Isogeometric Analysis of Finite Deformation Solids

Kjell Magne Mathisen[†], Knut Morten Okstad[‡] and Trond Kvamsdal[‡]

 $^\dagger NTNU,$ Department of Structural Engineering, Trondheim, Norway $^\ddagger SINTEF$ ICT, Department of Applied Mathematics, Trondheim, Norway

January 26, 2012

Outline

- Motivation
- NURBS vs. Lagrange FEM
- Nonlinear elasticity
- Mixed formulation
- Implementational issues
- Numerical examples
- Concluding remarks

Motivation

- "Locking" a challenge in linear as well as nonlinear problems
- Volumetric locking a challenge where nearly incompressible behavior is prevalent
- NFEA has been dominated by use of low-order elements designed to avoid volumetric or incompressible locking
- Recently the isogeometric approach has formed the basis for overcoming the incompressibility problem
 - Hughes and co-workers has addressed this by the \bar{B} and \bar{F} -projection methods
 - Taylor improved the performance of mixed elements by using NURBS
- We have implemented two classes of mixed elements into IFEM, an object-oriented toolbox for performing isogeometric NFEA with splines and NURBS as basis functions

B-splines vs Lagrange shape functions in 1D

Note: Number of control points less than number of nodal points \Rightarrow B-Splines obtain higher accuracy vs dofs invested for Lagrange

Comparison of FEA and IGA:

Finite Element Analysis:

- Nodal points
- Nodal variables
- Mesh
- Lagrange basis functions
- Basis interpolate nodal points and variables
- h-refinement
- ▶ p−refinement
- Approximate geometry
- Subdomains

Isogeometric Analysis:

- Control points
- Control variables
- Knots
- NURBS basis functions
- Basis does not interpolate control points and variables
- Knot insertion
- Order elevation
- Exact geometry
- Patches
- Partition of unity
- Isoparametric concept
- Patch test satisfied

Textbook on Isogeometric Analysis

WILEY

Institute for Computational Engineering and Sciences

Austin, Texas, U.S.A.

The authors, which are the originators of IGA, provide us with a systematic and comprehensive coverage on how to add isogeometric capabilities to FE programs

Constitutive equations for finite hyperelasticity

Hyperelasticity

We assume hyperelastic homogeneous isotropic material behavior for which there exist a free-energy function¹ Ψ that depends on the left Cauchy-Green deformation tensor² b

$$\Psi = \Psi(\mathbf{b})$$
 with $\mathbf{b} = \mathbf{F}\mathbf{F}^{T}$ and $\mathbf{F} = \mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{X}}$

 ${\bf F}$ is the deformation gradient, ${\bf u}$ is the displacement and ${\bf I}$ is the 2nd order unit tensor

Cauchy stresses σ may be derived from the invariants of **b**

$$\boldsymbol{\sigma} = \frac{2}{J} \frac{\partial \Psi}{\partial \mathbf{b}} = \frac{2}{J} \left(\Psi_I \mathbf{b} + 2 \Psi_{II} \mathbf{b}^2 + J^2 \Psi_{III} \mathbf{l} \right)$$

 Ψ_I , Ψ_{II} and Ψ_{III} are the derivatives of Ψ with respect to the invariants of **b** and $J = \det \mathbf{F}$; the determinant of the deformation gradient

 $^{^1 \}mbox{Also}$ called stored energy or strain energy function $^2 \mbox{Also}$ referred to as the *finger* tensor

Compressible neo-Hookean material model

 For hyperelastic materials exhibiting a completely different volumetric and isochoric response, the free-energy function may be additively decomposed into a volume-changing (dilatational part), and a volume-preserving (isochoric part)

$$\Psi(J, \mathbf{b}) = \Psi^{\mathrm{dil}}(J) + \Psi^{\mathrm{iso}}(J, \mathbf{b})$$

