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• Solution is in the final branch on Github 
 

• git clone git://github.com/johanseland/BowlingGameKataPy.git 
 
git checkout origin/final 
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Solution Example for the Bowling Game Kata 
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• Testing Frameworks 
 

• Writing good tests 
 

• The mechanism of change 
• Refactoring 

 
• Black-Box testing tools 

 
• Continuous Integration 
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Overview of Lecture 
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Regression 
Tests 

System Tests 

Integration Tests 

Unit Tests 
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The Test Pyramid 
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• Unit Tests: 
• Tests individual units of code 
• Function/Class level 

• Integration Tests: 
• Tests how components communicate 
• Example: Is grid correctly initialized from init file? 

• System Tests: 
• Are results valid? 
• Performance/Scaling/Resources/Stability 

• Regression Tests: 
• Test for old bugs 
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The Test Pyramid 
Regression 

Tests 

System Tests 

Integration Tests 

Unit Tests 
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• Testing software is made easier by test frameworks 
• At least for unit, integration and regression tests 

 
• Typical facilities  

• Automatic test detection 
• Minimize boilerplate-code 
• Assertion functions 
• Test execution 

• Tests run in isolation 
• Command-line parsing 
• Standard output formats 

• Common terminology for talking about tests 
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xUnit Test Frameworks 
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• Assertions 
• The actual tests 

• Test case 
• Function invoking assertions 

• Suites 
• A collection of cases 

• Fixtures 
• (Data) structures set up before tests 

• Mocks objects 
• Objects that mimic behavior of real objects 
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xUnit Testing terminology 
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Every language has a xUnit-based Test Framework 

• C++ 
– GoogleTest, Qtest, 

Boost.Test 
• Fortran: 

– pfUnit, fUnit 
• .NET (C#, F#, etc.) 

– Visual Studio Testing 
Framework 

• Java 
– Junit 

• Python 
– UnitTest 

• R 
– Runit 

 
• Matlab 

– MUnit 
 
 

• Open Source 
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• Split test and source files! 
• Consider building application as 

• Library + "App"-executable 
• Test-executables 

 
• Separate project for different test layers 

• Unit vs Integration vs System vs Regression 
 

• make should build everything 
 

• make check should run as reasonable amount of tests 
• Unambiguous answer if tests pass or fail 
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Test code organization 
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• Test code is not a second-class citizen 
• Requires thought, design and care 
• It must be kept as clean as production code 

 
• Agree on naming convention 

• TestFoo() or FooTest()? 
 

• Test one “concept” per test 
• Often multiple tests per class/function 
• Kent Beck school: One assert per test 
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Testing best practices 
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• Be intelligent when writing unit tests! 
• Do not inflate their number 

 
• Each test should have a meaning 

• Collapse/Cleanup tests when cleaning up the production code 
 
• Typically test: 

• Zero-case 
• Trivial Case 
• Corner Cases (division by zero?) 
• Error handling 
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What to unit test? 



SINTEF Group Head Office 

• Fast  
• Tests should be fast.  
• You won’t run slow tests frequently 

• Independent  
• Tests should not depend on each other 

• Repeatable  
• They should be repeatable in any environment 
• Otherwise you have an excuse why they fail 

• Self-Validating 
• Tests should have a boolean output 
• No manual evaluation should be needed 

• Timely 
• Should be written just before the production code that make pass 
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Clean tests – F.I.R.S.T. 
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• Short answer:  
You should only test the public interface of a class 
 

• Reality:  
The crucial computation happens in private methods 
 

• Possible fixes: 
• Split into impl-namespace 
• Mark as protected instead and let test-class be subclass 
• Let test be a friend class (C++) 
• Mark as package-private (Java) 
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Testing private methods 
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• HERE BE DRAGONS! 
 

• Floating point in general is not associative 
• a op b != b op a 
• Beware of parallel computations 

 
• Floating point is sensitive to compiler settings! 

