require a pseudocount λ to regu-
larize the frequencies in the DI computation, introducing
a third regularization variable in addition to λh and λJ .
Another possible scoring function, already mentioned but
not used in [1], is the Frobenius norm

‖Jij‖2 =

√√√√ q∑
k,l=1

Jij(k, l)2. (25)

Unlike DI, (25) is not independent of gauge choice, so
one must be a bit careful. As was noted in [1], the zero
sum gauge (8) minimizes the Frobenius norm, in a sense
making (8) the most appropriate one for the score (25).
Recall from above that our pseudo-likelihood uses the full
representation and fixes the gauge by the regularization
terms Rl2 . Our procedure is therefore first to infer the
interaction parameters using using the pseudo-likelihood
and the regularization, and then change to the zero-sum
gauge:

J ′ij(k, l) = Jij(k, l)− Jij(·, l)− Jij(k, ·) + Jij(·, ·), (26)

where ‘·’ denotes average over the concerned position.
One can show that (26) preserves the probabilities of (6)
(after altering the fields appropriately) and that J ′ij(k, l)
satisfy (8). A possible Frobenius norm score is hence

FNij = ‖J′ij‖2 =

√√√√ q∑
k,l=1

J ′ij(k, l)
2. (27)

Lastly we borrow an idea from Jones et al. [9], whose PSI-
COV method also used a norm rank (l1-norm instead of
Frobenius norm), but scores are adjusted by an average
product correction (APC) term. APC was introduced in
[49] to suppress effects from phylogenetic bias and insuf-
ficient sampling. Incorporating also this correction, we
have our scoring function

CNij = FNij −
FN·jFNi·

FN··
, (28)

where CN stands for ‘corrected norm’.

IV. EVALUATING THE PERFORMANCE OF
MFDCA AND PLMDCA ACROSS PROTEIN

FAMILIES

We have performed numerical experiments using
mfDCA and plmDCA on a number of domain families
from the Pfam database; here we report and discuss these
results.

A. Domain families, native structures, and
true-positive rates

The speed of mfDCA enabled Morcos et al. [2] to
conduct a large-scale analysis using 131 families. PLM
is computationally more demanding than NMFI, so we
chose to start with a smaller collection of 17 families,
listed in Table I. To ease the numerical effort, we chose
families with relatively small N .

To reliably assess how good a contact prediction is,
something to regard as a “gold standard” is helpful. For
each of the 17 families we have therefore selected one rep-
resentative high-resolution X-ray crystal structure (reso-
lution below 3Å), see the last column of Table I for the
corresponding PDB identification.

From these native protein structures, we have ex-
tracted position-position distances d(i, j) for each pair of
sequence positions, by measuring the minimal distance
between any two heavy atoms belonging to the amino
acids present in these positions. Fig. 2.a shows the distri-
bution of these distances in all considered families. Three
peaks protrude from the background distribution: One at
small distances below 1.5Å, a second at about 3-5Å and
the third at about 7-8Å. The first peak corresponds to
the peptide bonds between sequence neighbors, whereas
the other two peaks correspond to non-trivial contacts
between amino acids, which may be distant along the
protein backbone, as can be seen from panels b and
c of Fig. 2, which collect only distances between posi-
tions i and j with minimal separation |i − j| ≥ 5 resp.
|i − j| ≥ 15. Following [2], we take the peak at 3-5Å to
presumably correspond to short-range interactions like
hydrogen bonds or secondary-structure contacts, whereas
the last peak likely corresponds to long-range, possibly
water-mediated interactions. These peaks contain the
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Family ID N B Beff (90%) PDB ID