The dilatational part is expressed in terms of J

$$\Psi^{\mathrm{dil}}(J) = \lambda U(J) = \frac{1}{2}\lambda (\ln J)^2$$

The isochoric part is expressed in terms of J and b

$$\Psi^{\rm iso}(J,\mathbf{b}) = \frac{1}{2}\mu\left({\rm tr}\mathbf{b} - 3\right) - \mu\ln J$$

 λ and μ are the Lame's constants that may be derived from Young's modulus, E, and Poisson's ratio, ν

Compressible neo-Hookean material model

Cauchy stresses are obtained from the first derivatives of Ψ^{dil} and Ψ^{iso} w.r.t. J and the first invariant of b; I = trb = b_{kk}

$$\sigma_{ij} = \sigma_{ij}^{\text{dil}} + \sigma_{ij}^{\text{iso}} = \left(\lambda \frac{\partial U}{\partial J} + \frac{\partial \Psi^{\text{iso}}}{\partial J}\right) \delta_{ij} + \frac{2}{J} b_{ij} \frac{\partial \Psi^{\text{iso}}}{\partial I}$$
$$= \frac{1}{J} \left[\mu b_{ij} + (\lambda \ln J - \mu) \delta_{ij}\right]$$

 Spatial tangent moduli are similarly obtained from the second derivatives

$$c_{ijkl} = c_{ijkl}^{\text{dil}} + c_{ijkl}^{\text{iso}} = \frac{1}{J} \left[\lambda \delta_{ij} \delta_{kl} + 2 \left(\mu - \lambda \ln J \right) \mathcal{I}_{ijkl} \right]$$

where $\mathcal{I}_{ijkl} = \frac{1}{2} \left[\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right]$

Modified neo-Hookean material model

- ► Rubber-like materials are characterized by relatively low shear modulus and high bulk modulus ⇒ they are nearly incompressible while highly deformable when sheared
- Multiplicative split of the deformation gradient into a volume-changing (dilatational) and volume-preserving (isochoric) part

$$\mathbf{F} = \mathbf{F}^{\text{dil}} \mathbf{F}^{\text{iso}} \qquad \left\{ \begin{array}{ll} \mathbf{F}^{\text{dil}} = J^{1/3} \mathbf{I} & \Rightarrow & \det \mathbf{F}^{\text{dil}} = \det \mathbf{F} = J \\ \mathbf{F}^{\text{iso}} = J^{-1/3} \mathbf{F} & \Rightarrow & \det \mathbf{F}^{\text{iso}} = 1 \end{array} \right.$$

► A modified deformation gradient F is obtained by replacing J with the scalar parameter J in the dilatational part

$$\bar{\mathbf{F}} = \bar{\mathbf{F}}^{\text{dil}} \mathbf{F}^{\text{iso}} = \left(\frac{\overline{J}}{\overline{J}}\right)^{1/3} \mathbf{F} \quad \text{where} \quad \bar{\mathbf{F}}^{\text{dil}} = \overline{J}^{1/3} \mathbf{I} \Rightarrow \det \bar{\mathbf{F}} = \overline{J}$$

Modified neo-Hookean material model

 Using the multiplicative split the isochoric part of the finger tensor becomes

$$\mathbf{ar{b}} = \mathbf{b}^{\mathrm{iso}} = \mathbf{F}^{\mathrm{iso}} (\mathbf{F}^{\mathrm{iso}})^T = J^{-2/3} \mathbf{b}$$

► The isochoric part of the free-energy function may know be written in terms of the modified invariant $\bar{I} = tr\bar{\mathbf{b}} = J^{-2/3}tr\mathbf{b}$

$$\Psi(J,\overline{I}) = \Psi^{\mathrm{dil}}(J) + \Psi^{\mathrm{iso}}(\overline{I})$$

where

$$\begin{split} \Psi^{\text{dil}}(J) &= \kappa U(J) = \frac{1}{4} \kappa \left(J^2 - 1 - 2 \ln J \right) \\ \Psi^{\text{iso}}(\overline{I}) &= \frac{1}{2} \mu \left(\overline{I} - 3 \right) \end{split}$$

