
SINTEF Group Head Office

Johan Seland

1

Geilo Winter School 2013

Advanced Software Testing

SINTEF Group Head Office

• Solution is in the final branch on Github

• git clone git://github.com/johanseland/BowlingGameKataPy.git

git checkout origin/final

2

Solution Example for the Bowling Game Kata

SINTEF Group Head Office

• Testing Frameworks

• Writing good tests

• The mechanism of change
• Refactoring

• Black-Box testing tools

• Continuous Integration

3

Overview of Lecture

SINTEF Group Head Office

Regression
Tests

System Tests

Integration Tests

Unit Tests

4

The Test Pyramid

SINTEF Group Head Office

• Unit Tests:
• Tests individual units of code
• Function/Class level

• Integration Tests:
• Tests how components communicate
• Example: Is grid correctly initialized from init file?

• System Tests:
• Are results valid?
• Performance/Scaling/Resources/Stability

• Regression Tests:
• Test for old bugs

5

The Test Pyramid
Regression

Tests

System Tests

Integration Tests

Unit Tests

SINTEF Group Head Office

• Testing software is made easier by test frameworks
• At least for unit, integration and regression tests

• Typical facilities

• Automatic test detection
• Minimize boilerplate-code
• Assertion functions
• Test execution

• Tests run in isolation
• Command-line parsing
• Standard output formats

• Common terminology for talking about tests

6

xUnit Test Frameworks

SINTEF Group Head Office

• Assertions
• The actual tests

• Test case
• Function invoking assertions

• Suites
• A collection of cases

• Fixtures
• (Data) structures set up before tests

• Mocks objects
• Objects that mimic behavior of real objects

7

xUnit Testing terminology

SINTEF Group Head Office

Every language has a xUnit-based Test Framework

• C++
– GoogleTest, Qtest,

Boost.Test
• Fortran:

– pfUnit, fUnit
• .NET (C#, F#, etc.)

– Visual Studio Testing
Framework

• Java
– Junit

• Python
– UnitTest

• R
– Runit

• Matlab

– MUnit

• Open Source

8

SINTEF Group Head Office

• Split test and source files!
• Consider building application as

• Library + "App"-executable
• Test-executables

• Separate project for different test layers

• Unit vs Integration vs System vs Regression

• make should build everything

• make check should run as reasonable amount of tests
• Unambiguous answer if tests pass or fail

9

Test code organization

SINTEF Group Head Office

• Test code is not a second-class citizen
• Requires thought, design and care
• It must be kept as clean as production code

• Agree on naming convention

• TestFoo() or FooTest()?

• Test one “concept” per test
• Often multiple tests per class/function
• Kent Beck school: One assert per test

10

Testing best practices

SINTEF Group Head Office

• Be intelligent when writing unit tests!
• Do not inflate their number

• Each test should have a meaning

• Collapse/Cleanup tests when cleaning up the production code

• Typically test:

• Zero-case
• Trivial Case
• Corner Cases (division by zero?)
• Error handling

11

What to unit test?

SINTEF Group Head Office

• Fast
• Tests should be fast.
• You won’t run slow tests frequently

• Independent
• Tests should not depend on each other

• Repeatable
• They should be repeatable in any environment
• Otherwise you have an excuse why they fail

• Self-Validating
• Tests should have a boolean output
• No manual evaluation should be needed

• Timely
• Should be written just before the production code that make pass

12

Clean tests – F.I.R.S.T.

SINTEF Group Head Office

• Short answer:
You should only test the public interface of a class

• Reality:
The crucial computation happens in private methods

• Possible fixes:
• Split into impl-namespace
• Mark as protected instead and let test-class be subclass
• Let test be a friend class (C++)
• Mark as package-private (Java)

13

Testing private methods

SINTEF Group Head Office

• HERE BE DRAGONS!

• Floating point in general is not associative
• a op b != b op a
• Beware of parallel computations

• Floating point is sensitive to compiler settings!