PF00011 102 7151 3481 2bol

PF00013 58 11484 3785 1wvn

PF00014 53 3090 1812 5pti

PF00017 77 4403 1741 1o47

PF00018 48 8993 3354 2hda

PF00027 91 17830 9036 3fhi

PF00028 93 18808 8317 2o72

PF00035 67 5584 2254 1o0w

PF00041 85 26172 10631 1bqu

PF00043 95 9619 5141 6gsu

PF00046 57 15445 3314 2vi6

PF00076 70 31837 14125 1g2e

PF00081 82 5867 1510 3bfr

PF00084 56 9816 4345 1elv

PF00105 70 4842 1277 1gdc

PF00107 130 28022 12114 1a71

PF00111 78 11941 5805 1a70

TABLE I: Domain families included in our study, listed with
Pfam ID, length N , number of sequences B, the number of
effective sequences Beff (under 90% re-weighting), and the
PDB structure used to access the DCA prediction quality.

non-trivial information we would like to extract from se-
quence data using DCA. In order to accept the full second
peak, we have chosen a distance cutoff of 8.5Å for true
contacts, slightly larger than the value of 8Å used in [2].

Accuracy results are here reported primarily using
true-positive (TP) rates, also the principal measurement
of in [2] and [9]. The TP rate for p is the fraction of the p
strongest-scored pairs which are actually contacts in the
crystal structure, defined as described above. To exem-
plify TP rates, let us jump ahead and look at Fig. 3. For
PLM and protein family PF00076, the TP rate is one up
to p = 80, which means that all 80 highest-CN pairs are
genuine contacts in the crystal structure. At p = 200,
the TP rate has dropped to 0.78, so 0.78 · 200 = 156 of
the top 200 highest-CN pairs are contacts, while 44 are
not.

B. Parameter settings

To set the stage for comparison, we started by run-
ning initial trials on 17 families using both NMFI and
PLM with many different regularization and re-weighting
strengths. Re-weighting indeed raised the TP rates, and,
as was reported in [2] for the 131 families, results seemed
robust toward the exact choice of the limit x around
0.7 ≤ x ≤ 0.9. We chose x = 0.9 to use throughout
the study.

In what follows, NMFI results are reported using the
same list of pseudocounts as in Fig. S11 in [2]: λ =

w ·Beff with w = {0.11, 0.25, 0.43, 0.67, 1.0, 1.5, 2.3, 4.0,
9.0}. During our analysis we also ran intermediate val-
ues, and we found this covering to be sufficiently dense.
We give outputs from two versions of NMFI: NMFI-DI
and NMFI-DI(true). The former uses pseudocounts for
all calculations, whereas the latter switches to true fre-
quencies when it gets to the evaluations of the DI scores.

With l2-regularization in the PLM algorithm, out-
comes were robust against the precise choice of λh; TP
rates were almost identical when λh was changed between
0.001 and 0.1. We therefore chose λh = 0.01 for all ex-
periments. What mattered, rather, was the coupling reg-
ularization parameters λJ , for which we did a systematic
scan from λJ = 0 and up using step-size 0.005.

So, to summarize, the results reported here are based
on x = 0.9, cutoff 8.5Å, and λh = 0.01, and λ and λJ
drawn from collections of values as described above.

C. Main comparison of mfDCA and plmDCA

Fig. 3 shows TP rates for the different families and
methods. We see that TP of plmDCA (PLM) rates are
consistently greater than the ones of mfDCA (NMFI),
especially for families with large Beff . For what con-
cerns the two NMFI versions: NMFI-DI(true) avoids the
strong failure seen in NMFI-DI for PF00084, but for most
other families, see in particular PF00014 and PF00081,
the performance instead drops using marginals without
pseudo-counts in the DI calculation. For both NMFI-DI
and NMFI-DI(true), the best regularization was found to
be λ = 1 ·Beff , the same value as used in [2]). For PLM,
the best parameter choice was λJ = 0.01. Interestingly,
this same regularization parameter were optimal for ba-
sically all families. This is somewhat surprising, since
both N and Beff span quite wide ranges (48-130 and
1277-14225 respectively).

In the following discussion, we leave out all results for
NMFI-DI(true) and focus on PLM vs. NMFI-DI, i.e. the
version used in [2]). All plots remaining in this section use
the optimal regularization values: λ = Beff for NMFI
and λJ = 0.01 for PLM.