 κ and μ are equivalent to the small strain bulk and shear modulus, respectively

Modified neo-Hookean material model

The volumetric part of the Cauchy stresses for the above volumetric behavior gives rise to the hydrostatic pressure

$$\sigma^{
m dil}_{ij} = \kappa rac{\partial U}{\partial J} \delta_{ij} = rac{\kappa}{2J} (J^2 - 1) \delta_{ij}$$

 The deviatoric part now may be expressed in terms of the modified deformation tensor b
_{ij}

$$\sigma_{ij}^{
m iso} = rac{\mu}{J}ar{b}_{ij}^{
m d} \quad {
m where} \quad ar{b}_{ij}^{
m d} = ar{b}_{ij} - rac{1}{3}\delta_{ij}ar{b}_{kk}$$

 Current spatial tangent moduli for the modified neo-Hookean material model

$$c_{ijkl} = c_{ijkl}^{\rm dil} + c_{ijkl}^{\rm iso}$$

where

$$\begin{split} c^{\text{dil}}_{ijkl} &= \frac{\kappa}{J} \left[J^2 \delta_{ij} \delta_{kl} + (1 - J^2) \mathcal{I}_{ijkl} \right] \\ c^{\text{iso}}_{ijkl} &= \frac{2\mu}{3J} \left[\bar{b}_{mm} (\mathcal{I}_{ijkl} - \frac{1}{3} \delta_{ij} \delta_{kl}) - \delta_{ij} \bar{b}^{\text{d}}_{kl} - \bar{b}^{\text{d}}_{ij} \delta_{kl} \right] \end{split}$$

Variational and discrete formulation of the finite deformation problem

Mixed formulation

A three-field mixed approximation has led to successful lower-order solid elements that can be used in finite deformation problems that exhibit compressible and/or nearly incompressible behavior for a large class of materials

$$\Pi(\mathbf{u}, \boldsymbol{p}, \theta) = \int_{\Omega} \Psi(J, \mathbf{\bar{b}}) \mathrm{d}\Omega + \int_{\Omega} \boldsymbol{p}(J - \overline{J}) \mathrm{d}\Omega - \Pi_{\mathrm{ext}}$$

▶ p is a Lagrange multiplier that constrains J to its independent representation, denoted J. p may be identified as the Cauchy mean or hydrostatic stress

$$\sigma_{ij}^{\rm dil} = p \delta_{ij}$$

• For computations we let \overline{J} be related to θ through

$$\overline{J} = 1 + \theta \Rightarrow \theta = 0$$
 in \mathcal{C}_0

Linearized discrete form of the variational equations

If we approximate the volume change θ and the pressure p by interpolation functions in reference coordinates X

$$\theta = \sum_{b=1}^{n_{\theta}} L_b(\mathbf{X}) \tilde{\theta}_b = \mathbf{L} \tilde{\theta} \text{ and } p = \sum_{b=1}^{n_p} M_b(\mathbf{X}) \tilde{p}_b = \mathbf{M} \tilde{p}$$

the linearized discrete form of the variational equation reads

$$\left[\begin{array}{ccc} \mathsf{K}_{uu} & \mathsf{K}_{u\theta} & \mathsf{K}_{up} \\ \mathsf{K}_{\theta u} & \mathsf{K}_{\theta \theta} & \mathsf{K}_{\theta p} \\ \mathsf{K}_{pu} & \mathsf{K}_{p\theta} & \mathbf{0} \end{array}\right] \left\{\begin{array}{c} d\tilde{\mathbf{u}} \\ d\tilde{\theta} \\ d\tilde{\mathbf{p}} \end{array}\right\} = \left\{\begin{array}{c} \mathsf{R}_{u} \\ \mathsf{R}_{\theta} \\ \mathsf{R}_{p} \end{array}\right\}$$