• Fused operations
• Compiler optimizations
• Flush to memory

• Know your precision

14

Testing Floating Point Computations

SINTEF Group Head Office

• For numerical algorithms, an estimate of the tolerance is needed
• You can not simply test for equality
• Absolute vs Relative error
• Too low tolerance: Test might fail when implementation is correct
• Too high tolerance: Test will not detect real errors

• Do you have (or can derive?) an error estimate/bound
• Might be publishable itself!
• Might just be asymptotic with unknown coefficient

15

Testing Floating Point cont'd

SINTEF Group Head Office

• Unit tests is not the place to test for stability of iterative methods
• A black-box or system test
• Will often require manual inspection of results
• Goal of automated tests should be to decide if the implementation is correct

• Unit tests for iterative methods should test the implemenation
• Constant input fields
• Convergence criteria
• Detecting invalid input

• Can you split it out so each substep has an analytical solution?

16

Unit Tests for Iterative Methods

SINTEF Group Head Office

• Use analytic cases when available!

• Write tests to compare results between previous run of simulator
• Typically require manual inspection
• Often require dedicated post-processing tools

• Bitwise reproducibility is not attainable

17

Strategies for Testing Floating Point

SINTEF Group Head Office

• Often you can not rely on real objects for tests
• Databases
• Sockets
• Huge datasets
• Displays
• Amazon Instances

• FAKE objects have working implementation with shortcuts

• In-memory filesystem, constant grids

• MOCK objects are pre-programmed with expectations
• Mock-libraries make it easier

18

Mocks and fakes

SINTEF Group Head Office

• Use of InputFileReader is hardcoded in class (tight coupling)

• Problems:
• I/O might take a long time
• Input files must be distributed with tests

19

Using Fakes: Non-testable code

SINTEF Group Head Office

• We instead use an abstract class defining our behaviour

• Parameter object is passed to simulator

20

Using Fakes: Introduce Parameter Object

SINTEF Group Head Office

• In the test code, we add simplified version

• And pass this to simulator

21

Using Fakes: Introduce fake object

SINTEF Group Head Office

Testable code will often have:

• More classes

• Should not be a problem in modern IDEs
• Use ECB in Emacs

• Smaller classes

• That follow the Single Responsibility Principle (SRP)

• Looser coupling
• One of the benefits of object-oriented languages

22

Fake objects conclusion

SINTEF Group Head Office

• Why do you want change?

1. To add a feature
2. To fix a bug
3. To improve the design (refactoring)
4. To optimize

23

Changing software

SINTEF Group Head Office

Add a Feature Fix a bug Refactoring Optimizing
Structure Changes Changes Changes Changes?
New
Functionality

Changes - - -

Functionality - Changes - -
Resource
Usage

- - - Change

24

The mechanisms of change cont'd

SINTEF Group Head Office

• The main thing that distinguishes legacy code from
non-legacy code is tests, or rather a lack of tests."
 Michael Feathers

• Alternative definition:

Code you are afraid to change, cause you can not see the consequences

BRING IT UNDER TEST!

25

What about legacy code?

SINTEF Group Head Office

Refactoring

Code refactoring is the process of changing a computer program's source code without
modifying its external functional behavior in order to improve some of

the nonfunctional attributes of the software

• Make it work
• Make it right

– Maintainability
– Extensibility

26

SINTEF Group Head Office

Some refactoring techniques

• Rename field
– Change a name into a new one that better reveals its purpose

• Extract method
– Turn part of a larger method into a new method

• Move field
– Move to a more appropriate class or source file

• Extract class
– Move part of the code from an existing class into a new class

• Generalize Type
– Create more general types to allow for more code sharing

• Many more at refactoring.com

27

SINTEF Group Head Office

• IDEs have some support for automatic refactoring
• Guarantees that behavior does not break
• Java IDE have

• C++ is probably the most difficult language
• Templates are specially difficult
• But we are getting there as well (QTCreator in particular)

• Lean on the compiler
1. Alter declarations to cause compile errors
2. Navigate to errors and make changes
3. Rerun tests!

• Pair programming!