• Fused operations 
• Compiler optimizations 
• Flush to memory 

 
• Know your precision 
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Testing Floating Point Computations 
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• For numerical algorithms, an estimate of the tolerance is needed 
• You can not simply test for equality 
• Absolute vs Relative error 
• Too low tolerance: Test might fail when implementation is correct 
• Too high tolerance:  Test will not detect real errors 
 

• Do you have (or can derive?) an error estimate/bound 
• Might be publishable itself! 
• Might just be asymptotic with unknown coefficient 
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Testing Floating Point cont'd 
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• Unit tests is not the place to test for stability of iterative methods 
• A black-box or system test 
• Will often require manual inspection of results 
• Goal of automated tests should be to decide if the implementation is correct 
 

• Unit tests for iterative methods should test the implemenation 
• Constant input fields 
• Convergence criteria 
• Detecting invalid input 

 
• Can you split it out so each substep has an analytical solution? 
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Unit Tests for Iterative Methods 
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• Use analytic cases when available! 
 

• Write tests to compare results between previous run of simulator 
• Typically require manual inspection 
• Often require dedicated post-processing tools 

• Bitwise reproducibility is not attainable 
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Strategies for Testing Floating Point 
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• Often you can not rely on real objects for tests 
• Databases 
• Sockets 
• Huge datasets 
• Displays 
• Amazon Instances 

 
• FAKE objects have working implementation with shortcuts 

• In-memory filesystem, constant grids 
 

• MOCK objects are pre-programmed with expectations 
• Mock-libraries make it easier 
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Mocks and fakes 
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• Use of InputFileReader is hardcoded in class (tight coupling) 
 
 
 
 
 
 
 
 

• Problems: 
• I/O might take a long time 
• Input files must be distributed with tests 
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Using Fakes: Non-testable code 
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• We instead use an abstract class defining our behaviour 
 
 
 
 
 
 
 
 
 

• Parameter object is passed to simulator 
 
 

20 

Using Fakes: Introduce Parameter Object 
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• In the test code, we add simplified version 
 
 
 
 
 

• And pass this to simulator 
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Using Fakes: Introduce fake object 
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Testable code will often have: 
 
• More classes 

• Should not be a problem in modern IDEs 
• Use ECB in Emacs 

 
• Smaller classes 

• That follow the Single Responsibility Principle (SRP) 
 

• Looser coupling 
• One of the benefits of object-oriented languages 
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Fake objects conclusion 
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• Why do you want change? 
 

1. To add a feature 
2. To fix a bug 
3. To improve the design (refactoring) 
4. To optimize 
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Changing software 
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Add a Feature Fix a bug Refactoring Optimizing 
Structure Changes Changes Changes Changes? 
New 
Functionality 

Changes - - - 

Functionality - Changes - - 
Resource 
Usage 

- - - Change 
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The mechanisms of change cont'd 
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• The main thing that distinguishes legacy code from  
non-legacy code is tests, or rather a lack of tests." 
   Michael Feathers 
 

 
• Alternative definition:  

Code you are afraid to change, cause you can not see the consequences 
 

BRING IT UNDER TEST! 
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What about legacy code? 
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Refactoring 

Code refactoring is the process of changing a computer program's source code without 
modifying its external functional behavior in order to improve some of 

the nonfunctional attributes of the software 
 

• Make it work 
• Make it right 

– Maintainability 
– Extensibility 
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Some refactoring techniques 

• Rename field 
– Change a name into a new one that better reveals its purpose 

• Extract method 
–  Turn part of a larger method into a new method 

• Move field 
–  Move to a more appropriate class or source file 

• Extract class 
– Move part of the code from an existing class into a new class 

• Generalize Type 
– Create more general types to allow for more code sharing 

• Many more at refactoring.com 
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• IDEs have some support for automatic refactoring 
• Guarantees that behavior does not break 
• Java IDE have 

• C++ is probably the most difficult language  
• Templates are specially difficult 
• But we are getting there as well (QTCreator in particular) 

• Lean on the compiler 
1. Alter declarations to cause compile errors 
2. Navigate to errors and make changes 
3. Rerun tests! 