Residuals are expressed as sums over elements as

Discontinuous $\theta - p$ approximations

Approximations for θ and p are identical (L = M) and assumed to be discontinuous between contiguous elements

 $\Rightarrow ilde{ heta} ~~{
m and}~~ ilde{ extbf{p}}$ are condensed out on the element level

▶ Direct solution $\Rightarrow \mathbf{R}^e_{\theta}$ and \mathbf{R}^e_p vanish and the linearized form is reduced to

$$ar{\mathsf{K}}_{uu}d ilde{\mathsf{u}}=\mathsf{R}_{u}$$

where

$$\bar{\mathbf{K}}_{uu} = \mathbf{K}_{uu} + \mathbf{K}_{up} \mathbf{K}_{\theta p}^{-1} \mathbf{K}_{\theta \theta} \mathbf{K}_{p\theta}^{-1} \mathbf{K}_{pu} - \mathbf{K}_{u\theta} \mathbf{K}_{\theta p}^{-1} \mathbf{K}_{pu} - \mathbf{K}_{up} \mathbf{K}_{\theta p}^{-1} \mathbf{K}_{\theta u}$$

 An efficient procedure to compute the reduced tangent may be found in³

³Zienkiewics, O.C. and Taylor, R.L. The Finite Element Method for Solid and Structural Mechanics (6th ed, Elsevier, 2005)

Q_p/P_{p-1} and Q_p/Q_{p-1} mixed formulations

Implemented and studied two different constraint approximations based on the three-field variational form:

 Q_p/P_{p-1} : **u** continuous of order p with C^{p-1} continuity on "patches", θ and p discontinuous of order p-1**Note:** θ and p are expanded in individual Lagrange elements whereas for Splines θ and pexpanded in individual knot-spans \Rightarrow as the polynomial order increases the pressure space for Splines increases compared to Lagrange

 Q_p/Q_{p-1} : **u** continuous of order p with C^{p-1} continuity on "patches", θ and p also continuous, but of order p-1 with C^{p-2} continuity on "patches"

Babuška-Brezzi condition - Volumetric locking

 To avoid volumetric locking the Babuška–Brezzi condition must be satisfied

$$n_u \ge n_\theta = n_p$$

where n_u , n_{θ} and n_p denote the number of unknown displacement $\tilde{\mathbf{u}}$, volume $\tilde{\theta}$, and pressure parameters $\tilde{\mathbf{p}}$

In order to predict the propensity of volumetric locking, we define the constraint ratio

$$r_c = \frac{n_u}{n_p} = \frac{n_u}{n_\theta}$$

- The ideal value of the ratio r_c would then be the ratio between number of equilibrium equations (= n_{sd}), divided by number of incompressibility conditions (=1)
 ⇒ r_c = n_{sd} ⇒ the ideal ratio would be r_c = 2 in 2D
- If $r_c < n_{sd}$ volumetric locking may be anticipated

 Q_2/P_1 and Q_2/Q_1 mixed Lagrange elements

- = Displacement node
- = Pressure/volume change node
- Δ = Internal pressure/volume change node

 Q_2/P_1 and Q_2/Q_1 mixed Spline elements

- = Displacement node
- \Box = Pressure/volume change node
- \triangle = Internal pressure/volume change node

Implementational issues

- ► *IFEM* : Object-oriented toolbox for isogeometric FE analysis
 - Problem-independent computational core
 - 2D and 3D continuum formulations, Kirchoff–Love thin plate and shell formulations
 - Lagrange, Spectral, Splines and NURBS basis functions
- Basis function evaluation (Splines/NURBS) based on GoTools http://www.sintef.no/Projectweb/Geometry-Toolkits/GoTools
- Element-level linear algebra: Use machine-optimized BLAS
 - ► For higher-order elements, the element matrices become large
 - Important to express the nonlinear FE formulation on matrix form (Voigt notation) — not tensor form
- Linear equation solvers
 - SuperLU (direct methods) http://crd.lbl.gov/~xiaoye/SuperLU
 - PETSc (iterative methods) http://www.mcs.anl.gov/petsc
 - Parallelization in progress (based on MPI message passing)

Implementing the weak form (reference config.)