TP rates only classify pairs as contacts (d(i, j) < 8.5Å)
or non-contacts (d(i, j) ≥ 8.5Å). To give a more detailed
view of how scores correlate with spatial separation, we
show in Fig. 4 a scatter plot of the score vs. distance for
all pairs in all families. PLM and NMFI-DI both manage
to detect the peaks seen in the true distance distribution
of Fig. 2.a, in the sense that high scores are observed
almost exclusively at distances below 8.5Å. Both meth-
ods agree that interactions get, on average, progressively
weaker going from peak one, to two, to three, and finally
to the bulk. We note that the dots scatter differently
across the PLM and NMFI-DI figures, reflecting the two
separate scoring techniques: DI are strictly non-negative,
whereas APC corrected norms can assume negative val-
ues. We also observe how sparse the extracted signal is:
most spatially close pairs do not show elevated scores.
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FIG. 2: Histograms of crystal-structure distances pooled from all 17 families. The headers state the types of pairs included.
The red line is our contact cutoff 8.5Å.

However, from the other side almost all strongly coupled
pairs are close, so the biological hypothesis of Sec. II is
well supported here.

Fig. 5 shows scatter plots of scores for PLM and NMFI-
DI for some selected families. Qualitatively the same pat-
terns were observed for all families. The points are clearly
correlated, so, to some extent, PLM and NMFI-DI agree
on the interaction strengths. Due to the different scoring
schemes, we would not expect numerical coincidence of
scores. Many of PLM’s top-scoring position pairs have
also top scores for NMFI-DI and vice versa. The largest
discrepancy is in how much stronger NMFI-DI responds
to pairs with small |i− j|; the blue crosses tend to shoot
out to the right. PLM agrees that many of these neigh-
bor pairs interact strongly, but, unlike NMFI-DI, it also
shows rivaling strengths for many |i− j| > 4-pairs.

An even more detailed picture is given by considering
contact maps, see Fig. 7. The tendency observed in the
last scatter plots remains: NMFI-DI has a larger por-
tion of highly scored pairs in the neighbor zone, which
are the middle stretches in these figures. An important
observation is, however, that clusters of contacting pairs
with long 1D sequence separation are captured by both
algorithms.

In summary, the results suggest that the PLM method
offers some interesting progress compared to NMFI. How-
ever, let us also note that in the comparison we had also
to change both scoring and regularization styles. It is
thus conceivable that a naive mean-field inversion with
the new scoring and regularization could be more com-
petitive with PLM. Indeed, upon further investigation,
detailed in Appendix B, we found that part of the im-
provement in fact does stem from the new score. In
the comparison to follow, we therefore add results from
NMFI-CN, an updated version of the code used in [2]
which scores by CN instead of DI.

D. Run times

In general, NMFI, which is merely a matrix inversion,
is very quick compared with PLM; most families in this
study took only seconds to run through the NMFI code.

In contrast to message-passing based method used
in [1], a DCA using PLM is nevertheless feasible for all
protein families in PFAM. The objective function in PLM
is a sum over nodes and samples and its execution time
is therefore expected to depend both on B (number of
members of a protein family in PFAM) and N (length
of the aligned sequences in a protein family). Since B
varies over a larger range than N dependance is further
expected to be mainly on B.

On one core of a standard desktop computer, using a
MATLAB-interfaced C-implementation of conjugate gra-
dient (CG) descent, run times for PF00014, PF00017,
and PF00018 (small N and B) were 9, 22, and 12 min-
utes respectively. For PF00041 (small N but larger B)
one run took 2.5 hours. For larger values of N in the set
explored run times grow approximately apace. For exam-
ple, running times for PF00026 (N = 314) and PF00006
(N = 215) were 15 and 12 hours respectively.

All of these times were obtained cold-starting with all
fields and couplings at zero. Presumably one can improve
by using an appropriate initial guess obtained, say, from
NMFI. This has however not been implemented here.
Also, by minimizing each fr separately, PLM would have
amounted to N separate (multi-class) logistic regression
problems, completely open to parallel solving. This vari-
ant of PLM has however not been used in this work.
Finally, we note that if computational speed is an issue
then for large families one could also have chosen to use
only a subset of the sequences, effectively lowering B.