 
• Pair programming! 
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Refactoring in practice 



SINTEF Group Head Office 

• A plethora of tools to analyse your program and tell you something about is status 
• At the source-code level or program level 
• Commercial or open-source 

 
• White-box testing is biased 

• You generally write them yourself 
 

• Testing tools does not lie 
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Other testing tools 
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• Programs that look at your source code 
• Identifies common errors 

• Bounds checking for arrays 
• Memory leaks 
• Resource leaks 
• Stylistic errors 
• Code duplication 

 
• Compute code metrics 

 
• Subject to false positives and negatives 

 
• Common tools: Cppcheck, Cpplint  
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Static Code Analysers 
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• Tools  that monitor the execution of a program 
• Allows you to understand their behaviour when running on real code 

 
• Used to detect: 

• Performance metrics 
• Memory leaks 
• Parallelization errors 

 
• Program must be instrumented 

• Compiler switch 
• Run in a virtual environment 
• Often program execution is slowed down dramatically 

• Yet another benefit of many separate test programss 
 

• Example Tools: Valgrind, gcov, Intel Parallel Studio 
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Profilers 
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• Measure which code is executed at all 
 
 
 
 
 

• Used to detect if you have code that is not covered your tests 
• Are you testing each direction of an if-statement? 
• Is it code you are not executing 

 
• Example programs: gcov (GCC stack), Cobertura (Java), coverage (Python) 
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Code coverage 
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CONTINOUS INTEGRATION 
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• If daily builds are good 
• Continuous builds are better 

• If daily testing is good 
• Continuous testing is better 
 

• Detect issues as early as possible 
 

• Jenkins is a web-service that happily builds code and executes test all-day 
• Jenkins will build on all your platforms 
• Execute long-running tests 
• Syndicate results across builds 
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Motivation 
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• Instant feedback 
• Everyone can see status 

• Latest executable available 
• Build on all platforms all 

the time 
 
 

Downside: 
• Should really be run on dedicated server 
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Benefits 
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• Email only when build breaks/tests start to fail 

• Per project participant list 
• If people start filtering emails you have lost 

 
• Everyone can look at build configurations 

• Avoids mysterious cron jobs on private workstations 
• Jenkins is not a high-security system 

 
• Do not build on your own workstation 

• Highlights new dependencies 
 

• Use clean builds 
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Jenkins best practices 
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You need something not on Jenkins server 
• Matlab 
• Windows 
• GPUs 
• Fluent 

 
 
 

• Hudson can start jobs on slaves 
• Extremely easy to set up 
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Jenkins slaves 
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Jenkins tips 

• Performance monitoring 
– Runtime for test is in XML-report 
– Small Python script to extract it 

• Correctness monitoring 
– Compare output to prev. output 

 

• Get cron jobs in there as well 
 

• Back up Hudson! 
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More possibilities 

• Store profiling information 
 

• Validate single-thread vs parallel implementations 
 

• Validate against gold standard 
 

• Analyze compiler warnings 
 

• Static code analyzer 
 

• Check for memory leaks (Valgrind) 
 

• Let managers/supervisor know about available metrics? 
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• Server was set up in summer 2010 
 

• Specialized servers added later 
• GPU build server 
• Windows build server 

 
• Informal tutorial session 

 
• Quickly adopted for many projects 

• People continue to use it! 
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Jenkins at SINTEF Applied Mathematics 
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• Social Processes 
• Code-Reviews 
• Pair-Programming 

 
• Bug/Issue tracking 

 
• Acceptance Testing 

• Fitnesse Framework 
 

• Various code metrics 
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Thing not covered 
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• You need a testing strategy 
 

• Your testing strategy should consist of a battery of 
• White-box testing at the source level 
• Black-box testing at the program level 

 
• Automate as much as possible 

• Minimize the amount of human parsing necessary  
 

• Execute tests as often as possible 
• Continuous Integration  is an enabling technology for this 
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Concluding remarks 
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Reading list 
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