Using tensor notation:

$$k_{mn}^{ab} = \int_{\Omega_0} N_{a,i} F_{nj} C_{ijkl} F_{nk} N_{b,l} \mathrm{d}\Omega$$

Gives 8 nested loops, within the integration point loop!!

 ▶ 11400 DOFs ⇒ 48s CPU time for one element assembly step (89% of total simulation time) T = 2665s Using Voigt notation:

$$\mathbf{k} = \int_{\Omega_0} \mathbf{B}^T \mathbf{D}_T \mathbf{B} \mathrm{d}\Omega$$

 Implemented by two calls to BLAS-subroutine DGEMM

 ▶ 11400 DOFs ⇒ 19s CPU time for one element assembly step (82% of total simulation time) T = 1176s

Numerical examples

Numerical examples

- The performance of the three-field mixed forms:
 - Q_p/P_{p-1} : discontinuous p and θ , and
 - Q_p/Q_{p-1} : continuous p and θ

is numerically assessed and compared to the one-field Q_p displacement formulation with Splines and Lagrange basis functions

 The accuracy and the convergence characteristics are assessed in the finite deformation regime for elastic and elasto-plastic materials

Cook's problem: Linear plane stress problem

Cook's problem: Error in vertical tip displacement, v_C

- As expected NURBS and Lagrange elements of polynomial order p = 1 coincide
- NURBS converge at the same rate but is more accurate than Lagrange elements of polynomial order p = 2

End loaded cantilever beam: Linear plane stress problem

- Exact solution may be obtained for this particular problem
- Analyzed with NURBS and Lagrange Q_p elements, p = 1, 2
- Note: In order to be compatible with the exact solution, a parabolic transverse traction field acting downward and a normal traction field equivalent to the transverse shear force and the moment, respectively, must be applied to the supported end

End loaded cantilever beam: Error in potential energy

- As expected NURBS and Lagrange elements of polynomial order p = 1 coincide
- NURBS converge at the same rate but is more accurate than Lagrange elements of polynomial order p = 2

Compression of a Thick Cylinder

:	L =	30.0
:	$R_o =$	10.0
:	$R_i =$	8.0
s :	E =	16800
:	$\nu =$	0.4
:	$p_0 =$	470.0
	: : s: :	$L = R_o = R_i = R_i = R_i = r_i$ $R_i = R_i = r_i$ $E = r_i = r_i$ $P_0 = r_i$

Note: Quadratic NURBS describe exact geometry in \mathcal{C}_0 !

Compression of a Thick Cylinder

- Due to symmetry, only one quarter is modelled
- One element over the thickness, varying in length and circumferential direction
- ► NURBS and Lagrange Q_p elements, p = 2, 3, 4
- Compressible neo-Hookean material model

$$\Psi(J,\mathbf{b}) = \frac{1}{2}\mu(\mathrm{tr}\mathbf{b}-3) - \mu \ln J + \frac{1}{2}\lambda(\ln J)^2$$

 Load is here applied as two oppositely directed tangential tractions

Compression of a Thick Cylinder

Deformed configuration with the Cauchy stress σ_{xz}

Considering basis order through thickness (NURBS)

r of degrees of

Convergence for NURBS

Convergence for NURBS and Lagrange

Torsion of a square column: Q_2/P_1 ($\theta = 10.0 \text{ rad} \approx 573^{\circ}$)

- ► $5 \times 5 \times 17$ control points ⇒ 1125 DOFs
- ► Analyzed with both Q_p , Q_p/P_{p-1} and Q_p/Q_{p-1} elements (p = 1, 2, 3, 4)
- Increment size: $d\theta = 0.01$