V. DISCUSSION

In this work, we have shown that a direct-couping anal-
ysis built on pseudo-likelihood maximization (plmDCA)
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FIG. 3: Contact-detection results for the 17 families, sorted
by Beff . Y-axes are TP rates and x-axes are the number of
predicted contacts p, based on pairs with |i − j| > 4. The
three curves for each method are the three regularization lev-
els yielding highest TP rates across all families. The thickened
curve highlights the best one out of these three (λ = Beff for
NMFI and λJ = 0.01 for PLM).

consistently outperforms the previously described mean-
field based analysis (mfDCA), as assessed across a num-
ber of large protein-domain families. The advantage of
the pseudo-likelihood approach was found to be partially
intrinsic, and partly contingent on using a sampling-
corrected Frobenius norm to score inferred direct statis-
tical coupling matrices.

On one hand, this improvement might not be surpris-
ing: it is known that, for very large data sets, pseudo-
likelihood maximization becomes asymptotically equiva-
lent to full maximum-likelihood inference, whereas mean-
field inference remains intrinsically approximate, and this
may result in an improved PLM performance also for fi-

nite data sets [23].

On the other hand, the above advantage holds if and
only if the following two conditions are fulfilled: data
a drawn independently from a probability distribution,
and this probability distribution is the the Boltzmann
distribution of a Potts model. None of these two con-
ditions actually hold for real protein sequences. On ar-
tificial data, also refined mean-field methods (Thouless-
Anderson-Palmer equations, Bethe approximation) lead
to improved model inference as compared to naive mean-
field inversion, cf. e.g. [14, 16, 17, 21], but no such im-
provement has been observed in real protein data [2].
The results of the paper are therefore interesting and
highly non-trivial. They also suggest that other model-
learning methods from statistics such as “Contrastive Di-
vergence” [50] or the more recent “Noise-Contrastive Es-
timation” [51], could be explored to further increase our
capacity to extract structural information from protein
sequence data.

Disregarding the improvements, we find that overall
the predicted contact pairs for plmDCA and mfDCA are
highly overlapping, illustrating the robustness of DCA
results with respect to the algorithmic implementation.
This observations suggests that, in the context of mod-
eling the sequence statistics by pairwise Potts models,
most extractable information might already already be
extracted from the MSA. However, it may well also be
that there is alternative information hidden in the se-
quences, for which we would need to go beyond pair-wise
models, or integrate the physico-chemical properties of
different amino acids into the procedure, or extract even
more information from large sets of evolutionarily related
amino-acid sequences. DCA is only a step into this di-
rection.

In our work we have seen, that simple sampling cor-
rections, more precisely sequence-re-weighting and the
average-product correction of interaction scores, lead to
an increased accuracy in predicting 3D contacts of amino-
acids, which are distant on the protein’s backbone. It is,
however, clear that these somewhat heuristic statistical
fixes cannot correct for the complicated hierarchical phy-
logenetic relationships between proteins, and that more
sophisticated methods would be needed to disentangle
phylogenetic from functional correlations in massive se-
quence data. To do so is an open challenge, which would
leave the field of equilibrium inverse statistical mechan-
ics, but where methods on inverse statistical mecahnics
may still play a useful role.
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FIG. 4: Score plotted against distance for all position pairs in all 17 families. The red line is our contact cutoff at 8.5Å.

FIG. 5: Scatter plots of interaction scores for PLM and NMFI-
DI from four families. For all plots, the axes are as indicated
by the top left one. The distance unit in the top box is Å.
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Appendix A: Further comparisons

Another way to visualize the comparative performance
of the two methods is contact maps, shown in Fig. 7. The
tendency observed in the scatter plots remains: NMFI-DI
has a larger portion of highly scored pairs in the neigh-
bor zone (the middle stretch of the figures). Clusters of
strongly interacting neighbors are caught by both algo-
rithms, but PLM marks such sections using fewer pairs.
NMFI-DI displays somewhat loopy behavior in these re-
gions; where PLM, for instance, identifies pairs of the
type (1, 2), (2, 3), and (3, 4), NMFI-DI tends to in ad-
dition include pairs like (1, 3), (1, 4), and (2, 4), which
could be argued to be somewhat redundant.