28

Refactoring in practice

SINTEF Group Head Office

• A plethora of tools to analyse your program and tell you something about is status
• At the source-code level or program level
• Commercial or open-source

• White-box testing is biased

• You generally write them yourself

• Testing tools does not lie

29

Other testing tools

SINTEF Group Head Office

• Programs that look at your source code
• Identifies common errors

• Bounds checking for arrays
• Memory leaks
• Resource leaks
• Stylistic errors
• Code duplication

• Compute code metrics

• Subject to false positives and negatives

• Common tools: Cppcheck, Cpplint

30

Static Code Analysers

SINTEF Group Head Office

• Tools that monitor the execution of a program
• Allows you to understand their behaviour when running on real code

• Used to detect:

• Performance metrics
• Memory leaks
• Parallelization errors

• Program must be instrumented

• Compiler switch
• Run in a virtual environment
• Often program execution is slowed down dramatically

• Yet another benefit of many separate test programss

• Example Tools: Valgrind, gcov, Intel Parallel Studio

31

Profilers

SINTEF Group Head Office

• Measure which code is executed at all

• Used to detect if you have code that is not covered your tests
• Are you testing each direction of an if-statement?
• Is it code you are not executing

• Example programs: gcov (GCC stack), Cobertura (Java), coverage (Python)

32

Code coverage

SINTEF Group Head Office

CONTINOUS INTEGRATION

33

SINTEF Group Head Office

• If daily builds are good
• Continuous builds are better

• If daily testing is good
• Continuous testing is better

• Detect issues as early as possible

• Jenkins is a web-service that happily builds code and executes test all-day
• Jenkins will build on all your platforms
• Execute long-running tests
• Syndicate results across builds

34

Motivation

SINTEF Group Head Office 35

SINTEF Group Head Office

• Instant feedback
• Everyone can see status

• Latest executable available
• Build on all platforms all

the time

Downside:
• Should really be run on dedicated server

36

Benefits

SINTEF Group Head Office

• Email only when build breaks/tests start to fail

• Per project participant list
• If people start filtering emails you have lost

• Everyone can look at build configurations

• Avoids mysterious cron jobs on private workstations
• Jenkins is not a high-security system

• Do not build on your own workstation

• Highlights new dependencies

• Use clean builds

37

Jenkins best practices

SINTEF Group Head Office

You need something not on Jenkins server
• Matlab
• Windows
• GPUs
• Fluent

• Hudson can start jobs on slaves
• Extremely easy to set up

38

Jenkins slaves

SINTEF Group Head Office

Jenkins tips

• Performance monitoring
– Runtime for test is in XML-report
– Small Python script to extract it

• Correctness monitoring
– Compare output to prev. output

• Get cron jobs in there as well

• Back up Hudson!

39

SINTEF Group Head Office

More possibilities

• Store profiling information

• Validate single-thread vs parallel implementations

• Validate against gold standard

• Analyze compiler warnings

• Static code analyzer

• Check for memory leaks (Valgrind)

• Let managers/supervisor know about available metrics?

40

SINTEF Group Head Office

• Server was set up in summer 2010

• Specialized servers added later
• GPU build server
• Windows build server

• Informal tutorial session

• Quickly adopted for many projects

• People continue to use it!

41

Jenkins at SINTEF Applied Mathematics

SINTEF Group Head Office

• Social Processes
• Code-Reviews
• Pair-Programming

• Bug/Issue tracking

• Acceptance Testing

• Fitnesse Framework

• Various code metrics

42

Thing not covered

SINTEF Group Head Office

• You need a testing strategy

• Your testing strategy should consist of a battery of
• White-box testing at the source level
• Black-box testing at the program level

• Automate as much as possible

• Minimize the amount of human parsing necessary

• Execute tests as often as possible
• Continuous Integration is an enabling technology for this

43

Concluding remarks

SINTEF Group Head Office

Reading list

44

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Every language has a xUnit-based Test Framework
	Test code organization
	Testing best practices
	Slide Number 11
	Clean tests – F.I.R.S.T.
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Fake objects conclusion
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Refactoring
	Some refactoring techniques
	Refactoring in practice
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Continous integration
	Motivation
	Slide Number 35
	Slide Number 36
	Jenkins best practices
	Jenkins slaves
	Jenkins tips
	More possibilities
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Reading list