Stored elastic strain energy for spline elements

Torsion of a square column: Failure angle (θ_f)

Approx.	Grid	Formulation	θ_f [rad]
Lagrange/	4 × 4 × 16	Q1	29.45
Splines	4 × 4 × 10	Q1/P0	21.12
Lagrange $2 \times 2 \times 8$	2 2 2 2 9	Q2	10.39
	2 × 2 × 0	Q2/P1	19.22
Splines $3 \times 3 \times 15$	Q2	24.93	
	2 × 2 × 12	Q2/P1	37.22
Splines $2 \times 2 \times 14$	$2 \times 2 \times 14$	Q3	23.86
	Q3/P2	27.36	
Lagrange	$1 \times 1 \times 4$	Q4	0.12
		Q4/P3	14.96
Splines 1	1 \(\color 1 \(\color 12\)	Q4	0.27
	$1 \times 1 \times 15$	Q4/P3	15.30

Number of degrees of freedom = 1125 for all grids ! Prescribed incremental size $d\theta = 0.01$ [rad] for all analyses !

Necking of elastic-plastic tension strip:

► Geometry:

Length	:	$\ell =$	53.334
Width	:	w =	12.826
Center width	:	$W_c =$	0.982 <i>w</i>

Finite strain elastic-plastic model with a J_2 yield function; uniaxial yield stress given by:

$$\sigma_y = \sigma_\infty + (\sigma_0 - \sigma_\infty) \exp(-\beta e_p) + \sqrt{\frac{2}{3}} h e_p$$

Bulk modulus Shear modulus Initial yield stress : σ_0 Residual yield stress ~ : $\sigma_{\infty}~$ = 0.715 Isotropic hardening : h = 0.12924Saturation exponent : β Effective plastic strain : e_p

= 164.206: κ : μ = 80.1938 = 0.45 = 16.93

Necking of elastic-plastic tension strip:

a) Mesh for one quadrant of the strip with 6 knot spans in the width and 12 in length \Rightarrow 7 × 13 grid points (basis functions)

b) Mises stress distribution at final configuration obtained with the Q_3/P_2 spline element with a 49 \times 97 grid

Necking of elastic-plastic tension strip : 7×13 grid points

Necking of elastic-plastic tension strip : 7×13 grid points

Necking of elastic-plastic cylinder

Necking of elastic-plastic cylinder

- Mises stress distribution at final configuration
- Three dimensional analysis
- Approximation: Q₂ NURBS element
- Discretization: 13 × 25 control points

Necking of elastic-plastic cylinder : Q_2/P_1 NURBS element

Necking of elastic-plastic cylinder : 13×25 grid points

Necking of elastic-plastic cylinder : Q_p/Q_{p-1} ; p = 2, 3

Necking of elastic-plastic cylinder

Mises stress distribution at final configuration

- Axisymmetric analysis
- Approximation: Q_3/P_2 mixed spline element
- ▶ Discretization: 151 × 301 control points
- Number of unknowns: 90 299

Mises Stress

Concluding remarks:

- By means of numerical examples, the performance of isogeometric Splines and NURBS elements have been assessed on problems involving *compressible* and *nearly incompressible* hyperelasticity and finite multiplicative plasticity
- A remarkable ability in capturing strain localization phenomena has been verified for both *plane strain, axisymmetric* and *three-dimensional* isogeometric solid elements
- ▶ While *continuous* mixed Q_p/Q_{p-1} is preferable for both nearly incompressible elastic materials and finite strain plasticity
- ► Discontinuous mixed Q_p/P_{p-1} is far more efficient in terms of computer resources
- Further work:
 - A more detailed study of the 3D necking problem with adaptively refined meshes in the necking zone
 - Isogeometric finite element analysis of *thin-walled* structures

Thank you for your attention!