To get a sense of how false positives distribute across
the domains, we draw interactions into circles in Fig. 8.
Among erroneously predicted contacts there is some ten-
dency towards loopiness, especially for NMFI-DI; the
blue lines tend to ‘bounce around’ in the circles. It hence
seems that relatively few nodes are responsible for many
of the false positives. We performed an explicit check
of the data columns belonging to these ‘bad’ nodes, and
we found that they often contained strongly biased data,
i.e., had a few large f i(k). In such cases, it seemed that
NMFI-DI was more prone than PLM to report a (pre-
dicted) interaction.

Appendix B: Other scores for naive mean-field
inversion

We investigated whether NMFI performance by using
the APC term for the DI scoring and by using the CN
score. In the second case we first switch the parameter
constraints from (9) to (8) using (26). Mean TP rates us-
ing these modified scores are shown in fig. 9. We observe
that APC in DI scoring increases TP rates slightly, while
CN scoring can improve TP rates overall. We remark
however that for for the second-highest ranked interac-
tion (p = 2) NMFI with the original DI scoring (NMFI-
DI) outperforms NMFI with CN scoring (NMFI-CN).

Motivated by the results of fig. 9, we decided to com-
pare NMFI and PLM under the CN score. All figures
in this paragraph show the best regularization for each
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FIG. 7: Contact maps for PLM and NMFI-DI from four fami-
lies. A pair (i, j)’s placement in the plots is found by matching
positions i and j on the axes. Contacts are indicated by gray
(dark for d(i, j) < 5Å and light for 5Å≤ d(i, j) < 8.5Å). True
and false positives are represented by circles and crosses, re-
spectively. Each figure shows the 1.5N strongest ranked pairs
(including neighbors) for that family.

method, unless otherwise stated. Figure 10 shows score
vs. distance for all |i− j| > 4-pairs in all families. Unlike
fig. 4a–b, the two plots now show very similar profiles.
We note, however, that NMFI’s CN scores trend two to
three times larger than PLM’s (the scales on the vertical
axes are different). Perhaps this is an inherent feature for
these methods, or simply a consequence of the different
types of regularization types.

TP rates

Figure 11 shows the same situation as Fig. 3, but us-
ing CN to score NMFI. The three best regularization
choices for NMFI-CN turned out the same as before, i.e.
λ = 1 · Beff , λ = 1.5 · Beff and λ = 2.3 · Beff , but
the best out of these three was now λ = 2.3 · Beff (in-
stead of λ = 1 ·Beff ). Comparing Fig. 3 and Fig 11 one
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FIG. 8: Connections for four families overlaid on circles. Po-
sition ‘1’ is indicated by a dash. The leftmost column shows
contacts in the crystal structure (dark gray for d(i, j) < 5Å
and light gray for 5Å≤ d(i, j) < 8.5Å). The other two columns
show the top 1.5N strongest ranked |i− j| > 4-pairs for PLM
and NMFI, with black/red for true positives and blue for false
positives.

can see that the difference between the two methods is
now smaller; for several families, the prediction quality
is in fact about the same for both methods. Still, PLM
maintains a somewhat higher TP rates overall.

Scatter plots

Figure 12 shows scatter plots for the same families as
in Fig. 5 but using the CN scoring for NMFI. The points
now lie more clearly on a line, from which we conclude
that the bends in Fig. 5 was likely a consequence of differ-
ing scores. Yet, the trends seen in Fig. 5 remain: NMFI
gives more attention to neighbor pairs than does PLM.

FIG. 9: Mean TP rates, using pairs with |i−j| > 4, for NMFI
with old scores DI and DI(true), new APC scores CDI and
CDI(true), and the norm score CN. Each curve corresponds
to the best λ for that particular score.

Contact maps

In Fig. 13 we recreate the contact maps of fig. 7 with
NMFI-CN in place of NMFI-DI and find that the plots
are more symmetric. As expected, asymmetry is seen
primarily for small |i − j|; NMFI tends to crowd these
regions with lots of loops.

Gap-gap interactions

To investigate why NMFI assembles so many top-
scored pairs in certain neighbor regions, we performed
an explicit check of the associated MSA columns. A rel-
evant regularity was observed: when gaps appear in a
sequence, they tend to do so in long strands. The pic-
ture can be illustrated by the following hypothetical MSA
(in our implementation, the gap state is 1):

... 6 5 9 7 2 6 8 7 4 4 2 2 ...

... 1 1 1 1 1 1 1 1 1 1 2 8 ...

... 6 5 2 7 2 3 8 9 5 4 2 3 ...

... 3 7 4 7 2 6 8 7 9 4 2 3 ...

... 3 7 4 7 2 3 8 8 9 4 2 9 ...

... 1 1 1 1 1 1 1 4 5 4 2 9 ...

... 8 5 9 7 2 9 8 7 4 4 2 4 ...

... 1 1 1 1 1 1 1 1 1 1 2 4 ...

We recall that gaps (“1” states) are necessary for sat-
isfactory alignment of the sequences in a family and
that in our procedure we treat gaps just another amino
acid, with its associated interaction parameters. We then
make the obvious observation that independent samples
from a Potts model will only contain long subsequences
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FIG. 10: Score plotted against distance for all |i− j| > 4-pairs in all 17 families.

of the same state with low probability. In other words,
the model to which we fit the data cannot describe long
stretches of “1” states, which is a feature of the data. It is
hence quite conceivable that the two methods handle this
discrepancy between data and models differently since we
do expect this gap effect to generate large Jij(1, 1) for at
least some pairs with small |i− j|.

Figure 14 shows scatter plots for all coupling parame-
ters Jij(k, l) in PF00014, which has a modest amount of
gap sections, and in PF00043, which has relatively many.
As outlines above, the Jij(1, 1)-parameters are among the
largest in magnitude, especially for PF00043. We also
note that the red dots steer to the right; NMFI clearly
reacts harder to the gap-gap interactions than PLM.

Jones et al. (2012) disregarded contributions from gaps
in their scoring by simply skipping the gap state when
doing their norm summations. We tried this but found no
significant improvement for either method. The change
seemed to affect only pairs with small |i − j| (which is
reasonable), and our TP rates are based on pairs with
|i− j| > 4. If gap interactions are indeed responsible for
reduced prediction qualities, removing their input during
scoring is just a band-aid type solution. An better way
would be to suppress them already in the parameter es-
timation step. That way, all interplay would have to be
accounted for without them. Whether or not there are
ways to effectively handle the inference problem in PSP
ignording gaps or treating them differently is an issue
which goes beyond the scope of this work.

We also investigated whether the gap effect depends on
the sequence similarity re-weighting factor x, which up
to here was chosen x = 0.9. Perhaps the gap effect can
be dampened by stricter definition of sequence unique-
ness? In Fig. 15 we show another set of TP rates, but
now for x = 0.75. We also include results for NMFI run
on alignment files from which all sequences with more
than 20% gaps have been removed. The best regulariza-
tion choice for each method turned out the same as in
fig. 11: λ = 2.3 ·Beff for NMFI and λJ = 0.01 for PLM.

Overall, PLM keeps the same advantage over NMFI it
had in Fig. 11. Removing gappy sequences seems to trim
down more TP rates than it raises, probably since useful
information in the non-gappy parts is discarded unnec-
essarily.

Appendix C: Extension to 28 protein families

To sample a larger set of families, we conducted an ad-
ditional survey of 28 families, now covering lengths across
the wider range of 50-400. The list is given in Table C.
We here kept the re-weighting level at x = 0.8 as in [2],
while the TP rates were again calculated using the cutoff
8.5Å. The pseudo-count strength for NMFI was varied in
the same interval as in the main text. We did not try
to optimize the regularization parameters for this trial,
but merely used λJ = 0.01 as determined for the smaller
family in the main text.

Figure 16 shows qualitatively the same behaviour as
in the smaller set of families: TP rates increase partly
from changing the from the DI score to CN score, and
partly from changing from NMFI to PLM. Our positive
results thus do not seem to be particular to short-length
families.

Apart from the average TP rate for each value of p
(p’th strongest predicted interaction) one can also evalu-
ate performance by different criteria. In this large family
we investigated the distribution of values of p such that
the TP rate in a family is one. Fig. 17 shows the his-
tograms of the number of families for which the top p
predictions are correct, clearly showing that the differ-
ence between PLM and NMFI (using the two scores) pri-
marily occurs at the high end. The difference in average
performance between PLM and NMFI at least partially
stems from PLM getting more strongest contact predic-
tions with 100% accuracy.
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FIG. 11: Contact-detection results for all the families in our
study (sorted by Beff ), now with the CN score for NMFI.
Y-axes are TP rates and x-axes are the number of predicted
contacts p, based on pairs with |i− j| > 4. The three curves
for each method are the three regularization levels yielding
highest TP rates across all families. The thickened curve
highlights the best one out of these three (λ = 2.3 · Beff

for NMFI-CN and λJ = 0.01 for PLM).
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FIG. 12: Scatter plots of interaction scores for PLM and
NMFI-CN from four families. For all plots, the axes are as
indicated by the top left one. The distance unit in the top
box is Å.
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FIG. 13: Contact maps for PLM and NMFI-CN from four
families. A pair (i, j)’s placement in the plots is found by
matching positions i and j on the axes. Contacts are indicated
by gray (dark for d(i, j) < 5Å and light for 5Å≤ d(i, j) <
8.5Å). True and false positives are represented by circles and
crosses, respectively. Each figure shows the 1.5N strongest
ranked pairs (including neighbors) for that family.
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FIG. 14: Scatter plots of estimated Jij,kl = Jij(k, l) from
PF00014 and PF00043. Red dots are ‘gap–gap’ interactions
(k = l = 1), turquoise dots are ‘gap–amino-acid’ interactions
(k = 1 and l 6= 1, or k 6= 1 and l = 1), and blue dots are
‘amino-acid–amino-acid’ interactions (k 6= 1 and l 6= 1).

ID N B Beff (80%)

PF00006 215 10765 640.68

PF00011 102 5024 2725.01

PF00013 58 6059 2529.25

PF00014 53 2393 1478.23

PF00017 77 2732 1311.75

PF00018 48 5073 334.68

PF00025 175 2946 995.75

PF00026 314 3851 2074.68

PF00027 91 12129 7631.12

PF00028 93 12628 6322.61

PF00032 102 14994 684.47

PF00035 67 3093 1826.30

PF00041 85 15551 8691.38

PF00043 95 6818 4051.93

PF00044 151 6206 1422.27

PF00046 57 7372 1760.85

PF00056 142 4185 1119.53

PF00059 108 5293 3258.25

PF00071 161 10779 3793.01

PF00073 171 9524 487.07

PF00076 70 21125 10112.69

PF00081 82 3229 890.25

PF00084 56 5831 3453.40

PF00085 104 10569

PF00091 216 8656 916.98

PF00092 179 3936 1785.97

PF00105 70 2549 816.12

PF00108 264 6839 2688.27
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FIG. 15: Contact-detection results for all the families in our
study. Y-axes are TP rates and x-axes are the number of
predicted contacts p, based on pairs with |i−j| > 4. The black
and green curves are for re-weighting margin x = 0.75, and the
purple curve is for re-weighting margin x = 0.9 after deletion
of all sequences with more than 20% gaps. The curve for
each method corresponds to the regularization level yielding
highest TP rates across all families (λ = 2.3 · Beff for both
NMFI-CN and λJ = 0.01 for PLM).
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